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Abstract. One of the most important topical issues of hard-to-recover
and shale oil production is the problem of compensating for the de-
cline in oil production at the developed conventional oil fields. The pro-
posed filtration model of flow of rheologically complex fluids in hard-to-
recover fractal reservoirs, including shales, consisting mainly of micro-
nanopores and microcracks allows to control, regulate and optimize hy-
drocarbon flows in reservoirs, as well as to increase reservoir produc-
tivity.
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1 Introduction

In the last years, along with the latest advances in the field of oil and gas production,
particularly in the late stage of development, new methods of development in the field of
technology of production of hard-to-recover reserves, including shale oil reservoirs, are
becoming more and more widely used.

Frequently, many fields with major oil reserves correspond to reservoirs with deterio-
rated collector properties, which can be classified as hard-to-recover and shale oil deposits
[2, 6, 7, 13]. One of the most important actual issues of hard-to-recover and shale oil pro-
duction is the task of compensating for the decline in oil production at the developed con-
ventional oil fields.

It should be noted that in spite of some differences between the reserves of hard-to-
recover and shale oils, there is a certain analogy between them. Numerous studies and
analyses of various oil properties and reservoir conditions have shown that the main in-
dicators characterising hard-to-recover and shale rocks are reservoirs containing, as a rule,
anomalous oil in complex geological and geophysical conditions [5, 12, 14].
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The main problems in the recovery of hard-to-recover oils can be considered the content
of various paraffin, asphalt-resin compounds, mechanical and other impurities in the oils,
complicating the physical and mechanical properties of the fluid, as well as low porosity
and poor permeability of rocks in the conditions of occurrence [12].

The characteristics of shale oils deposited in low-permeability reservoirs and adjacent
rocks are diverse and can vary greatly from the parametric properties of both the reservoirs
and the oils themselves, depending on the location in the field [14].

At the same time, a comparative analysis of conventional hard-to-recover and shale oils
shows their certain similar dependence on quite a large number of geological and physical,
geological and field reservoir characteristics, physical and chemical parameters of oil and
conditions of their occurrence [12, 14].

However, a wide range of known studies shows that there are no unified definitions and
quantitative boundary values of reservoir parameters and recoverable oil and, as a result,
there is no single generally accepted approach to modelling of filtration processes of oil
flow in conditions of their occurrence in low-permeability complex reservoirs.

Therefore, these parameters can be the most important in identifying classification fea-
tures for oil samples and reservoirs when creating filtration models of fluid flow in difficult
to recover and shale oil fields.

2 Methodology

1. Improving the oil recovery efficiency of large hard-to-recover and shale oil reservoirs
is inextricably linked to horizontal wells for the purpose of multistage hydraulic fractur-
ing (HF). As a result of high-pressure impact of fluid with various chemical reagents and
nano-inclusions in the formation, various fractures are formed, which lead to an increase in
reservoir permeability and, as a consequence, enhanced oil recovery [4, 9, 15].

Fractures appearing and existing in hard-to-recover and shale reservoirs, in contrast to
conventional fractured and fractured-porous reservoirs, due to increased density, hydropho-
bicity and low permeability of reservoirs, have a somewhat different and more complex
geophysical and geometric character [16].

Reliable modelling of filtration processes in hard-to-recover and shale formations is as-
sociated with the creation and development of a new concept of representative elementary
volume REV (Representative Elementary Volume), which takes into account the specifics
of multiporous, multi-permeable and multi-scale fractured and fracture-porous reservoirs.

Considering the specific geophysical and geometric character of hard-to-recover and
shale formations, multiscale fractures (including hydrofracturing) in an anisotropic multi-
pore medium are presented in Fig. 1, according to [8].

Fig. 1. Schematic diagram of multi-scale fractures (including cracks hydrofracturing) in
hard-to-recover and shale formations:
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a) micro-scale: a representative elementary volume consisting mainly of a continuum of
porous blocks that includes a set of cracks as structural heterogeneities (”cobweb model of
cracks”);

b) micro-scale: each crack is an internal or external boundary of the computational do-
main;

c) meso-scale: the crack scale is comparable to the REV and the crack is a structural
element of the REV

Despite the different schemes of multiporous, multi-porous, multi-permeable and multi-
scale characterization of tight and shale reservoirs, all of them can be considered from the
position of the fractured-porous medium model, since the latter consist of different types of
microporous and low-permeable blocks and are randomly distributed by existing and post
hydrofracturing fractures.

As well as unfavourable geological and geophysical-geometrical conditions of hard-to-
recover and shale formations, the presence of various rheologically complex oils in these
reservoirs considerably complicates oil production processes. Such indicators as viscosity,
density, tar and paraffin content are the key classification features in classifying oil samples
as hard-to-recover.

2. Due to specific features of fractured porous medium mainly consisting of micro-
nanopores and microcracks saturated with various kinds of anomalous oil, which leads to
violation of traditional flow laws in hard-to-recover and shale reservoirs.

Deviation of filtration flow laws in reservoirs is primarily due to unusually low volumes
of micropores in blocks, specifically distributed microcracks and rheological characteristics
of the fluid. These factors can be reflected in delayed filtration velocities and relaxation
processes of pressures or pressure gradients, and these phenomena can manifest differently
depending on the geological-physical and geological-geometric characteristics of the reser-
voir, as well as the physicochemical and rheological properties of the oil and the conditions
of its occurrence.

Present and post hydrofracturing micro-nanofractures in hard-to-recover and shale reser-
voirs reveal fractal properties, and the blocks usually remain low-permeability micro-nanoporous
media. For such media with non-integer fractal dimensionality, the use of the classical phys-
ical Darcy’s law is not possible, because in this case in fractal media there is a need to trans-
form the basic physical concepts of space and time in accordance with the fractal-fractional
derivative.

At the same time, the micro and small-permeable blocks and anomalous fluid properties
may lead to relaxation and retardation processes in hard-to-recover and shale formations.
The above allows us to consider that for the description of filtration processes in micro-
nanoporous and microfractured reservoirs of rheologically complex fluids, a generalized
fractally differential Darcy model can be presented, which takes into account both pressure
gradient relaxation and filtration rate lag functions, in accordance with the fractal-scaling
approach [1, 10, 11].

λϑ
dϑC1

Vi

dtϑ
+ Vi = −kij

µ

(
∂P

∂xj
+ θν

dνC
dtν

∂P

∂xj

)
. (2.1)

Following [1, 11], the operation of fractional index differentiation or more commonly called
fractional differentiation is introduced below.

The fractional order derivative v of a piecewise continuous function f(t) is defined by
the expression
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)−ν
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where C is an arbitrary real number that can have any value in the interval−∞ < C <
+∞. In the special case when C = 0, the index in equation (2.2) is omitted and simplified
notations Dν

0 ≡ Dν and dν0
dtν ≡ dν

dtν are introduced.
The generalised fractal differential equation (2.1), taking into account (2.2), can be writ-

ten in the following form
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dt
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)−ϑ
Vi
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dt′′ + Vi =

= −kij
µ

[
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+
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(1− ν)

d

dt

∫ t

C

(
t− t′

)−ν dP (t′)

dxj
dt′
]
, (2.3)

where:
Vi - components of the fluid filtration velocity vector;
P - pressure at fluid filtration;
kij - fracture permeability tensor;
µ - fluid viscosity;
(t− t′)−v, (t− t′′)ϑ- heredity kernels represented by proportional degree laws with neg-

ative fractional exponents - v, ϑ;
θ - relaxation time;
λ - retardation time;
(1− v), (1− ϑ) - Gamma-functions;
v, ϑ - fractality parameters;
xj - coordinate axes;
t - time;
C1 is an arbitrary real number, which can have any value in the interval −∞ < C1 <

+∞.
According to [1, 3], a characteristic feature of fractured-porous medium is the fact that

the main fluid reserves are contained in porous blocks, while the fluid flow is taking place
in microcracks.

Then the continuity equation for the fluid filtration flow in the fractured region has the
following form

∂ (m1ρ)

∂t
+ div

(
ρV⃗
)
− q = 0, (2.4)

where m1 is the porosity of microcracks per reservoir volume unit; q is the amount of
fluid flowing per unit time from blocks to microcracks per reservoir volume unit.

Ignoring filtration flows in the blocks, the continuity equation can be written as follows

∂ (m2ρ)

∂t
+ q = 0, (2.5)

m2 is the porosity of blocks in the unit volume of the reservoir.
Assuming permeability k2, density ρ and viscosity µ in blocks of size l are constant, the

expression for inertia-free flow q is written in the following form

q = α
ρk2
µ

P2 − P1

l2
, (2.6)

where α is a dimensionless constant characterizing the geometry of the reservoir; P1 is the
pressure in the fractures; P2 is the pressure in the blocks.

In fractured-porous medium, the porosity of cracks m1 is usually small and can be ne-
glected, while the porosity of blocks m2 is a function of pressures in cracks P1 and in blocks
P2.
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In linear approximation, the dependence of block porosity on pressures can be written
in the form

∂m2

∂t
= m20

(
β21

∂P1

∂x
+ β22

∂P2

∂x

)
, (2.7)

where β21, β22 and m20 are assumed constant.
For a weakly compressible fluid, the density function can be assumed to depend linearly

on the pressure
ρ = ρ0 [1 + β∗ (P − P0)] , (2.8)

where P = P1, P2 - when considering pressure in microcracks or in blocks; P0 - initial
pressure in the fractured-porous formation.

Using the generalized fractal differential Darcy model (2.1), the dependencies (2.6),
(2.7) and (2.8) in equations (2.4) and (2.5), while assuming m1 = 0, the following system
of equations can be written:

− ∂

∂xj

[
kij

(
1 + θν

dνC
dtν

)
∂P1

∂xj

]
− αk2

l2

(
1 + λϑ
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dtϑ

)
(P2 − P1) = 0, (2.9)

m0

[
−β21

∂P1

∂t
+ (β22 + β∗)

∂P2

∂t

]
+

αk2
µl2

(P2 − P1) = 0. (2.10)

Assuming that the medium is homogeneous and isotropic, then the permeability can be
expressed by the ball tensor kij = k1δij , and the system of equations (2.9) and (2.10) is
shown in the following simplified way:

χ
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− β
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where,

A =
αk2

µm0l2 (β22 + β∗)
, χ =

k1
µm0 (β22 + β∗)

, β =
β21

β22 + β∗
.

The system of equations (2.11) and (2.12) can be written with respect to any one of the
pressures. Solving this system with respect to the pressure P1, the following equation can
be obtained(
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where,
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When C1 = 0, C = 0, equations (2.13) can be presented as follows:(
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Assuming that there are no relaxation phenomena of the pressure gradient in the filtration
process, i.e. θ = 0, equation (2.14) is written in a somewhat simplified form(

1 + λϑ
dϑC1

dtϑ

)
∂P1

∂t
− η

∂3P1

∂t∂x2j
=

χ

1− β

∂2P1

∂x2j
. (2.15)

In the case of filtration without delay processes λ = 0, equation (2.14) will take the form

∂P1

∂t
− η

∂

∂t

(
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dν

dtν

)
∂2P1

∂x2j
=

χ

1− β

(
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)
∂2P1

∂x2j
. (2.16)

In the case of Darcy law fluid flow in conventional fractured-porous reservoirs, equation
(2.14) is transformed into the well-known differential equation obtained in [3]. In the limit-
ing case when λ = 0, θ = 0 and η → 0, equation (2.14) transforms into the classical elastic
equation with the piezoconductivity coefficient χ

1−β , which corresponds to the permeability
of the fracture system and porosity, as well as to the compressibility of the blocks.

3. If we assume that fractal filtration of a rheologically complex fluid takes place in
a semi-infinite linear micronanoporous and microfractured reservoir, then equation (2.16),
with some simplifications, can be written in the following form(
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χ
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(
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)
∂2P1

∂x2
. (2.17)

It is also assumed that the fluid is at rest at the initial moment of time in a semi-infinite
reservoir with constant reservoir pressure Pr. At some moment of time the pressure in
section x = 0 starts to change according to the law P1 = P0(t), in particular, the pressure
can take a constant value equal to P00.

In this case, the filtration of a rheologically complex fluid in a semi-infinite linear micro-
nanoporous and microfractured reservoir is described by the fractional differential equation
(2.17), with the following initial and boundary conditions:

P1(0, x) = Pr (2.18)

P1(t, 0) = P0(t), P1(t,∞) = Pr (2.19)

Introducing the function P̃1 (t, x) = Pr − P1 (t, x), the fractional differential equation
(2.17), with initial (2.18) and boundary conditions (2.19), can be written as follows:

(
1 + λϑ ∂ϑ
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(
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∂tν

)
∂2P̃1

∂x2
, (2.20)

P̃1 (0, x) = 0, (2.21)

P̃1 (t, 0) = Pr − P1 (t, 0) = Pr − P0 (t) = P̃0 (t) , P̃1 (t,∞) = 0. (2.22)

Using the Laplace transformation, the fractional differential equation (2.20) and bound-
ary conditions (2.22), taking into account the initial (2.21), can be written as follows

∂2P̂

∂x2
− β2

0 P̂ = 0, (2.23)

P̂ (s, 0) = P̂0 (s) , P̂ (s,∞) = 0, (2.24)
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β2
0 =

A (1− β)

χ

s+ λϑs1+ϑ

(1 + θνsν) (A+ s)
,

where P̂ (s, x) =
∫∞
0 exp (−st) P̃1 (t, x) dt, P̂0 (s) =

∫∞
0 exp (−st) P̃0 (t) dt.

The solution of the differential equation (2.23) under boundary conditions (2.24) has the
form

P̂ (s, x) = P̂0 (s) exp (−β0x) . (2.25)

To determine the filtering speed in images, we can use the Laplace transformation to
the filtering equation (2.1), as a result, the last equation, after some transformations, will be
written as follows

V̂ (s, x) = −k

µ

1 + θνsν

1 + λϑsϑ
∂P̂ (s, x)

∂x
, (2.26)

where V̂ (s, x) =
∫∞
0 exp (−st)V (t, x) dt.

Then, considering dependence (2.26), the image of filtration velocity in the initial section
of the gallery x = 0 is determined from relation (2.25) by the following formula
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k

µ

√
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χ

√
s (1 + θνsν)

(A+ s) (1 + λϑsϑ)
P̂0 (s) . (2.27)

The asymptotic solutions in the original for 0 < ϑ; v > ϑ at t → 0 and t ? 8 are obtained
from (2.27) and are, respectively, of the form:

V (t) ≈ k

µ

√
A (1− β)

χ

θν

λϑ

(
d

dt

) ν−ϑ
2

P̃0 (t) =
k

µ

√
A (1− β)

χ

θν

λϑ

(
d

dt

) ν−ϑ
2

[Pr − P0 (t)] ,

(2.28)
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(2.29)

In the case when P0(t) = P00 = Const, then the solutions of (2.28) and (2.29) in the
original, respectively, will be written:
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µ
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2

) √
A (1− β)

χ

θν

λϑ
t−

ν−ϑ
2 , (2.30)
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1
2

) − 1

2
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1
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2
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1
2
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1
2 + ν

)] . (2.31)

From the analysis of (2.30) and (2.31) we can see that at small times of the filtration
process in a semi-infinite linear reservoir, the flow rate depends on relaxation times λ, θ and
fractality parameters ϑ, νmultiplicatively, and at large times - additively. At the same time,
as the retardation time and fractality parameter in the retardation processes increase, both
the value of the filtration rate itself decreases and the rate of its decrease accelerates. While
relaxation time and fractality parameter in the relaxation process slightly increase the value
of filtration rate and slow down the rate of its change.
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4. Now we consider unsteady fractal filtration of a rheologically complex fluid, described
by the fractional differential equation (2.17) or (2.20), in a semi-infinite linear reservoir
when the pressure at the initial cross section is a harmonic function of time with a given
frequency:

P̃ (t, 0) = Pr − P1 (t, 0) = P̃0 (t) = P00 exp (iωt) , P̃ (t,∞) = 0. (2.32)

Assuming that after sufficiently distant from the initial moment of time, the influence of
initial conditions practically does not affect the pressure distribution in the formation, the
solution of the fractional differential equation (2.20) under boundary conditions (2.32) can
be found in the form of

P̃ (t, x) = P00 exp (iωt+ δx) . (2.33)

Substituting the solution (2.33) into the fractional differential equation (2.20), taking
into account the boundary conditions (2.32), we obtain the following relation for determin-
ing δ

iω + λϑi1+ϑω1+ϑ − ηiωδ2 (1 + θνiνων) =
χ

1− β
δ2 (1 + θνiνων) .

From the last relation δ is determined

δ =

√
iωA (1− β)

χ (1 +A)

√
1 + λϑiϑωϑ

1 + θνiνων
. (2.34)

Assuming that the parameters λ, θ, ω are sufficiently small, the relation (2.34) can be
written approximatingly as follows.
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−
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[
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(
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2ϑ
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(
cos π

2 ν + sin π
2 ν
)]

.

(2.35)
The analysis of dependence (2.35) shows that both relaxation times θ and retardation λ
and fractality parameters ϑ, ν and depending on the values of ϑ, ν parameters θ, λ can
both decrease and increase the process of filtration damping in comparison with traditional
dependences of filtration processes.

At that, the attenuation coefficient at fractal filtration is determined proportionally to

√
ωA (1− β)

2χ (1 +A)

[
1 +

1

2
λϑωϑ

(
cos

π

2
ϑ− sin

π

2
ϑ
)
− 1

2
θνων

(
cos

π

2
ν − sin

π

2
ν
)]

.

3 Conclusions.

It should be noted that on the basis of the above-mentioned fractal models of anomalous
fluid filtration in hard-to-recover and shale reservoirs, it is possible to significantly reveal
new phenomena, increase the efficiency of diagnostics and regulation of properties and char-
acteristics of the systems under consideration. In addition, the proposed filtration model of
flow of rheologically complex fluids in hard-to-recover fractal reservoirs, including shales,
consisting mainly of micro-nanopores and microcracks can allow to control, regulate and
optimize hydrocarbon flows in reservoirs, as well as increase the productive capacity of
reservoirs.
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