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Abstract. We consider problems which arise as mathematical models
of various applied problems, mechanics, physics and so on. By using
these results we prove the solvability of the mixed boundary value prob-
lem for a polyharmonic equation in modified local generalized Sobolev-
Morrey spaces. We obtain a priori estimates for the solutions of the
mixed boundary value problems for the uniformly elliptic equations in
modified local generalized Sobolev-Morrey spaces defined on bounded
smooth domains.
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1 Introduction

We consider problems which arise as mathematical models of various applied problems,
mechanics, physics and so on. For instance reaction-drift-diffusion processes of electrically
charged species phase transition processes in porous media.

The estimates for the solutions mixed boundary value problem for the biharmonic equa-
tions in generalized Morrey spaces are obtained. The better inclusion between the Morrey
and Holder spaces permits to obtain regularity of the solution to boundary problems.

Let Ω ⊂ Rn, n ≥ 2, ∂Ω = Γ1 ∪ Γ2.

Definition 1.1 The generalized Sobolev- Morrey space Wm,ρ,φ(Ω)consists of all Sobolev
functions u ∈ Wm, ρ (Ω) with distributional derivatives Ds u ∈ Mp, φ (Ω), endowed
with the norm

∥u∥Wm,ρ,φ(Ω) =
∑

0≤ s≤m

∥Dsu∥Mp, φ (Ω) ·
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The space Wm,p,φ (Ω)
⋂
W1,p,0 (Ω) consist of all functions u ∈ Wm,p (Ω)

⋂
W1,p,0 (Ω)

with Dsu ∈ Mp,φΩ and endowed with the same norm. W1,p,0 (Ω) in the closure functions
of C∞ (Ω) vanishing on Γ1, with respect to the norm in W 1

p (Ω).
We consider mixed boundary value problem for biharmonic equation.

∆2u = f in Ω (1.1)

u |Γ1 =
∂u

∂n
|Γ1 = 0 and

∂2u

∂n2
|Γ2 = g (1.2)

The classical Morrey spaces Lp,λ are originally introduced to study the local behavior
of solutions to elliptic partial differential equations. In fact, the better inclusion between the
Morrey and Holder spaces permits to obtain regularity of the solution to elliptic boundary
value problems. For the properties and applications of the classical Morrey spaces we refer
the readers to [30,34].

In [8] Chiarenza and Frasca showed boundness of the Hardy-Littlewood maximal op-
erator in Lp,λ (R

n) that allows them to prove continuityin these spaces of some classical
integral operators. The results in [8] allow us to study the regularity of the solutions of of
elliptic parabolic equations and systems in Lp,λ (see [9,11,12,33,35-37] and the references
therein). In [31] Mizuhara extended the Morrey’s consept of integral average over a ball
with a certain growth, taking a weight function φ (x, r) : Rn × R+ → R+ instead of rλ.
So he put the beginning of the study of the generalized Morrey spaces Mp,ϕ,p > 1 with
φbelonging to various classes of weight functions. In [32] Nakai proved boundedness of the
maximal and

Calderón- Zygmund operators in Mp,φ imposing suitable integral and doubling con-
ditions on φ. Taking a weight w (x, t) = ϕ(x, t)ptn the conditions of Mizuhara- Nakai
become ∫ ∞

r
φ (x, τ)p

dτ
τ ≤ Cφ (x, r)p , C−1 ≤ φ (x, t)

φ (x, r)
≤ C,∀r ≤ t ≤ 2r ,

where the constants do not depend on t, r and x ∈ R.
In series of works, the first author studies the continuity in generalized Morrey spaces

of sublinear operators generated by various integral operators as Calderon-Zygmund, Riesz
and others (see [4,21]). The following theorem obtained in [21] extends the results of Nakai
to the generalized Morrey spaces with weight ω (x, t) = φ (x, t) tn ( for the definition of
the spaces see Section 2).

Theorem A ([21, Theorem 6.2]) Let 1 ≤ p < ∞and (φ1, φ2) satisfy the condition∫ ∞

r
φ1 (x, τ)

dτ

τ
≤ Cφ2 (x, r) , (1.3)

where C does not depend on x and r. Then the Calderon- Zygmund operators are bound
from Mp,ϕ1 (R

n) to Mp,ϕ2 (R
n) for p > 1 and from M1,ϕ1 (R

n) to the weak space
WMp,φ2 (R

n).
This result is extended on spaces with weaker condition on the weight pair (φ1, φ2) (see

[4]). A further development of the generalized Morrey spaces can be found in the works [4]
and the references therein. In [4], Guliyev et al. obtained a weaker than (1.1) condition
on the pair (φ1, φ2) which is optimal and ensure the boundedness of the classical integral
operators from Mp,ϕ1 (R

n) to Mp,ϕ2 (R
n). Precisely, if

∫ ∞

r

ess sup
t<s<∞

ϕ1 (x, s) s
n
p

t
n
p
+1

dt = Cϕ2 (x, r) , (1.4)



28 The mixed boundary value problems for uniformly elliptic equations in modified local...

then the Calderon- Zygmund operators are bound from Mp,ϕ1 (R
n) to Mp,ϕ2 (R

n) for p > 1
and from M1,ϕ1 (R

n) to the weak space WMp,φ2 (R
n).

We use this integral inequality to obtain the Calderon- Zygmund type estimate for
the Mp,φ- regularity of the solution. These results allow us to study the regularity of the
solutions of various linear elliptic and parabolic boundary value problems in Mp,φ (see
[27,28,38]).

Later these results are extended on the local generalized Morrey spaces, which is ob-
tained the boundedness of the Calderon- Zygmund operators from one local generalized
Morrey space LM

{x0}
p,ϕ1

(Rn) to another LM
{x0}
p,ϕ2

(Rn) , x0 ∈ Rn , if the pair functions
(φ1, φ2) satisfy the following condition

∫ ∞

r

ess sup
t<s<∞

ϕ1 (x0,s) s
n
p

t
n
p
+1

dt = Cϕ2 (x0, r) (1.5)

where C does not depend on r.
In this paper we study the boundedness of the sublinear operators, generated by Calderon-

Zygmund operators in local generalized Morrey spaces. By using these results, we obtain
the regularity of the solutions of higher order uniformly elliptic mixed boundary value prob-
lem in modified local generalized Sobolev- Morrey spaces defined on bounded smooth do-
mains.

The paper is organized as follows. In Section 3 we prove the boundedness of the sub-
linear operators, generated by Calderon- Zygmund operators in the local generalized Mor-
rey spaces. Further, we obtain the regularity estimates for the solvability of the the mixed
boundary value problem for polyharmonic equation in modified local generalized Sobolev-
Morrey spaces. In Section 4 we provide priori estimates for the solutions of the the mixed
boundary value problems for the uniformly elliptic equations in modified local generalized
Sobolev- Morrey spaces defined on bounded smooth domains.

By A ≲ B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A ≲ B and B ≲ A, we write A ≈ B and say that A and B are
equivalent.

2 Definitions and statement of the problem

Definition 2.1 Let φ : Ω ×R+ → R+ be a measurable function and 1 ≤ p < ∞. For any
domain Ω the generalized Morrey space Mp,φ (Ω) ( the weak generalized Morrey space
WMp,φ (Ω) consists of all f ∈ Llocp (Ω) such that

∥f∥Mp,φ(Ω) = sup
x∈Ω,0<r<d

1

φ (x, r)

1

|B (x, r)|
1
p

∥f∥WLp (Ω (x, r)) < ∞,

(
∥f∥WMp,φ(Ω) = sup

x∈Ω,0<r<d

1

φ (x, r)

1

|B (x, r)|
1
p

∥f∥WLp(Ω(x,r)) < ∞

)
where d = sup

x,y∈Ω
|x− y| , B (x, r) = {y ∈ Rn : |x− y| < r} and Ω (x, r) = Ω

⋂
B (x, r) .

In the case φ (x, r) = r
λ−n
p ,Mp,φ = Lp,λ where 0 < λ < n. If λ = 0, then Lp,0 (R

n) =
Lp (R

n) , if λ = n then Lp,n (R
n) = L∞ (Rn). In the case λ < 0 or λ > n,Lp,λ (R

n) =
Θ, where Θ is the set of all functions equivalent to 0 on Rn.
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Definition 2.2 Let φ (x, r) be a positive measurable function on Ω×(0, d) and 1 ≤ p < ∞.
Fixed x0 ∈ Ω, we denote by LM

{x0}
p,φ Ω

(
WLM

{x0}
p,φ (Ω)

)
the local generalized Morrey

space (the weak local generalized Morrey space), the space of all functions f ∈ Llocp (Ω)
with finite quasinorm

∥f∥
LM

{x0}
p,φ (Ω)

= sup
0<r<d

1

φ (x0, r)

1

|B (x0, r)|
1
p

∥f∥Lp(Ω (x0,r))

(
∥f∥

WLM
{x0}
p,φ (Ω)

= sup
0<r<d

1

φ (x0, r)

1

|B (x0, r)|
1
p

∥f∥WLp(Ω (x0,r))

)
.

Definition 2.3 Let φ (x, r) be a positive measurable function on Ω × (0, d) and
1 ≤ p < ∞. We denote by M̃p,φ (Ω) (Mp,φ (Ω)) the modified generalized Morrey

space ( the modified weak generalized Morrey space), the space of all functions f ∈ Lp (Ω)
with finite norm

∥f∥M̃p,φ(Ω) = ∥f∥Mp,φ(Ω) + ∥f∥Lp(Ω)(
∥f∥WM̃p,φ(Ω) = ∥f∥WMp,φ(Ω) + ∥f∥WLp(Ω)

)
.

Definition 2.4 Let φ (x, r) be a positive measurable function on Ω×(0, d) and (1 ≤ p < ∞).

Fixed x0 ∈ Ω, we denote by L̃M
{x0}
p,ϕ (Ω) (̃LM

{x0}
p,ϕ (Ω)) the modified local generalized

Morrey space (the modified weak local generalized Morrey space), the space of all func-
tions f ∈ Lp (Ω) with finite norm

∥f∥
L̃M

{x0}
p,ϕ(Ω)

= ∥f∥
LM

{x0}
p,ϕ (Ω)

+ ∥f∥Lp(Ω)(
∥f∥

WL̃M
{x0}
p,ϕ(Ω)

= ∥f∥
WLM

{x0}
p,ϕ (Ω)

+ ∥f∥WLp(Ω)

)
.

Definition 2.5 The modified generalized Sobolev- Morrey space W 2m
p,φ (Ω) consist of all

functions u ∈ W 2m
p (Ω) with distributional derivatives

Ds
u ∈ M̃p,ϕ,0 (Ω)ϕ, 0 ≤ |s| ≤ 2m, endowed with the norm

∥u∥W 2m
p,ϕ,0(Ω) =

∑
0 ≤|s|≤2m

∥Dsu∥M̃p,ϕ(Ω).

The modified local generalized Sobolev-Morrey space W
2m, {x0}
p,φ (Ω) consist of all func-

tions u ∈ W 2m
p (Ω) with distributional derivatives Ds

u ∈ L̃M
{x0}
p,ϕ (Ω) , 0 ≤ |s| ≤ 2m,

endowed with the norm

∥u∥
W

2m,{x0}
p,ϕ,0 (Ω)

=
∑

0≤|s|≤2m

∥Dsu∥
L̃Mp,ϕ(Ω)

.

The space W
2m,{x0}
p,ϕ,0 (Ω) ∩ W 1

p,0(Ω) consists of all functions u ∈ W 1
p,0(Ω) with

Ds
u ∈ LM

{x0}
p,ϕ (Ω) , 0 ≤ |s| ≤ 2m in the closure functions of C∞ (Ω) vanishing on Γ1

and is endowed by the same norm. Recall that W 1
p,0(Ω) is the closure of C∞

0 (Ω) with
respect to the norm in W 1

p (Ω) , where functions vanishing on Γ1.
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At first we consider the mixed boundary value problem for polyharmonic equation
(−∆)mu = f in Ω

u = ∂u
∂n = · · · = ∂m−1u

∂nm−1 = g
on ∂Ω = Γ1 ∪ Γ2

∂mu
∂nm |Γ2 = g,

(2.1)

where Ω ⊂ Rn, n ≥ 2 is a bounded domain with sufficiently smooth boundary.
For the solutions of the problem (2.1) we give some estimates for the Green function

and the Poisson kernels. Later we obtain a priori estimates for solvability of problem (2.1)
in the local generalized Morrey spaces.

Let Gm, (x, y) be the Green function and Kj (x, y) , j = 0,m− 1 be the Poisson ker-
nels of problem (2.1). Then the solution of problem (2.1) can be written as

u (x) =

∫
Ω

Gm (x, y) f (y) dy +

m−1∑
j=0

∫
∂Ω

Kj (x, y) g (y) dσy

for correspondingly f and g. For example, when m = 2 and n = 2 we will that there is a
constant C (Ω) such that

|G2 (x, y)| ≤ C (Ω) d (x) d (y) min

{
1,

d (x) d (y)

|x− y|2

}
, (2.2)

which was proved in [29], where d is the distance of x to the boundary ∂Ω

d (x) = inf
x̃∈∂Ω

|x− x̃| . (2.3)

However, we would like to mention that for Gm and Kj estimates are the optimal tools
for deriving regularity results in spaces that involve to behavior at the boundary. Coming
back to the m = n = 2 it follows from (2.2) that the solution of problem (2.1) satisfies the
following estimates for appropriate f at g = 0∥∥ud−2

∥∥
L∞(Ω)

≤ C (Ω) ∥f∥L1(Ω) ,

∥u∥L∞(Ω) ≤ C (Ω)
∥∥fd2∥∥

L1(Ω)
.

We also derive estimates for derivative of kernels. We will focus on estimate that contain
growth rates near the boundary. These estimates are optimal. Indeed, when we consider
Gm (x, y) for Ω = B (x, y) a ball in Rn the growth rates near the boundary are sharp
(see [18]). For m = 1 or m ≥ 2 and Ω = B (x, r) it is known that the Green function
is positive and can even be estimated from below by a positive function with the same
singular behavior (see [19]). Let us remind that for m ≥ 2 the Green function in general
is not positive. For general domains the optimal behavior in absolute values is captured in
our estimates. Sharp estimates for Km−1 and Km−2in the case of a ball can be found in
[20]. In [5] Barbatis considered the pointwise estimates for the Green functions of higher
order parabolic problems on domains and derived pointwise estimates for the kernel. For
higher order parabolic systems the classical estimates obtained by Eidelman [17] were not
considered in domains with boundary. For a survey on spectral theory of higher order elliptic
operators, including some estimates for the corresponding kernels, we refer to [14]. We also
consider analogously problems [21,22,23,24,25].

Let G a function on Ω × Ωand α, β ∈ Nn. Derivatives of G are denoted by

Dα
xD

β
y f (x, y) =

∂|α|

∂xα1
1 ∂xα2.

2 · · · ∂xαn
n

∂|β|

∂yβ11 ∂yβ2·2 · · · ∂yβnn
G (x, y) ,
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where |α| =
n∑
k=1

αk, |β| =
n∑
k=1

βk.

For completeness we will give some estimates for Gm (x, y) and Kj (x, y) depending
on the distance to the boundary and auxiliary results with proof. We will do by estimating
the j − th derivative through an integration of the (j + 1) − th derivative along a path to
the boundary. The dependence on the distance to the boundary d (x) will appear closing a
path which length is proportional to d (x) . The path will be constructed in Lemma 2.10.

Theorem 2.1 ([15,29]) Let Gm (x, y) be the Green function of problem (2.1).Then for ev-
ery x, y ∈ Ω the following estimates hold:

1. if 2m− n > 0, then

|Gm (x, y)| ≤ dm−n
2 (y)min

{
1,

d (x) d (y)

|x− y|2

}n
2

;

2. if 2m− n = 0, then

|Gm (x, y)| ≤ log

(
1 + min

{
1,

d (x) d (y)

|x− y|2

}m)
;

3. if 2m− n < 0, then

|Gm (x, y)| = |x− y|2m−nmin

{
1,

d (x) d (y)

|x− y|2

} m

;

Theorem 2.2 ([15,29]). Let Kj (x, y) , j = 0,m− 1 be the Poisson kernels of problem
(2.1). Then for every x ∈ Ωy ∈ ∂Ω the following estimates hold:

|Kj (x, y) | ≤
dm (x)

|x− y|n−j+m−1
(2.4)

Remark 2.1 If n− 1 < j ≤ m− 1, then from (2.4) we get the inequality

|Kj (x, y) | ≤ d1+j−n (x) (2.5)

on Ω × ∂Ω.

Remark 2.2 The estimates in Theorem 2.2 hold for any uniformly elliptic operator of order
2m.

In [19] the estimates in Theorem 2.1 are given for the case that Ω = B (x, r)in Rn. In
there the authors use an explicit formula for the Green´s function, given in [6].

For general domains one cannot expect an explicit formula for the Greens functions and
the Poisson kernels. We will use the estimates for Gm (x, y) and Kj (x, y) given in [29]. In
[29] for sufficiently regular domains Ω some estimates for the Greens function and Poisson
kernels was proved.
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3 Sublinear operators, generated by Calderon - Zygmund operators in local
generalized Morrey spaces

Let Ω be an open bounded subset of Rn. Suppose that T represents a linear or a sublinear
operator, which satisfies that for any f ∈ L1 (Ω)

|Tf (x) | ≤ c0

∫
Ω

|f (y)| dy
|x− y|n

, x /∈ supp (f) , (3.1)

where c0 is independent of f and x.
The following local estimates for the sublinear operator satisfying condition (3.1) are

valid.

Lemma 3.1 Let 1 ≤ p < ∞, Ωbe an open bounded subset of Rn, x0 ∈ Ω, 0 < r ≤
d, d = supx,y∈Ω |x− y| < ∞ . Let also T be a sublinear operator satisfying condition
(3.1), and bounded from Lp (Ω) to WLp (Ω) ,and bounded on Lp (Ω) for p > 1.

(i). Then the inequality

∥Tf∥WLp(Ω(x0,r))
<
∼

r
n
p

∫ d

r
t
−n

p
−1 ∥f∥Lp(Ω(x0,t))

dt+ r
n
p ∥f∥Lp(Ω) (3.2)

holds for any Ω (x0, r) and for any f ∈ Lp (Ω).
(ii) Moreover, for p > 1 the inequality

∥Tf∥Lp(Ω(x0,r))
<
∼

r
n
p

∫ d

r
t
−n

p
−1 ∥f∥Lp(Ω(x0,t))

dt+ r
n
p ∥f∥Lp(Ω) (3.3)

holds for any Ω (x0, r) and for any f ∈ Lp (Ω).

Proof. Let 1 ≤ p < ∞. Since

r
n
p

∫ d

r
t
−n

p
−1 ∥f∥Lp(Ω(x0,t))

dt ≥ r
n
p ∥f∥Lp(Ω(x0,r))

∫ d

r
t
−n

p
−1

dt

≈ ∥f∥Lp(Ω(x0,r))

(
d

n
p − r

n
p

)
, r ∈ (0, d)

we get that

∥f∥Lp(Ω(x0,r))
<
∼

r
n
p

∫ d

r
t
−n

p
−1 ∥f∥Lp(Ω(x0,t))

dt + r
n
p ∥f∥Lp(Ω) , r ∈ (0, d) . (3.4)

(i). Assume that 1 ≤ p < ∞. Let r ∈ (0, d/2). We write f = f1 + f2 with
f1 = fχΩ(x0,2r) and f2 = fχΩ/Ω(x0,2r). Taking into account the linearity of T, we have

∥Tf∥WLp(Ω(x0,r))
≤ ∥Tf1∥WLp(Ω(x0,r))

+ ∥Tf2∥WLp(Ω(x0,r))
. (3.5)

Since f1 ∈ Lp (Ω) , in view of (3.4), the boundedness of T from Lp (Ω) to WLp (Ω)
implies that

∥Tf1∥WLp(Ω(x0,r))
≤ ∥Tf1∥WLp(Ω) <∼

∥f1∥Lp(Ω) ≈ ∥f∥Lp(Ω(x0,r))

<
∼

r
n
p

∫ d

r
t
−n

p
−1 ∥f∥Lp(Ω(x0,t))

dt+ r
n
p ∥f∥Lp(Ω) , (3.6)

where the constant is dependent of f, x0 and r.
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We have

|Tf2 (x) | <∼

∫
Ω/Ω(x0,2r)

|f (y)| dy
|x− y|n−1 , x ∈ Ω (x0, r) .

It´s clear that x ∈ Ω (x0, r) , y ∈ Ω Ω (x0, 2r) implies (1/2) |x0 − y| ≤ |x− y| <
(3/2) |x0 − y|.

Therefore we obtain that

∥Tf2∥Lp(Ω(x0,r))
<
∼

r
n
p

∫
Ω/Ω(x0,2r)

|f (y)| dy
|x0 − y|n−1

By Fubin’s theorem, we get that∫
Ω/Ω(x0,2r)

|f (y)|
|x0 − y|n−1 dy ≈

∫
Ω/Ω(x0,2r)

|f (y)|

(
1 +

∫ d

|x0−y|

ds

sn

)
dy

=

∫
Ω/Ω(x0,2r)

|f (y) | dy +

∫
Ω/Ω(x0, 2r)

|f (y)|

(∫ d

|x0−y|

ds

sn

)
dy

=

∫
Ω/Ω(x0,2r)

|f (y)| dy +

∫ d

2r

(∫
2r≤|x0−y|≤s

|f (y) | dy

)
ds

sn
.

≤
∫
Ω
|f (y) | dy +

∫ d

2r

(∫
2r(x0,s)

|f (y) | dy

)
ds

sn
.

Applying Hölders inequality, we arrive at∫
Ω/Ω(x0,2r)

|f (y)| dy
|x0 − y|n

<
∼

∥f∥Lp(Ω) +

∫ d

2r
s
−n

p
−1 ∥f∥Lp(Ω(x0,s))

ds.

Thus the inequality

∥Tf2∥Lp(Ω(x0,r))
<
∼

r
n
p

∫ d

r
s
−n

p
−1 ∥f∥Lp(Ω(x0,s))

ds+ r
n
p ∥f∥Lp(Ω) (3.7)

holds for all r ∈ (0, d/2) .
On the other hand, since

∥Tf2∥WLp(Ω(x0,r))
≤ ∥Tf2∥Lp(Ω(x0,r))

using (3.7),we get that

∥Tf2∥WLp(Ω(x0,r))
<
∼

r
n
p

∫ d

r
s
−n

p
−1 ∥f∥Lp(Ω(x0,s))

ds+ r
n
p ∥f∥Lp(Ω) (3.8)

holds true for all r ∈ (0, d/2) .
Finally, combining (3.6) and (3.8), we obtain that

∥Tf∥WLp(Ω(x0,r))
<
∼

r
n
p

∫ d

r
s
−n

p
−1 ∥f∥Lp(Ω(x0,s))

ds+ r
n
p ∥f∥Lp(Ω)

holds for all r ∈ [0, d/2) with a constant independent of f, x0 and r.
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Let now r ∈ [d/2, d). Then, using (Lp (Ω) , WLp (Ω)) - boundedness of T , we obtain

∥Tf∥WLp(Ω(x0,r))
≤ ∥Tf∥WLp(Ω) ≤ ∥f∥Lp(Ω) ≈ r

n
p ∥f∥Lp(Ω) ,

and, inequality (3.2) holds.
(ii). Assume that 1 < p < ∞. Let again r ∈ (0, d/2). We write f = f1 + f2with f1 =
fχΩ(x0,2r)and f2 = fχΩ/Ω(x0,2r). Taking into account the linearity of T , we have

∥Tf∥Lp(Ω(x0,r))
≤ ∥Tf1∥Lp(Ω(x0,r))

+ ∥Tf2∥Lp(Ω(x0,r))
. (3.9)

Since f1 ∈ Lp (Ω), in view of (3.4), the boundedness of Ton Lp (Ω) implies that

∥Tf1∥Lp(Ω(x0,r))
≤ ∥Tf1∥Lp(Ω) ≈ ∥f∥Lp(Ω(x0,2r))

<
∼

r
n
p

∫ d

r
t
−n

p
−1 ∥f∥Lp(Ω(x0,t))

+ dt+ r
n
p ∥f∥Lp(Ω) , (3.10)

where the constant is independent of f, x0 and r .
Combining (3.9), (3.10) and (3.7), we get inequality (3.3) holds for all r ∈ (0, d/2) with

a constant independent of f, x0and r.
If r ∈ [d/2, d) ,then, using the boundedness of Ton Lp (Ω),we obtain that

∥Tf∥Lp(Ω(x0,r))
≤ ∥Tf∥Lp(Ω) <∼

∥f∥Lp(Ω) ≈ r
n
p ∥f∥Lp(Ω) ,

and, inequality (3.3) holds.
Now we are going to use the following statement on the boundedness of the weighted

Hardy operator.

H∗
ωg (t) : =

∫ d

t
g (s) ω (s) ds, 0 < t ≤ d < ∞,

where ω is a fixed function non-negative and measurable on (0, d).
The following theorem was proved in [25].

Theorem 3.1 Let υ1, υ2 and ω be positive almost everywhere and measurable functions on
(0, d). The inequality

ess sup υ2 (t) H
∗
ωg (t) ≤ C ess sup

0<t<d
υ1 (t) g (t) (3.11)

holds for some C > 0 for all non-negative and non-decreasing g on (0, d) if and only if

B := ess sup υ2(t)

d∫
t

ω(s)ds

ess
0<t<d

sup
s<τ<d

υ1(τ)
< ∞ (3.12)

Moreover, if C∗ is the minimal value of Cin (3.11), then C∗ = B.

Remark 3.1 In (3.11) and (3.12) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.
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Theorem 3.2 Let 1 ≤ p < ∞, Ωbe an open bounded subset of Rn, x0 ∈ Ω, and (φ1, φ2)
satisfy the condition∫ d

r

ess inf
t<τ<∞

φ1 (x0, τ) τ
n
p

t
n
p
+1

dt ≤ Cφ2 (x0, r) , (3.13)

where C does not depend on r. Let also T be a sublinear operator satisfying condition
(3.1), and bounded from Lp (Ω) to WLp (Ω), and bounded on Lp (Ω) for p > 1. Then
there exists c = c (p, φ1, φ2, n) > 0 such that

∥Tf∥
WL̃M

{x0}
p,φ2

(Ω)
≤ c ∥f∥

L̃M
{x0}
p,φ1

(Ω)
.

Moreover, for p > 1 there exists c = c (p, φ1, φ2, n) > 0 such that

∥Tf∥
L̃M

{x0}
p,φ2

(Ω)
≤ c ∥f∥

L̃M
{x0}
p,φ1

(Ω)
.

Moreover, for p > 1 there exists c = c (p, φ1, φ2, n) > 0 such that

∥Tf∥
L̃M

{x0}
p,φ2

(Ω)
≤ c ∥f∥

L̃M
{x0}
p,φ1

(Ω)
.

Proof. By Theorem 3.2 and Lemma 3.1 with υ2 (r) = φ2 (x0, r)
−1 , υ1 (r) = φ1 (x0, r)

−1 r
n
p

and ω (r) = r
−n

p we have

∥Tf∥
WL̃M

{x0}
p,φ2

(Ω)
≲ sup

0,<r<d
φ1 (x0, r)

−1
∫ d

r
, ∥f∥WLp(Ω(x0,t))

dt

t
n
p
+1

+ ∥Tf∥WLp(Ω)

≲ sup
0<r<d

φ1 (x0, r)
−1 r

n
p ∥f∥Lp(Ω(x0,r))

+ ∥f∥Lp(Ω)

= ∥f∥
LM

{x0}
p,φ1

(Ω)
+ ∥f∥Lp(Ω) = ∥f∥

L̃M
{x0}
p,φ1

(Ω)

and for 1 < p < ∞

∥Tf∥
L̃M

{x0}
p,φ2

(Ω)
≲ sup

0<r<d
φ1 (x0, r)

−1
∫ d

r
∥f∥Lp(Ω(x0,t))

dt

t
n
p
+1

+ ∥Tf∥Lp(Ω) ≲

≲ sup
0<r<d

φ1 (x0, r)
−1 r

−n
p ∥f∥Lp(Ω(x0,r))

+ ∥f∥Lp(Ω)

= ∥f∥
LM

{x0}
p,φ1

(Ω)
+ ∥f∥Lp(Ω) = ∥f∥

L̃M
{x0}
p,φ1

(Ω)
.

From Theorem 3.4 we get the following corollary.
Corollary 3.1. Let 1 ≤ p ≤ ∞, Ω be an open bounded subset of Rn, x0 ∈ Ω, and

(φ1, φ2)
satisfy the condition∫ d

r

ess inf
t<τ<∞

φ1 (x, τ) τ
n
p

t
n
p
+1

dt ≤ Cφ2 (x, r) , (3.14)

where C does not depend on x and r. Let also T be a sublinear operator satisfying condition
(3.1) and bounded from Lp (Ω) to WLp (Ω), and bounded on Lp (Ω) for p > 1. Then there
exists c = c (p, φ1, φ2, n) > 0 such that

∥Tf∥
WM̃p,φ2 (Ω)

≤ c ∥f∥
M̃p,φ1 (Ω)

.

Moreover, for p > 1 there exists c = c (p, φ1, φ2, n) > 0 such that

∥Tf∥
M̃p,φ2 (Ω)

≤ c ∥f∥
M̃p,φ1 (Ω)

.
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4 The mixed boundary value problem for polyharmonic equation in modified local
generalized Sobolev- Morrey spaces.

Now we will derive regularity estimates for solution of problem (2.1) when g = 0
(−∆)mu = f in Ω

∂ku
∂nk = 0 on ∂Ω = Γ1 ∪ Γ2,

∂mu
∂nm |Γ2 = g

(4.1)

where 0 ≤ k ≤ m− 1, Ω ⊂ Rn is bounded.
We get the estimates of solution problem (4.1) in modified local generalized Sobolev-

Morrey spaces.
∥u∥

W
2m,{x0}
p,φ2

(Ω)
≤ ∥f∥

L̃M
{x0}
p,φ1

.

Note that

Kf (x) = lim
ε→0

∫
|x−y|>ε

∑
|α|=2m

Dα
xiGm (x− y) f (y) dy

is the Calderon-Zygmund operator. Here and later, we take, that function f define in Rn,
also this function is continuity extended to exterior of domain Ω with zero. The function
Dm
xiGm (x, y) ∈ C∞ (Rn {0}) and this function is homogeneous of order m− n. Hence

consequence, that D2m
xi Gm (x, y) homogeneous of order 2m− n and tends to zero on unit

sphere (see [15]). Then from general theory giving in [7] consequence that K bounded
operator on Lp (R

n) for 1 < p < ∞. Moreover, maximal singularity operator.

K̃f (x) = sup
ε>0

∣∣∣∣∣∣
∫
|x−y|>ε

∑
|α|=2m

DαGm (x, y) f (y) dy

∣∣∣∣∣∣
also a bounded on Lp (R

n) for 1 < p < ∞.
From Theorem 3.4 we get the following corollary.
Corollary 4.1. Let 1 < p < ∞, Ω be an open bounded subset of Rn, x0 ∈ Ω,

and (φ1, φ2) satisfy the condition (3.13.). Then operators M and K are bounded from

L̃M
{x0}
p,ϕ1 (O)to L̃M

{x0}
p,ϕ2 (O) .

From Corollary 3.5 we get the following.
Corollary 4.2. Let 1 < p < ∞, Ω be an open bounded subset of Rn, and (φ1, φ2) satisfy

the condition (3.14).Then operators M and K are bounded from M̃p,φ1 (Ω) to M̃p,φ2 (Ω) .
Dirichlet boundary value problems for uniformly elliptic equations

Theorem 4.1 Let 1 < p < ∞, x0 ∈ Ω,Ω ⊂ Rn be a bounded domain with ∂Ω ⊂ C2, and

(φ1, φ2) satisfy condition (3.13). Let also f ∈ L̃M
{x0}
p,φ1

(Ω) and function u is a solution of
problem (4.1). Then there is exist constant C which dependent only at n, φ and Ω such that

∥u∥2m,{x0}Wp,φ2,0
(Ω) ≤ C ∥f∥{x0}

L̃Mp,φ1

(Ω) . (4.2)

Proof. The proved consequence from the above estimates of the Green´s function from
[27]: the following inequalities

|u (x) + |Dxiu (x)|| ≤ Mf (x) , (4.3)∣∣Dxixju (x)
∣∣ ≤ Kf (x) +Mf (x) + |f (x)| (4.4)
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hold uniformly for any x ∈ Ω.
With similarly ideas can be proved estimated

|u (x)|+

∣∣∣∣∣∣
∑

|α|≤m

Dα
xiu (x)

∣∣∣∣∣∣ ≤ Mf (x) , (4.5)

∣∣∣∣∣∣
∑

|α|≤2m

Dαu (x)

∣∣∣∣∣∣ ≤ K̃f (x) +Mf (x) + |f (x)| . (4.6)

Now we passing to prove of Theorem 4.1. From Corollary 4.1 imply that the operators
Mand are bounded in LM

{x0}
p,φ (Ω). Therefore statement 4.3 and estimate (4.2) the imme-

diately consequence from inequalities (4.5), (4.6) and Corollary 4.1.
Theorem 4.1 is proved.
From inequalities (4.5), (4.6) and Corollary 4.2 we get the following corollary.
Corollary 4.4. Let 1 < p < ∞, Ω ⊂ Rn be a bounded domain with and (φ1, φ2) satisfy

the condition (3.14). Let also f ∈ M̃p,φ1 (Ω) and function u is a solution of problem (4.1).
Then there is exist constant C which dependent only at n, φ and Ω such that

∥u∥W 2m
p,ϕ2,0

(Ω) = C∥f∥
M̃p,ϕ1

(Ω)
.

5 Estimates of solutions any higher order uniformly elliptic equation with smooth
coefficients in modified local generalized Sobolev- Morrey spaces.

Consider the boundary value problem{
Lu=f in Ω
Bju=ψj on ∂Ω (5.1)

for j = 0, ...,m− 1. The following assumptions hold.
1. The operator

Lu =
∑

|α|≤2m

αα,j (x) D
αu

is uniformly elliptic: there exists a constant γ > 0, such that

γ−1 |ξ|2 ≤
∑
α,j

αα,j (x) ξαξj ≤ γ |ξ|2 , a.e. x ∈ Ω, ∀ξ ∈ Rn

αα,j (x) = αj,α (x)

2. The boundary operators

Bj =
∑

|β|≤mj

bjβD
β, for j = 0, m− 1

satisfy the complementing condition relative to L (see the complementing condition on page
663 of [17] .)

3. Let l1 > maxj (2m−mj) and l0 = maxj (2m−mj) . The coefficients αα j belong
to C l1+1

(
Ω̄
)

and bjβ belong to C l1+1 (∂Ω)

4. The boundary ∂ Ωis C l1+2m+1.

5. f ∈ LM
{x0}
p,φ (Ω) with 1 < p < ∞ and φ : Ω ×R+ → R+ measurable.
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Theorem 5.1 Let us consider the boundary value problem (5.1) and satisfy conditions 1-5
and also condition of Theorem 4.3. Then there is exist constant C which dependent only at
n, φ and Ω such that

∥u∥
W

2m,{x0}
p,ϕ2,0

= C∥f∥
L̃M

{x0}
p,ϕ1

(Ω)
. (5.2)

Theorem 5.1 similarly ideas of Theorem 4.1 is proved.
For this it will be enough to consider the Krasovsky work [29]. We will recall the theo-

rem in [29] which gives the estimates of the Green´s function and the Poisson kernels. The
proved consequence from these estimates. As proof of Theorem 4.3 we use estimates (4.5),
(4.6) and Corollary 4.1. Therefore, statement of theorem and estimate (5.2) the immediate
consequence from inequalities (4.5), (4.6). Theorem 5.1 is proved.

From inequalities (4.5), (4.6) and Corollary 4.2 we get the following corollary.
Corollary 5.2. Let us consider the boundary value problem (5.1) and satisfy conditions

1-5 and also condition of Corollary 4.4. Then there is exist constant C which dependent
only at n, φ and Ω such that

∥u∥W 2m
p,ϕ2,0

= C∥f∥
M̃p,ϕ2

(Ω)
.
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