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Abstract. The paper investigates the influence of the initial axisymmet-
ric homogeneous finite strains of a plate of highly elastic material, in
contact on one side with the water layer and on the other side with the
Glycerin layer, on the dispersion of the axisymmetric waves propagat-
ing in it. It is assumed that the flow of fluids in these layers is restricted
by the upper and lower rigid walls. Also, it is assumed that the material
of the plate is Lucite and the motion of that is described by the three-
dimensional linearized equations and relations of the theory of elastic
waves in prestressed bodies. However, the fluid flow is described by
the linearized Euler equations for compressible, non-viscous fluids. The
dispersion curves for quasi-Scholte modes are presented and discussed.
In the context of this discussion, the main focus is on the influence of
the difference between the fluids contacting the plate at the upper and
lower levels on the dispersion of the studied waves. In particular, it is
found that the limits of the propagation velocities of the asymmetric and
symmetric quasi-Scholte waves at high wavenumbers differ from each
other due to the mentioned differences between the fluids.

Keywords. Axisymmetric wave dispersion · plate + fluid system ·
bi-lateral contact · compressible inviscid fluid · highly elastic material ·
finite initial strains · Lucite · glycerin · water.
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1 Introduction

The treatises [1-8] give an overview of the relevant research. From these papers, it is clear
that before the work in papers [9] and [10] published this year, all the investigations on the
wave dispersion problems related to the plate+fluid system consider the case of plane strain.
The paper [9] is the first to study the dispersion of axisymmetric waves in a hydroelastic sys-
tem consisting of a finite, axisymmetrically pre-strained plate of highly elastic compressible

Emin T. Bagirov
Ministry of Science and Education, Institute of Mathematics and Mechanics, Baku, Azerbaijan
E-mail: bagirov@bk.ru



Emin T. Bagirov 13

material, a compressible inviscid fluid layer, and a rigid wall confining the flow of this fluid.
However, the work [10] is concerned with the study of axisymmetric waves in an initially
axisymmetric finitely pre-strained plate of highly compressible elastic material immersed in
a compressible inviscid fluid whose flow is confined by rigid walls. Therefore, in the work
[10], the plate is assumed to be in contact with the fluid on both sides. At the same time, in
the work [10] it is assumed that the fluid of the ”upper” and ”lower” layers is the same. In
the present work, we try to continue the investigation started in the work [10] for the case
when the fluids of the mentioned ”upper” and ”lower” layers are different from each other.
To obtain numerical results, glycerin is used as the fluid of the upper layer but water is used
as the fluid of the ”lower” layer, and Lucite is used as the plate material. Numerical results
for the dispersion of the quasi-Scholte waves are presented and the effect of the difference
of the fluids of the ”upper” and ”lower” fluid layers on these dispersion curves is studied
for different values of the problem parameters characterizing the amount of initial strains in
the plate and of the fluid layers’ deeps.

2 Mathematical formulation of the problem

Consider the “rigid wall +fluid layer + plate + fluid layer +rigid wall” hydro-elastic system,
the sketch of which is shown in Fig. 1. Assume that in the initial state, the thickness of the
plate ish, and the thickness of the upper and lower fluid layers is equal to each other, and is
hd. At the same time, assume that the upper and lower layer fluids differ from each other.

We determine with the Lagrange coordinates the position of the points of this plate in
the natural state in the cylindrical system of coordinatesOrθzassociated with the upper face
plane of the plate. According to the selected coordinate system, in the natural state, the plate
occupies the region{0 ≤ r <∞ , 0 ≤ θ ≤ 2π,−h ≤ z ≤ 0}. We assume that in the initial
state (before any wave propagation), the plate is loaded at infinity (i.e. at r → ∞) by the
axisymmetric homogeneously distributed radial forces and as a result of this loading, the
uniformly distributed strain-stress state appears in that. As we assume that the plate material
is a highly elastic one, therefore the initial strain–stress state in the plate can be presented
as follows:

u0r = (λ1 − 1)r, u0θ = 0, u0z = (λ3 − 1)z (2.1)

where λ1 and λ3 are constants and are called elongation parameters. In (2.1), the upper index
0 denotes that the related quantity belongs to the initial strain-stress state. This notation will
also be used below.
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As in the paper [10], we assume that the material of the plate is highly elastic and
compressible, therefore, for describing the elasticity relations of the plate material we use
the harmonic potential proposed by John [11] which has the following expression:

Φ =
1

2
λe21 + µe2, (2.2)

where
e1 =

√
1 + 2ε1 +

√
1 + 2ε2 +

√
1 + 2ε3 − 3,

e2 =
(√

1 + 2ε1 − 1
)2

+
(√

1 + 2ε2 − 1
)2

+
(√

1 + 2ε3 − 1
)2
. (2.3)

Here λ and µ are material constants and εi (i = 1, 2, 3) are the principal values of Green’s
strain tensor.

After selection of the elastic potential, the physical components of the symmetric stress
tensor s(ij) are determined by the following expression:

s(ij) =
1

2

(
∂

∂ε(ij)
+

∂

∂ε(ji)

)
Φ, (2.4)

where under (ij), the indices rr, θθ, zz, rθ, rz, zθ are understood.
Substituting the expressions in (2.1) into the non-linear strain-displacement relations in

the cylindrical coordinate system Orθz (the explicit expressions of these relations can be
found in many textbooks related to the theory of elasticity, as well as in the monograph
[12]), we obtain the following initial strains:

ε0rr = ε0θθ =
1

2

(
(λ1)

2 − 1
)
, ε0zz =

1

2

(
(λ3)

2 − 1
)
, ε0rz = ε0rθ = ε0θz = 0. (2.5)

It is clear from the expressions in (2.5) that in the initial state, the principal values ε01, ε02,
and ε03 of the strain tensor coincide with ε0rr, ε0θθ, and ε0zz , respectively. Therefore, according
to the expressions (2.3), (2.5), and (2.2), in the initial state the following expression for the
selected elastic potential Φcan be written:

Φ0=
1

2
λ(2λ1 + λ3 − 3)2 + µ(2(λ1 − 1)2 + (λ3 − 1)2). (2.6)

Using this expression, we obtain the following expressions for the initial stresses from the
relation (2.4):

s0zz = [λ(2λ1 + λ3 − 3) + 2µ(λ3 − 1)](λ3)
−1,

s0rr = s0θθ = [λ(2λ1 + λ3 − 3) + 2µ(λ1 − 1)](λ1)
−1. (2.7)

According to the problem statement, we assume that

s0zz = [λ(2λ1 + λ3 − 3) + 2µ(λ3 − 1)](λ3)
−1 = 0 ⇒ λ(2λ1 + λ3 − 3) = 2µ(1− λ3) ⇒

λ3 =
λ(3− 2λ1) + 2µ

λ+ 2µ
=

(3− 2λ1) + 2µ/λ

1 + 2µ/λ
. (2.8)

Using the relations in (2.8), we obtain the following expressions for the stresses s0rr and s0θθ:

s0rr = s0θθ =
2µ

λ1
(λ1 − λ3). (2.9)

Thus, through the expressions (2.1), (2.5), (2.8) and (2.9), we determine completely the
initial axisymmetric stress-strain state in the plate for the selected material constants λ and
this state is determined only by the elongation parameter λ1. Consequently, for the fixed
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ratio λ/µ the magnitude of the initial stress-strain state in the plate can be estimated only
through the parameter λ1.

Thus, we assume that after appearing of the foregoing initial stress-strain state in the
plate that is in bilateral contact with the fluid, the axisymmetric waves in the composite
hydro-elastic system propagate in the radial direction. For writing the equations and rela-
tions of this propagation, we use the Lagrange coordinates r′ and z′ in the coordinate system
O′r′θ′z′ related to the foregoing initial state, and these coordinates are determined through
the coordinates r and z in the coordinate system Orθz by the following expressions:

r′ = λ1r, z
′ = λ3z, (2.10)

according to which, in the initial state the thickness of the plate becomes h′ where h′ = λ3h.
Taking the foregoing assumptions and notation into consideration, and based on the

monographs [12 – 16], and others listed therein, we write the equations and relations of the
three-dimensional linearized theory of elastic waves for finite pre-strained elastic bodies
with the Lagrange coordinates r′ and z′ for the axisymmetric case.

The linearized equations of motion:

∂Qr′r′

∂r′
+
∂Qz′r′

∂z′
+

1

r′
(Qr′r′ −Qθ′θ′) = ρ′

∂2ur′

∂t2
,

∂Qr′z′

∂r′
+
∂Qz′z′

∂z′
+

1

r′
Qr′z′ = ρ′

∂2uz′

∂t2
. (2.11)

The linearized elasticity relations:

Qr′r′ = ω′
1111

∂ur′

∂r′
+ ω′

1122

ur′

r′
+ ω′

1133

∂uz′

∂z′
,

Qz′z′ = ω′
3311

∂ur′

∂r′
+ ω′

3322

ur′

r′
+ ω′

3333

∂uz′

∂z′
, Qr′z′ = ω′

1313

∂ur′

∂z′
+ ω′

1331

∂uz′

∂r′
,

Qz′r′ = ω′
3113

∂ur′

∂z′
+ ω′

3131

∂uz′

∂r′
. (2.12)

The following notation is used in (2.11) and (2.12): Qr′r′ , Qθ′θ′ , . . . , Qz′r′ are the pertur-
bations of the components of the non-symmetric Kirchhoff stress tensor, ur′ and uz′ are
the perturbations of the components of the displacement vector in the system of coordi-
nates O′r′θ′z′, and ρ′ is the plate material density related to the unit volume in the initially
strained state; ρ′ =

(
λ21λ3

)−1
ρ, where ρ is the plate material density in its natural state.

Moreover, according to Guz [13], in the case under consideration, the components ω′
1111,

ω′
1122,. . . , ω′

3131 are determined by the following expressions:

ω′
1111 = (λ+ 2µ)

1

λ3
, ω′

2222 = ω′
1111, ω

′
3333 =

λ3
λ21

(λ+ 2µ), ω′
1122 =

1

λ3
λ,

ω′
1133 =

1

λ1
λ, ω′

1313 = 2µ
λ3

λ1(λ1 + λ3)
, ω′

3113 = ω′
1331 = 2µ

λ1
λ3(λ1 + λ3)

. (2.13)

This completes the field equations and relations within the framework of which the motion
of the plate is described.

We now consider the equations and relations describing the axisymmetric flow of com-
pressible inviscid fluid in the cylindrical coordinate system

According to the monograph of Guz [17], when setting up these equations and relations,
the coordinates r′ and z′ are assumed to be Euler coordinates. In this case, the difference
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between the Euler and Lagrangian coordinates is ignored because the perturbations are very
small.

The linearized Euler and state equations of the fluid flow are:

∂V ±
r′ r′

∂t
= − 1

ρ±10

∂p′1
±

∂r′
,
∂V ±

z′

∂t
= − 1

ρ±10

∂p′1
±

∂z′
,

p′1
± = (a±0 )

2ρ′1
±, (a±0 )

2 =

(
∂p′1

±

∂ρ′1
±

)
0

, (2.14)

The continuity equation is:

∂ρ′±1
∂t

+ ρ±10

(
∂V ±

r′

∂r′
+
V ±
r′

r′
+
∂V ±

z′

∂z′

)
= 0. (2.15)

In (2.14) and (2.15) the following notation is used: a±0 is the sound speed in the fluid, ρ±1 and
p
′±
1 are the perturbations of the fluid density and the fluid pressure, respectively, ρ±10 is the

fluid density in the initial state, and V ±
r′ and V ±

z′ are the components of the velocity vector.
The signs “+” (the sign “-“) in this notation means that the corresponding quantity relates to
the upper fluid layer which occupies the region {0 ≤ r′ ≤ ∞; 0 ≤ θ′ ≤ 2π; 0 ≤ z′ ≤ hd}
(the lower fluid layer which occupies the region {0 ≤ r′ ≤ ∞; 0 ≤ θ′ ≤ 2π;
(−h′ − hd) ≤ z′ ≤ −h′} where h′ = λ3h).

We now formulate the compatibility and impermeability conditions for the plate + fluid
system under consideration (Fig. 1). According to the foregoing notation, these conditions
can be written as follows.

Compatibility conditions on the upper interface plane are:

Qz′z′ |z′=0 = − p
′+
1

∣∣∣
z′=0

, Qz′r′ |z′=0 = 0,
∂uz′

∂t

∣∣∣∣
z′=0

= V +
z′

∣∣
z′=0

. (2.16)

Compatibility conditions on the lower interface plane are:

Qz′z′ |z′=−h′ = − p
′−
1

∣∣∣
z′=−h′

, Qz′r′ |z′=−h′ = 0,
∂uz′

∂t

∣∣∣∣
z′=−h′

= V −
z′

∣∣
z′=−h′ . (2.17)

Impermeability condition on the upper rigid wall is:

V +
z′

∣∣
z′=hd

= 0. (2.18)

Impermeability condition on the lower rigid wall is:

V −
z′

∣∣
z′=−h′−hd

= 0. (2.19)

This completes the formulation of the problem under consideration.
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3 Method of solution

According to the monograph [13], for solution to the system of equations (2.11), (2.12), and
(2.13) we use the presentations:

ur′ = − ∂2

∂r′∂z′
X, uz′ =

1

ω′
1111 + ω′

1313

(
ω′
1111∆

′
1 + ω′

3113

∂2

∂z′2
− ρ′

∂2

∂t2

)
X, (3.1)

where the function X is determined from the equation[(
∆′ + (ξ′2)

2 ∂
2

∂z′2

)(
∆′ + (ξ′3)

2 ∂
2

∂z′2

)
−ρ′

(
ω′
1111 + ω′

1331

ω′
1111ω

′
1331

∆′ +
ω′
3333 + ω′

3113

ω′
1111ω

′
1331

)
∂2

∂t2
+

ρ′

ω′
1111ω

′
1331

∂4

∂t4

]
X= 0, ∆′ =

d2

dr′2
+

1

r′
d

dr′
, (3.2)

where

(ξ′2,3)
2 = d±

[
d2 − ω′

3333ω
′
3113

(
ω′
1111ω

′
1331

)−1
] 1

2
,

d =
[
ω′
1111ω

′
3333 + ω′

1331ω
′
3113 − (ω′

1133 + ω′
1313)

2
] (

2ω′
1111ω

′
1331

)−1
. (3.3)

Following the usual procedure, for the axisymmetric waves, we represent the function
X in the form

X=Feχkz
′
J0(kr

′) cos(ω t). (3.4)

Substituting the expression in (3.4) into the equation (3.2) and doing some mathemati-
cal calculations, we obtain the following characteristic equation for determination of the
constantχ:

A1χ
4 +B1χ

2 + C1 = 0, (3.5)

where

A1 = (ξ′2)
2(ξ′3)

2, B1 =

(
B

c2

λ21λ3c
2
2

− ((ξ′2)
2 + (ξ′3)

2)

)
,

C1 = −A c2

λ21λ3c
2
2

+
c4

λ41λ
2
3c

4
2

+ 1

A =
ω′

1111 + ω′
1331

ω′
1111ω

′
1331

, B =
ω′

3333 + ω′
3113

ω′
1111ω

′
1331

, c =
ω

k
, c2 =

√
µ/ρ. (3.6)

In this way, we determine the following expressions for the roots of the equation (3.5):

χ1 =
√
D1, χ2 =

√
D2, χ3 = −χ1, χ4 = −χ2, (3.7)

where

D1 = − B1

2A1
+

√(
B1

2A1

)2

− C1

A1
, D2 = − B1

2A1
−

√(
B1

2A1

)2

− C1

A1
. (3.8)

After determination of the foregoing roots, the function X is presented as follows:

X=
[
F1φ1(χ1kz

′)+F2φ2(χ1kz
′)+F3φ3(χ2kz

′)+F4φ4(χ2kz
′)
]
J0(kr

′) cos(ω t). (3.9)

where

φ1(χ1kz
′) =

 eχ1kz
′
if D1 > 0

cos(αkz′) if D1 < 0
, φ2(χ1kz

′) =

 e−χ1kz
′
if D1 > 0

sin(αkz′) if D1 < 0
,
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φ3(χ2kz
′) =

 eχ2kz
′
if D2 > 0

cos(βkz′) if D2 < 0
, φ4(χ2kz

′) =

 e−χ2kz
′
if D2 > 0

sin(βkz′) if D2 < 0

′

α = Im
√
D1, β = Im

√
D2. (3.10)

Substituting the expressions in (3.9) and (3.10) into the relations in (3.1) we determine
the expressions for the displacements, and substituting the latter ones into the relations in
(2.12) we determine the perturbation of the stresses. For reducing the volume of the paper
we do not write these expressions here.

Note that in finding the solutions in (3.10), it is assumed that the values of D1 and D2 in
(3.3) are real numbers, because in concrete numerical investigations for the chosen problem
parameters this very case is observed. It is obvious that in the other cases, i.e. in the cases
where the values of D1 and D2 are complex numbers, the solutions presented in (3.10) will
have corresponding changes.

This completes the determination of the quantities related to the plate.
Now we consider the solution procedure to equations (2.14) and (2.15), and for this

purpose, according to the monograph by Guz [17], we use the following presentations:

V ±
r′ =

∂

∂r
Φ±, V ±

z′ =
∂

∂z
Φ±, p

′±
1 = −ρ±10

∂

∂t
Φ±, ρ

′±
1 = − ρ±10

(a±0 )
2

∂

∂t
Φ±, (3.11)

where the function Φ± is found from the following equation:(
∆− 1

(a±0 )
2

∂2

∂t2

)
Φ±= 0, ∆ =

∂2

∂r′2
+

1

r′
∂

∂r′
+

∂2

∂z′2
. (3.12)

According to the expression in (3.4), we present the function Φ in the form of:

Φ± = G±eδ
±kz′J0(kr

′) sin(ωt) (3.13)

where G± and δ± are the unknown constants. Substituting the expression (3.13) into the
equation (3.12) and doing some mathematical manipulations, we determine the constant δ±
as follows:

(δ±)2 = 1− c2

(a±0 )
2

⇒ δ±1 =

√
1− c2

(a±0 )
2
, δ±2 = −δ±1 . (3.14)

Here, c is the propagation velocity of the axisymmetric wave and a±0 is the sound speed in
the selected fluid.

Thus, taking into consideration the foregoing preparations, we can write the following
expression for the function Φ±for upper and lower fluid layers:

Φ± =
[
G±

1 ψ
±
1 (δ

±
1 kz

′) +G±
2 ψ

±
2 (δ

±
1 kz

′)
]
J0(kr

′) sin(ωt). (3.15)

Also, using the expressions in (3.11) we obtain the following expressions for the veloc-
ities and pressure in the lower and upper fluid layers:

V ±
r′ =

[
G±

1 ψ
±
1 (δ

±
1 kz

′) +G±
2 ψ

±
2 (δ

±
1 kz

′)
]
J0(kr

′) sin(ωt),

V ±
z′ =

[
G±

1

dψ±
1

dz′
+G±

2

dψ±
2

dz′

]
J0(kr

′) sin(ωt),

p
′±
1 = −ρ±10ω

[
G±

1 ψ
±
1 (δ

±
1 kz

′) +G±
2 ψ

±
2 (δ

±
1 kz

′)
]
J0(kr

′) cos(ωt) (3.16)
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where

ψ±
1 =

 eδ
±
1 kz′ if (1− c2/(a±0 )

2) > 0

cos(α±
1 kz

′) if (1− c2/(a±0 )
2) < 0

,

ψ±
2 =

 e−δ±1 kz′ if (1− c2/(a±0 )
2) > 0

sin(α±
1 kz

′) if (1− c2/(a±0 )
2) < 0

,

α±
1 =

√
(c2/(a±0 )

2 − 1). (3.17)

Finally, using the conditions in (2.16) – (2.19), we obtain the system of homogeneous
linear algebraic equations with respect to the unknown constants F1, F2, F3, F4, G+

1 , G+
2 ,

G−
1 , and G−

2 . Equating to zero the determinant of the coefficient matrix of these equations,
we obtain the following dispersion equation with respect to ω and k:

det
∥∥∥aij(ω, k, a+0 /c2, a−0 /c2, ρ′+

10

/
ρ, ρ

′−
10/ρ, λ/µ, kh, hd/h)

∥∥∥ = 0, i; j = 1, 2, ..., 8.

(3.18)
To reduce the size of the paper, the explicit expressions of the components aij of the coeffi-
cient matrix (aij) are not given here. These expressions can be obtained from the preceding
relations and equations after some obvious mathematical manipulations.

Solving the dispersion equation (3.18), we construct the dispersion curves, i.e. the graphs
of the dependence between c/c2 and kh for the fixed problem parameters a+0 /c2, a−0 /c2,
ρ/ρ+10, ρ/ρ−10, λ/µ,hd/h, and λ1. We recall that throuth the parameter λ1 we will investigate
the influence of the initial strains in the plate on the mentioned dispersion curves. Note that
the dispersion equation is solved numerically by employing the well-known “bi-section”
method.

4 Numerical results and discussions

Under obtaining numerical results we assume that the plate material is Lucite with the
mechanical constants µ = 1.86 ∗ 109Pa, λ = 3.96 ∗ 109Pa, ρ = 1160kg/m3, and
c2 =

√
µ/ρ = 1265m/s, and the fluid of the upper layer is Glycerin with density ρ+10 =

1260 kg/m3and with the sound speed a+0 = 1927m/s, and the fluid of the lower layer is
water with density ρ−10 = 1000 kg/m3and with the sound speed a−0 = 1459.5m/s.
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First, we consider the dispersion curves of the S1 and A1modes of the axisymmetric
waves propagating in the plate of Lucite, which is not in contact with the fluid, and analyze
the influence of the initial strains in this plate, i.e., the influence of the parameter λ1 on these
curves, which are shown in Fig.2. Note that this plot is done separately for the casesλ1 ≥ 1
(Fig. 2a) and λ1 ≤ 1 (Fig. 2b). From the analysis of the results presented in Fig. 2, it is
evident that the initial radial elongation (compression) of the plate leads to a monotonic in-
crease (decrease) of the wave propagation velocity in all the modes considered. Moreover,
it is evident from the results in Fig. 2a that in the case λ1 ≥ 1, the limits the wave propaga-
tion velocity in the low and high wavenumbers in modes A1 and S1 increase monotonically
with λ1, and the limits of the wave propagation velocity in the high wavenumbers coin-
cide with the axisymmetric Rayleigh wave velocity in the relevant initially stretched Lucite
half-space.

However, the results in Fig. 2b indicate that the initial radial compression of the plate
leads to a decrease in the limiting value of the wave propagation velocity at low wavenum-
bers in the S1 mode and the cut-off wavelength occurs in the A1 mode, in addition to the
fact that the wave propagation velocity decreases monotonically with the decrease of the
parameter λ1 in the modes considered. Note that these results are in a qualitative sense con-
sistent with the corresponding results presented and analyzed in papers [18, 19], where the
corresponding case with plane strain was considered. Note also that the dispersion curves
presented in Fig. 2, obtained under λ1 = 1.0 coincide with the corresponding dispersion
curves obtained for the case with plane strain [18, 19]. This agreement and matching provide
some guarantee of the reliability of the calculation algorithm used and of the PC programs
used to obtain these results.

Note that the dispersion curves shown in Fig. 2 are constructed from the first and subse-
quent second-lowest roots obtained from the numerical solution of the dispersion equation
for the case where the plate is not in contact with the fluids. Let us now consider the disper-
sion curves also obtained from the first and second lowest roots of the numerical solution
of the dispersion equation (3.18). First, we consider the case in which the fluids of the up-
per and lower fluid layers are the same and examine only the case in which hd/h = 2and
assume that λ1 = 1.0. The dispersion curves for this case are shown in Fig. 3 and these
curves are given simultaneously for the systems ”water+Lucite+water” and ”glycerin + Lu-
cite+glycerin”. From these curves, it can be seen that in the case where the plate is in contact
with the liquid on both sides, the asymmetric and symmetric quasi-Scholte modes appear
instead of theA 1 and S 1 modes in Fig. 2, and the limits of the wave propagation velocity in
these modes at high wavenumbers are the corresponding propagation velocity of the Scholte
waves. Moreover, the asymmetric (symmetric) quasi-Scholte wave propagation velocity ap-
proaches the corresponding Scholte wave propagation velocity from below (from above).
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Fig. 3 also shows that the Scholte wave propagation velocity for the ”Lucite + glycerin”
pair is lower than for the ”Lucite + water” pair.

Although the results presented are given for the case when hd/h = 2and the above
conclusions are drawn on the basis of these results, the numerical results obtained for other
possible values of the ratio hd/h (these results are not given here) show that these conclu-
sions are valid in a qualitative sense also for the other values of this ratio.

Now we consider the dispersion curves constructed for the hydro-elastic system ”Glyc-
erin + Lucite + Water”. First, we consider dispersion curves related to the asymmetric and
symmetric modes of the quasi-Scholte waves obtained for different values of the ratio hd/h
under λ 1 = 1.0 and shown in Fig. 4. From them it can be seen that a decrease in the val-
ues of the ratio hd/h causes a decrease in the values of the wave propagation velocity in
both asymmetric and symmetric modes. Moreover, it is clear from these results that the
cut-off wavenumbers that appear in the dispersion curves for the quasi-Scholte waves of the
symmetric modes at relatively large values of the ratio hd/h disappear when this ratio is
decreased.

It can be seen from Fig. 4 that the limit values under the low wavenumbers of the asym-
metric waves do not depend on the ratio hd/h, while these limit values of the symmetric
waves clearly depend on the ratio hd/h and decrease with decreasing hd/h. Moreover,
based on the results in Fig. 4, it can be said that in the cases where hd/h ≥ 2, the results
for the system ”rigid wall + fluid + plate + fluid + rigid wall” agree with very high accuracy
with the corresponding results for the system ”fluid half-space + plate + fluid half-space”.

The main conclusion, which also follows from the results in Fig. 4, is the following: The
limiting values of the wave propagation velocity of the asymmetric and symmetric quasi-
Scholte waves at high wavenumbers, unlike to the case considered in Fig. 3, are different
from each other and do not depend on the hd/h ratio. Moreover, for the asymmetric quasi-
Scholte waves, this limit is the propagation velocity of the Scholte waves for the ”Lucite
+ Glycerin” pair, but for the symmetric quasi-Scholte waves, it is the propagation velocity
of the Scholte waves for the ”Lucite + Glicerin” pair. In other words, the wave propagation
velocity of the asymmetric waves approaches from below the velocity of the Scholte waves
for the ”Lucite + Glycerin” pair, but the wave propagation velocity of the symmetric waves
approaches from above the velocity of the Scholte waves for the ”Lucite + Water” pair.
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Now we consider the influence of the initial strains of the plate on the dispersion curves of
the asymmetric and symmetric quasi-Scholte waves. These results are presented in Fig. 5
for different values of the parameter λ 1 under hd/h = 0.1(Fig. 5a), 0.25 (Fig. 5b), 0.5 (Fig.
5c), and 2.0 (Fig. 5d). From these results, it appears that for all selected values of the ratio
hd/h, the initial stretching (compression) of the plate leads to an increase (a decrease) in the
propagation velocity of asymmetric waves. At the same time, under the initial compression
of the plate, the cut-off dimensionless wavenumbers appear on the dispersion curves related
to the asymmetric mode of quasi-Scholte waves, and the values of these wavenumbers in-
crease with the decrease of the parameter λ 1. Moreover, the analysis of the results in Fig.
5 shows that the character of the influence of the parameter λ 1 on the dispersion curves of
the asymmetric mode in the qualitative sense does not depend on the hd/h ratio and on the
dimensionless wavenumber kh.

At the same time, in all considered cases the values of the wave propagation velocity in
the asymmetric mode of the quasi-Scholte wave under kh → ∞ approach from below the
velocity of the Scholte waves for the pair ”pre-strained plate of Lucite + Glycerin” in all
the cases considered. The limits of the propagation velocity of the asymmetric waves under
kh → 0 when the plate is prestressed approach the finite values, which are different from
zero, but not so much. When the plate is pre-compressed, the propagation velocity of the
above waves under kh→ (kh)cf , approaches zero, where (kh)cf is the cut-off value of the
dimensionless wavenumber. As mentioned above, the (kh)cf occurs in the pre-compressed
cases of the plate and increases with decreasing parameter λ 1. The results show that the
influence of the ratio hd/h on the values of (kh)cf is insignificant.

Above we analyzed the dispersion curves in the context of the asymmetric mode of
quasi-Scholte waves. Now we analyze the dispersion curves in relation to the symmetric
mode of the quasi-Scholte waves and, first of all, based on the results in Fig. 5, we can
state that the character of the influence of the initial strains of the plate on these dispersion
curves depends on the dimensionless wavenumber and the ratio hd/h. That is, there is such
a value of the dimensionless wavenumber kh (denote it by (kh)∗), before which the initial
stretching of the plate leads to a decrease, but the initial compression of the plate leads to
an increase of the wave propagation velocity. However, in the cases where kh > (kh)∗, the
initial stretching (compression) leads to an increase (decrease) in the propagation velocity
in the symmetric mode of the quasi-Scholte waves. From the results, it can be seen that
the values of (kh)∗ depend on the parameter λ1 and the ratio hd/h. Moreover, from the
analysis of the graphs in Fig. 5, it can be seen that for relatively small values of the ratio
hd/h (e.g., at hd/h = 0.1), there is no any cut-off wavenumber on the dispersion curves
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related to the symmetric mode. However, for relatively large values of the ratio hd/h (e.g., at
hd/h = 0.25), the initial compression of the plate causes the cut-off wavenumber to appear,
and the values of the cut-off wavenumbers increase as the parameter λ 1 is decreased. In
the cases where hd/h = 0.25 and 2.0, the cut-off wavenumber exists on the analyzed
dispersion curves even without initial compression of the plate. From the corresponding
numerical results, it is clear that in these cases the initial compression (stretching) of the
plate leads to a decrease (increase) of the cut-off wavenumbers.

Note that the propagation velocity of waves in symmetric mode has the finite linit as
kh → 0 or as kh → (kh)cf and these limits depend on the parameter λ1. This dependence
can be illustrated with the help of Fig. 5. For example, from the analysis of the results
shown in Fig. 5a, it can be seen that in the case hd/h = 0.1, an increase in the values of the
parameter λ 1 leads to a decrease in the values of the limiting velocities mentioned above.
Similarly, concrete conclusions can be drawn about the influence of the parameter λ1 on the
aforementioned limiting velocities in the cases hd/h = 0.25 (Fig. 5b), 0.5 (Fig. 5c) and 2.0
(Fig. 5d).

The results also show that the limit values of the propagation velocity of the symmetric
waves under kh → ∞ approach from above the corresponding propagation velocity of the
Scholte waves for the pair ”pre-strained Lucity + Water”.

This completes the analyses of the numerical results.

5 Conclusions

Thus, in the present work, the influence of the initial axisymmetric homogeneous finite
strains of a plate of highly elastic material, in contact on one side with the water layer and
on the other side with the Glycerin layer, on the dispersion of the axisymmetric waves prop-
agating therein is studied. It is assumed that the flow of fluids in these layers is restricted
by the upper and lower rigid walls. It is also assumed that the material of the plate is Lucite
and the motion of the plate is described by the three-dimensional linearized equations and
relations of the theory of elastic waves in prestressed bodies. However, the fluid flow is
described by the linearized Euler equations for compressible, non-viscous fluids. The dis-
persion curves for quasi-Scholte waves are presented and discussed. In the context of this
discussion, the main focus is on the influence of the difference between the fluids contacting
the plate on the upper and lower planes on the dispersion of the studied waves. In particular,
it is found that the limits of the propagation velocities of the asymmetric and symmetric
quasi-Scholte waves at high wavenumbers differ from each other due to the mentioned dif-
ferences between the fluids.

Moreover, the influence of the initial strains in the plate on the dispersion curves of
the quasi-Scholte waves is analyzed. In this regard, it is found that the initial stretching
(compression) of the plate leads to an increase (decrease) in the propagation velocity of
the asymmetric quasi-Scholte waves. At the same time, it is found that the influence of the
initial strains of the plate on the propagation velocity of the symmetric quasi-Scholte waves
has a more complicated character and depends on the dimensionless wavenumber and the
fluid layer thickness (i.e., hd/hratio).

The numerical results show that the limits of the propagation velocity of the assymmetric
(symmetric) waves at high wavenumbers from below (above) approach the propagation
velocity of the Scholte waves for the pair ”pre-strained plate of Lucite +Glycerin” (”pre-
strained plate of Lucite +Water”).

The other and more concrete conclusions about the influence of the problem parameters
on the dispersion of the studied waves can be found in the text of the paper.
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