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Abstract. In the paper we consider a problem on parametric vibra-
tions of a viscous-elastic medium-contacting cylindrical shell subjected
to the external p = p0+p1 sinω1t influence (here, p0 is a mean or main
force p1 is the change amplitude of the force, ω1 is the change frequency
of the variable part of the force) whose material was stiffened with in-
homogeneous rods along the generate. It is accepted that the material
of the cylindrical shell is orthotropic, the material of rods is inhomoge-
neous. The medium was modelled in viscous-elastic form. For finding
critical force by means of contact condition, a frequency equation was
built and was studied depending on mechanical and geometrical pa-
rameters characterizing the system. The hereditary type damage theory
was used for taking into account the damages created at the expense of
vibrations in the structure of a cylindrical shell subjected to the action
of external force.

Keywords. viscous-elastic medium · inhomogeneous rod · orthotropic
cylindrical shell · parametric vibrations · damage.
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1 Introduction

The paper [10] was devoted to nonlinear parametric vibrations of a viscous liquid-filled,
longitudinally stiffened orthotropic cylindrical shell. The motion of the liquid was described
by the linearized Navier-Stocks equations. The motion equation of a viscous liquid-filled,
longitudinally stiffened cylindrical shell was obtained by using the Ostrogradsky-Hamilton
variation principle.

The dependence of the ratio of nonlinear frequency to linear frequency on the curvature
of the shell was determined for various number of rods.

Calculation of liquid-contacting structures are widely used in designing hydrotechnical
units, underwater structures.
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At the same time, these calculations can be found in some fields of engineering, for ex-
ample in the calculation of elastically connected structural elements. Parametric vibrations
can just be formed in such elements. In [5 - 9], parametric materials vibrations of dam-
aged structural elements made of smooth isotropic materials modelled as damaged rod and
shell are considered in a medium. Parametric vibrations of stiffened and damaged structural
elements made of isotropic material are studied in [3].

In [4, 12 - 14], a problem on parametric vibrations of a viscous-elastic medium-contacting
cylindrical shell affected by external force and stiffened with ribs was considered. Three
cases of location of ribs on the surface of the cylindrical shell are considered: 1) the ribs
were located on the surface of the cylindrical shell along its generatrix; 2) The cylindrical
shell was stiffened by means of annular ribs; 3) The ribs form an orthogonal network on the
surface of the cylindrical shell.

The cylindrical shell was accepted as orthotropic. The medium was modeled in a viscous-
elastic form and elastic effect was studied by the Lame equation system in displacements.

For finding parametric vibrations frequencies of the system by means of control con-
ditions, a frequency equation was built and was asymptotically studied depending on me-
chanical and geometrical parameters characterizing the system. An optimization parameter
was included, an optimal variant of the number of ribs was found.

2 Mathematical formulation of the problem and its solution

For studying the problem on parametric vibrations of a damaged, viscous-elastic medium-
contacting orthotropic cylindrical shell affected by external medium and stiffened with in-
homogeneous rods, we will use the Hamilton-Ostrograsky variation principle (Fig. 1).

Fig. 1. Damaged, viscous-elastic medium-contacting orthotropic cylinder stiffened with
inhomogeneous rods.

The total energy of the studied system can be written as:

W = J +A0 +A1 + Ji (2.1)

Here J is the total energy of a cylindrical shell with damages taken into account and stiff-
ened with rods; Ji is the total energy of inhomogeneous rods fixed in the direction of the
generatrix of the cylindrical shell, A0 is the work performed by the force as viewed from
the medium in the displacements of the cylindrical shell, A1 is the work performed by the
force p acting on the surface of the cylindrical shell in the displacements of the points of the
shell.
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We wrote expressions of quantities involved in the expression (2.1). The hereditary type
damage theory was used to take into account the damages. According to this theory, defor-
mation components are determined in a homogeneous body as follows [11]:

εij = ε̄ij +M∗ · σij (2.2)

Here M∗ is a hereditary type integral operator that describes the damage process and is in
the following form:

M∗ · σij =
n∑
k=0

f(t+k )

∫ t+k

t−k

M(x, t+k − τ) · σij(τ)dτ +
∫ t

t−n+1

M(x, t− τ) · σij(τ)dτ (2.3)

In the expression (2.3) M(x, t− τ) is a damage kernel,
(
t−k ; t

+
k

)
is a time interval affected

by active stress that provides the increase in damage, f(t+k ) is a defect recovery function
dependent on the volume of damages accumulated in a cycle. The value f(t+k ) = 0 of this
function, corresponds to full restoration of damages accumulated in one cycle, the value
f(t+k ) = 1 to the absence of the damage restoration process. The values between zero and
a unit express partial restoration of damages. To determine the interval

(
t−k ; t

+
k

)
we need

some special condition. This condition consists of specific features of the construction, its
operation condition and the loading types.

Taking into account the expression (2.3), for the total energy of a cylindrical shell with
damages taken into account, we can write:

J =
1

2
R2

∫ x2

x1

∫ y2

y1

{N11ε11 +N22ε22 +N12ε12 −M11χ11 −M22χ22 −M12χ12+

+N11

(
n∑
k=0

f(t+k )

∫ t+k

t−k

M(x, t+k − τ) ·N11dτ +

∫ t

t−n+1

M(x, t− τ) ·N11dτ

)
+

+N22

(
n∑
k=0

f(t+k )

∫ t+k

t−k

M(x, t+k − τ) ·N22dτ +

∫ t

t−n+1

M(x, t− τ) ·N22dτ

)
+

+N12

(
n∑
k=0

f(t+k )

∫ t+k

t−k

M(x, t+k − τ) ·N12dτ +

∫ t

t−n+1

M(x, t− τ) ·N12dτ

)
−

−M11

(
n∑
k=0

f(t+k )

∫ t+k

t−k

M(x, t+k − τ) ·M11dτ +

∫ t

t−n+1

M(x, t− τ) ·M11dτ

)

−M22

(
n∑
k=0

f(t+k )

∫ t+k

t−k

M(x, t+k − τ) ·M22dτ +

∫ t

t−n+1

M(x, t− τ) ·M22dτ

)
−

−M12

(
n∑
k=0

f(t+k )

∫ t+k

t−k

M(x, t+k − τ) ·M12dτ +

∫ t

t−n+1

M(x, t− τ) ·M12dτ

)}
dxdy+

+ρ0h

∫ x2

x1

∫ y2

y1

[(
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
]
dxdy (2.4)
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Internal forces and moments involved in the expression (2.4) will be taken as follows [2]:

Nij =
h/2

∫
−h/2

(σij + zwij) dz; Mij = −
h/2

∫
−h/2

(σij + zwij) zdz (2.5)

w11 = b11χ11 + b12χ22;w22 = b12χ11 + b22χ22;w21 = w12 = b66χ12.

The stress σij and strain εij in the relations (2.5) in the middle surface are determined in
the following form:

σ11 = b11ε11 + b12ε22; σ22 = b12ε11 + b22ε22; σ12 = b66 (2.6)

ε11 =
∂u

∂x
; ε22 =

∂ϑ

∂y
+ w; ε12 =

∂u

∂y
+
∂ϑ

∂x
; χ11 =

∂2w

∂x2
;χ22 =

∂2w

∂y2
;χ12 = −2

∂2w

∂x∂y

b11 =
E1

1− ν1ν2
; b22 =

E2

1− ν1ν2
; b12 =

ν2E1

1− ν1ν2
=

ν1E2

1− ν1ν2

For taking into account the inhomogeneity of the rods, we will consider that the elasticity
modulus and density is a function of the coordinate x. In this case, for the total energy of
the rods along the generatrix of cylindric shell we can write [1]:

Ji =
1

2

k1∑
i=1

∫ x2

x1

[
Ei(x)Fi

(
∂ui
∂x

)2

+ Ei(x)Jyi

(
∂2wi
∂x2

)2

+

+Ei(x)Jzi

(
∂2ϑi
∂x2

)2

+Gi(x)Jkpi

(
∂φkpi
∂x

)2
]
dx+

+

k1∑
i=1

ρi(x)Fi

∫ x2

x1

[(
∂ui
∂t

)2

+

(
∂ϑi
∂t

)2

+

(
∂wi
∂t

)2

+
Jkpi
Fi

(
∂φkpi
∂t

)2
]
dx (2.7)

In the expressions (2.6), (2.7) E1, E2 are the main elasticity module of the material of
the orthotropic cylindrical shell, u, υ, w are the displacements of the middle surface of
the cylindrical shell, Fi, is the area of the cross section of the i−throd fastened in the
direction of the generatrix of the cylindrical shell, Jyi, Jzi, are inertia moments with respect
to the axis parallel to the axis of the section passing from the gravity center, Jkpi is inertia
moment at torsion, Ei, Gi are elasticity module of the i−th rod fastened in the direction
of the generatrix of the cylindrical shell at stretching and shift t is time, ρi is the density of
the material of the i − th rod fastened in the direction of the generatrix to the cylindrical
shell, ui, ϑi, wi are the displacements of the points of the i−throd, ρ0 is the density of the
material of the cylindrical shell.

It is considered that the rods were rigidly built in to the cylindrical shell. This time the
following contact conditions are satisfied:

ui (x) = u (x, yi) , ;ϑi (x) = ϑ (x, yi)wi (x) = w (x, yi) (2.8)

The work A0 done at the displacements of the shell by the force affecting the cylindrical
shell as viewed from the medium, the work A1 done at the displacements of the points of
the shell by the force p acting in the surface of the cylindrical shell is as follows

A0 = −
∫ x2

x1

∫ 2π

0
qzwdxdy (2.9)
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A1 = −4

∫ x2

x1

∫ π/4

0
pwdxdy (2.10)

The force affecting the cylindrical shell as viewed from the medium and involved in expres-
sion (2.9) is determined as follows:

qz = kυw − kp

(
∂2w

∂x2
+
∂2w

∂y2

)
−
∫ t

0
(t− τ)w(τ)dτ (2.11)

Here kϑ is Winkler’s coefficient, kp− is Pasternak coefficient and is found by experience,
t-is time Γ (t− τ) is a viscosity kernel.

3 Solution methods

We will look for the shell displacements for ξ = 0 and ξ = ξ1 writhing the boundary
conditions ϑ = w = T1 =M1 = 0 (ξ = x

R ; ξ1 =
l
R):

u = u0 cosnφ cos
mπ

ξ1
ξ sinωt;

ϑ = ϑ0 sinnφ sin
mπ

ξ1
ξ sinωt; (3.1)

w = w0 cosnφ sin
mπ

ξ1
ξ sinωt;

Here u0, ϑ0, w0 are unknown constants. Using the solutions (3.1), the expressions (2.9),
(2.10) and (2.11), we can calculate the work done in the displacements by the force p acting
in the surface of the shell and by the medium:

A0 = −2πR

[
ωl

4 (ω2 + ψ2)

(
sinωt− eψtsin2ωt+

ψ

ω
eψtsin2ωt

)
+

+
kϑlsin

2ωt

4
+ kp

(
m2π2

l2
+

k2

4R2

)
lsin2ωt

4

]
w2
0 (3.2)

A1 = − 4

nk
(coskL− 1) sin

nπ

4
(p0sinωt+ p1sinω1tsinωt)w0 (3.3)

By means of the approximation (3.1) we can determine the active loading period involved
in the damage operator from the decreasing condition of the function:[(π

2
+ 2πk

)
/ω;

(
3π

2
+ 2πk

)
/ω;

]
.

The characteristic T , time is determined as the greatest one from the times t+n . Taking
into account the expressions (3.2), (3.3), substituting (3.1) in (2.1) integrating from x1 = 0
to x2 = l from y1 = 0 to y2 = 2πfrom to t0 = 0 to t1 = T , for the Hamilton action

Wc =
t1
∫
to
Wdt we obtain M(x, t− τ) = γ = const):

WA =
πLhR2

4

{[(
k2b11 +

n2

R2
b66

) (
T

2
− sin2ωT

4ω

)
−γh
ω
F (T )T1 +

γh3

16ω
F (T )T1

]
u20+

+

[(
n2

R2
b22 + k2b66

)(
T

2
− sin2ωT

4ω

)
− γh

ω
F (T )T2 +

γh3

16ω
F (T )T2

]
ϑ20+
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+

[(
b22 −

hk2b12
4

− hn2b22
4R2

− hk2

2

(
hb11k

2

3
+
hn2b12
3R2

− b12

)
−

−h
2

(
hn2k2b12

3R2
+
hn4b22
R4

− n2b22
R2

)
−h

2n2k2b66
6R2

)(
T

2
− sin2ωT

4ω

)
−

−γhF (t)

ω

(
T3 − T4 −

h3n2k2b66
4R2

)
+
γh3

16ω
F (T )

(
T3 + T4 +

4h3n2k2b66
9R2

)]
w2
0+

+

[
2nk

R
(−b12 − b66)

(
T

2
− sin2ωT

4ω

)
+

2nk

R

γh2

ω
F (T ) (b11b12 + b11b22)−

−γh
4

16ω
F (T )

2nk

R
b11b12 + b12b22 + b266

]
u0ϑ0+

+

[(
−2kb12 +

hk3b11
4

+
hn2kb12
4R2

− hn2kb66
2R2

− kh2

2ω

(
b11k

2 +

+
n2b12
R2

− 2n2b66
R2

))(
T

2
− sin2ωT

4ω

)
+

2kγh2

ω
F (T )

(
b11T3 + b12T4 +

hn2b266
2R2

)
−kγh

4

8ω
F (T )

(
b11T5 + b12T6 +

hn2b266
2R2

)]
u0w0+

+

[(
hk2nb66

2R
+
hk2nb12

4R
+
h2n3

4R3
b22 −

khn

R
b66 +

2b22n

R

)(
T

2
− sin2ωT

4ω

)
−

−2nγh2

Rω
F (T )

(
b12T3 + b22T4 +

hk2b266
2R

)
+

+
nγh4

8Rω
F (T ) (b12T5 + b22T6)

]
u0w0

}
+ρ0h

πω2L

2

(
u20 + ϑ20 + w2

0

)(T
2
+
sin2ωT

4ω

)
−

− 4

nk
(coskL− 1) sin

nπ

4

[
−p0
ω

(cosωT − 1) +
1

2
p1

(
2

ω − ω1
sin (ω − ω1) T−

− 2

ω + ω1
sin (ω + ω1)T

]
w0+

{
m2π2

2l2

k1∑
i=1

[FiI1 sin
2nφiu

2
0+(JxiI2 + JkpiI3) cos

2nφiϑ
2
0+

+(JziI2 + Jkpi I3)sin
2nφiw

2
0 + kJkpi I3sin2nφiϑ0w0] +

+ω2
k1∑
i=1

Fi [I4 sin
2knu20 + I5

(
1 +

Jkpi
FiR2

)
cos2nφiϑ

2
0 + I5

(
1 +

Jkpik
2

FiR2

)
sin2nφiw

2
0+

+I5
Jkpi
FiR2

sin2nφiϑ0w0

]} (
T

2
− sin2T

4

)
− 2πR

{
ωl

4 (ω2 + ψ2)

[
1

ω
(1− cosωT )+

+
1

ψ
(eψT sin2ωT − ω

1 + ψ2
(ψ − 1

2ω

(
eψT cos2ωT − 1

)
)
}
w2
0. (3.4)

Here,

I1 = ∫ lo Ẽi (x) cos2
mπx

l
dx; I2 = ∫ lo Ẽi (x) sin2

mπx

l
dx; I3 = ∫ lo G̃i (x) sin2

mπx

l
dx

I4 =
l
∫
0
ρ̃ (x) cos2

πx

l
dx; I5 =

l
∫
0
ρ̃ (x) sin2

πx

l
dx;F (T ) =

1

2ω

(
sin2ωT + 4Rtsin

2ωT

2

)
.
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Using the Ostrogradski-Hamilton action’s δW = 0 stationarity principle, with respect to
the constants ui, ϑi, wi we obtain the following system of inhomogeneous equations:{

φ̆11u0 + φ̆12ϑ0 + φ̆13w0 = 0
φ̆21u0 + φ̆22ϑ0 + φ̆23w0 = 0
φ̆31u0 + φ̆32ϑ0 + φ̆33w0 = φ̆∗

}
(3.5)

Here,

φ̆∗ = − 4

nk
(coskL− 1) sin

nπ

4
×
[
−p0
ω

(cosωT − 1)

+
1

2
p1

(
2

ω − ω1
sin (ω − ω1)T − 2

ω + ω1
sin (ω + ω1)T

)]
(3.6)

Having solved the system (3.5) we can determine the constants u0, ϑ0, w0 :

u0 =
∆1

∆
; ϑ0 =

∆2

∆
; w0 =

∆3

∆
(3.7)

In the expressions of (3.7)∆ is the principal determinant of the system (3.5),∆i (i = 1, 2, 3)
are auxiliary determinants. Substituting the expressions of (3.7) in (2.11) for the displace-
ments of the shell points we obtain:

u =
∆1

∆
cosnφ cos

mπ

ξ1
ξ sinωt;

ϑ =
∆2

∆
sinnφ sin

mπ

ξ1
ξ sinωt; (3.8)

w =
∆3

∆
cosnφ sin

mπ

ξ1
ξ sinωt

For determining the critical force, we will use the equality ∆3
∆ = w0. From this equality we

obtain:

φ̆∗ =
w0∆

φ̆11φ̆22 − φ̆21∗φ̆12
(3.9)

Taking into account the expression (3.6) of
⌣

φ
∗

in (3.9), we can find the force p1:

p1 =

[
w0∆

α22(φ̆11φ̆22 − φ̆21φ̆12)
− α11p0

α22

]
(3.10)

Here,

α11 =
4

nkω
(coskL− 1) sin

nπ

4
(cosωT − 1)

∝22= − 2

nk

(
2

ω − ω1
sin (ω − ω1)T − 2

ω + ω1
sin (ω + ω1)T

)
(coskL− 1) sin

nπ

4

By changing the wave numbers n and m we calculate p1 and choosing (p1)min from
them, find the critical force p1b. When there are no damages, in the expression F (T ) =
1
2ω

(
sin2ωT + 4Rtsin

2 ωT
2

)
takingRt = 0 , we can calculate the critical value of the force,

p1b.
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4 Numerical calculations and conclusions

The expression (3.10) was numerically calculated for the following values of variables:

Ei = 6, 67 · 109 H
m2

;R = 160mm;h = 0, 45mm; ν1 = 0, 11; ν2 = 0, 19; L = 800mm;

β = 0, 05; A = 0, 1615; ρ0 = ρi = 7, 8q/sm3;ω1 = 2ω; k1 = 10; n = 8;

Iyi
2πR3h

= 0, 8289 · 10−6;
Fi

2πRh
= 0, 1591 · 10−1;

Ikp.i
2πR3h

= 0, 5305 · 10−6.

hi = 1, 39mm; w0 = 0, 1mm,ω = 100hs, kϑ = 106N/m3, kp = 104N/m.

The results of the calculations were given in the fig. 2 and fig.3 in the form of dependence of
p1b/E1−on the number of ribs k1 , dependence of the number of longitudinal waves m for
different values of the ratio, E1

E2
. In both figures, the dashed lines correspond to the values of

critical forces of undamaged cylindrical shell stiffened with the ribs along the axis, the solid
lines correspond to the values of critical forces of damaged cylindrical shell stiffened with
ribs along the axis. As can be seen from Fig. 2, increasing the number of ribs k1, critical
force at first increases and after certain value begins to decrease. This is explained by the
fact that increasing the number of ribs their volume also increases and as a result the inertia
affects to the vibration process are strengthened.

Fig. 2. Dependence of the critical force on the amount of longitudinal waves

At the same time as these properties become stronger, the value of the critical force in-
creases. Fig. 3 shows that increasing the number m of waves in longitudinal direction, the
critical force increases, obtains maximum value, again decreases and approaches the critical
value corresponding to the unstiffened cylindrical shell.
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Fig. 3. Dependence of the critical force on the number m of longitudinal waves.
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