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Abstract. A mixed type variational method for the three-dimensional
theory of continuum mechanics has been developed. It is applied for the
analysis of the stress-strain state (SSS) of inhomogeneous anisotropic
elastoplastic bodies during creep under the action of neutron fluxes at
finite deformations with consideration of damageability and diffusion. A
modification of the formed and proved theorem for the case of composite
material when different phase inclusions in heterogeneous medium are
clearly expressed is given in the paper.
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1 Introduction

Analysis of experimental data shows that irradiation accelerates deformation process and
promotes destruction of structural elements. In published papers it has been shown that
consideration of radiation effects on behavior of deformable structural materials and bod-
ies is necessary for prediction of stress-strain state (SSS) and durability of a structure at
simultaneous consideration of other effects [8, 13, 15].

Under the influence of irradiation the elastic modulus and Poisson’s coefficient of a ma-
terial change, radiation deformations arise. The influence of penetrating neutron irradiation
on the mechanical properties of materials is significant and must be taken into account in
the calculation and design of structural elements, devices, engines and reactors, since the
supporting structures of nuclear reactors and radiation waste storage facilities must have
sufficient strength and durability of materials and structures.

The data on effect of irradiation on elastic, plastic, strength properties of materials under
constant and variable loads, on cracking resistance, on ability of materials to stress relax-
ation and energy dissipation under cyclic deformation are of interest for researchers [15].
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Penetrating neutron irradiation, as shown in many theoretical studies and accumulated ex-
perimental data sets, affects especially the creep characteristics [15, 19, 23]. Plastics, which
are widely used in nuclear engineering as structural materials, are in most cases more sensi-
tive to irradiation than metals [12]. The acceleration of the deformation and fracture process
depends on the stress level, temperature, irradiation characteristics [8, 11]. At high temper-
atures the creep process in metals and alloys is followed by instantaneous elastic and plastic
deformations [10, 15, 23].

If plastic deformation is associated with heating of the body or structure, only the lin-
ear deformations change by the same values as a result of heating and the components of
the deformation deviator do not change during heating [6]. In elastic and elastic-plastic
systems, unstable positions occur under certain values of external loads, i.e. very large dis-
placements occur as a result of a minor change in the system parameters. And in creeping
structural elements, the displacement rates can become unacceptably large under certain
circumstances. Critical states of such types can occur after a certain period of residence
of a structural element under load, therefore, we introduce the concept of critical time [8].
Researches on determine the effect of irradiation, damageability and corrosion on bearing
capacity of structural elements in chemically aggressive media under creeping result in non-
linear boundary value problems of continuum mechanics [1, 9], analytical solution of which
is impossible.

Therefore, the theoretical strength of an ideal crystal lattice of constructional metals,
corresponding to the simultaneous breaking of all intermolecular bonds, is very high - only
ten times less than the Young’s modulus of elasticity of 2, 1 · 103 GPa. It is known that the
strength of real solids is several orders of magnitude lower than that of structural metals
with a perfect structure. The strength of most structural polymers does not exceed 100-150
MPa and the Young’s modulus is 3-4 GPa [22]. Further improvement of the mechanical
properties of polymers through the design of the chemical structure of the molecules is not
promising, so we have to look for other ways to improve the elastic strength characteristics
of structural polymers, among which the transition from polymers to nanocomposites is
currently considered most promising. Carbon nano-tubes (CNTs) are being used as a small
strengthening additive in polymers because of their combination of extraordinary mechani-
cal, electrical and thermal properties [7].

In this paper, a mixed type variational method for the three-dimensional theory of contin-
uum mechanics (3D) is developed for determining the deflection of heterogeneous anisotropic
elastoplastic bodies during creep under the action of neutron flows at finite deformations,
taking into account the damageability and corrosion of the material. A modification of the
formed variational theorem for the case of composite material when different phase inclu-
sions are distinctly expressed in the heterogeneous medium is presented.

2 Laws of deformation

Assume that in the material there is instantaneous elastoplastic deformation ε(1)ij , creep de-

formation ε(1)ij and deformation resulting from irradiation ε(2)ij , so that the covariant compo-
nents of the total deformation will be

εij = ε
(1)
ij + ε

(2)
ij + pij

In velocities
ε̇ij = ε̇

(1)
ij + ε̇

(2)
ij + ṗij , (2.1)

where ε̇ij is the deformation rate tensor, the dots above the letters denote the differentiation
of the corresponding quantities by physical time.
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Detailed consideration of the processes of plasticity, creep and damage accumulation
without taking into account their mutual influence is characteristic of many theories used in
calculations. However, the phenomenon of creep is accompanied by a process of damage
accumulation of material and the generalized theory formulated by Yu.N. Rabotnov [15]
in the form of the concept of mechanical state equation is an opportunity for their joint
description if the damage parameters are introduced into the kinetic relationships of creep
as structural parameters. To model processes of nonstationary corrosion, long-term strength
and their interrelations for structurally stable material at given moment of time, we can write
[8, 15, 19]

ṗij = ṗij(σ
αβ, T, q1, ..., qN )

During the deformation process, the structural parameters change according to the following
non-integrable equations:

dqi = airsdprs + birsdσrs + φidt+ didT, (i = 1, 2, ..., n) (2.2)

Here airs, b
i
rs, φ

i, di the functions from pij , σ
rs, T, t and also the parameters q1, q2, ..., qN ,

i.e., φi = φi(pij , σ
αβ, T, t, q1, q2, ..., qN ) etc. Structural parameters can be chosen differ-

ently: as creep deformation, damage, dissipated work, etc. In parallel with theoretical de-
velopment of models of deformation and fracture of materials in conditions of influence of
radiation environment, the system of experimental data on short-term and long-term me-
chanical characteristics for a definite material at various temperature and force influences
has been accumulated [6, 15].

With known backgrounds of stress, deformation and durability changes under certain
radiation active conditions, the refinement of experimental results for specific structural
materials continues. The design methods of a structure in most cases are reduced to a cal-
culation with variable and varying elastic characteristics under the influence of irradiation,
considering the bulk radiation components of deformation by analogy with thermal defor-
mations [6]. When building design models of deformation and fracture of materials and
structures made of composites and metals, for aircraft objects, power plants and other en-
gineering structures it is necessary to take into account all possible loads and the effects of
the environment, especially chemical and radiation aggressiveness. Among many types of
radiation ionizing radiation, only neutron flux leads to a change in the mechanical proper-
ties of materials and, as a result, to a change in the behaviour of structures as a whole [13].
Changes in the properties of structural materials begin to show up when irradiated with a
fluence of neutrons above 1 × 1018 neutron/cm2 [14]. The main phenomena determining
the serviceability of structural materials in special-purpose power plants include high and
low temperature embrittlement, radiation creep, reduction of resistance to corrosion failure
and others. The effect of neutron irradiation on the durability properties of materials un-
der constant and alternating loads is determined by both the mode of irradiation itself and
the state of structure of the materials [4]. Irradiation modes are characterized by integral
neutron dose, energy spectrum, temperature and irradiation medium.

Experimental data shows that irradiation significantly decreases the plasticity of steels
and nickel alloys, but at high doses of irradiation (up to 1022 neutron/cm2) they preserve
zones of plasticity in the range of normal and moderately elevated temperatures.

Since at high temperatures the effects of creep and slow (gradual) fracture of materials
are found, consideration of the effect of irradiation on creep and long-term strength of mate-
rials is necessary. Comparison of creep curves corresponding to the same stress level shows
that the kinetics of creep in irradiated steel is the same, but the deformation and fracture
processes in irradiated material are much more intense than in unirradiated material. Irradi-
ation causes more intense deformation and fracture processes and the acceleration of these
processes depends on stress level, temperature and irradiation characteristics. Therefore,
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using the theory of structural parameters by Yu.N. Rabotnov some parameter integrally tak-
ing into account the effect of irradiation intensity, energy spectrum and irradiation dose on
material structures is introduced into the phenomenological model. The body temperature
is assumed to be the same everywhere and independent of time.

Based on the notion of [15], we have

ṗij = ṗij(εαβ, σ
αβ, ω, c) (2.3)

kinetic diffusion equation [10]

ċ = div(D∇c)− kc (2.4)

kinetic damage equation [3]
ω̇ = φ(σαβ, ω, c) (2.5)

Here ω - damage parameter, c - parameter describing concentration level of chemically
aggressive medium,D = D(σαβ, ω, c) - diffusion coefficient, ∇ - Hamilton differential op-
erator, k = const - characteristic speed of chemical reaction, kc - rate of decay of chemical
bonds under the influence of aggressive chemical medium.

Among many effects caused by neutron irradiation, a special place is taken by the issues
related to volumetric expansion and change of physical-mechanical properties of the body
[6, 16]. The change of volumetric deformation under neutron irradiation proceeds rather
slowly [23], therefore, the dynamic effects can be neglected in VAT estimation, and the
duration of irradiation in time t can be considered as a parameter. The volume deformation
(expansion) θ is a function of coordinates and irradiation dose d, i.e.

θ = θ(xk, d).

Here, it is assumed that the change in the mechanical properties of the material at each
point depends only on the irradiation dose at that point and on the temperature, and does not
vary with changes at other points. The degree of change in mechanical properties depends
on the irradiation dose, which is measured by the number of neutrons that enter the body
through 1 cm2 of the surface. If n (1/cm3) is the number of neutrons in the unit of flux
volume and the average flux speed, with constant irradiation intensity d = nvt neutrons
will penetrate into the body through 1cm2 of the surface in 1 second. If the irradiation
intensity remains unchanged, then the irradiation dose d can be taken as a parameter that
describes the deformation process along with time. For this reason, in formula (??) and
following, the point above the quantities will denote the differentiation by d. Changing over
time, the dose level is distributed unevenly over the thickness of the structure and leads to
a non-uniformity of the mechanical properties. If the flux rate is independent of time, then
a total neutron flux N = nvt expµ(z − h/2) neutron/cm2 will pass through a unit area of
a plate with a thickness h over time [17]. In the case where deformation and displacement
are constrained for some reason, internal forces and stresses arise in the deformed body [6]
and the components of the strain tensor change in all [3].

ε̇
(1)
ij =

{
Cijkm(xk, d)σkm

}·
(i, j, k,m = 1, 3),

ε̇
(2)
ij = θ̇(xk, d)δij ,

where δij is the Kronecker tensor. Finally, for the components of the total strain rate tensor
we have

ε̇ij =
{
Cijkmσ

km
}·

+ ṗij + θ̇δij . (2.6)

Note that at d = 0, we have θ = 0, and the covariant components of the fourth rank
tensor Cijkm for the anisotropic case are the physical and mechanical characteristics of
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the material of the unirradiated body Cijkm. In metals and alloys, as well as in structures
made of them, as a result of irradiation at high temperatures, the processes of creep and
accumulation of damage occur, which depend on the type of stress state [6, 8].

3 Problem statement and solution method

Ignoring the dynamic effects, let us consider the equilibrium of a deformable solid body
of volume V and bounded by a sufficiently smooth closed surface S. On some part of
the surface Su only the components of the displacement vector ūi are given and on the
remaining part Sσ the load T̄ j is given. Since the variational theorem will be applied to
solving problems of buckling of thin-walled structural elements, the finite-strain relations
and nonlinear equilibrium equations are used here. Then the geometrically nonlinear theory
of equilibrium of an elastic-plastic body in a chemically active medium in creep under the
action of neutron flux will be described by means of the following boundary value problem

∇j

{
σij(∇iu

k + δki )
}
= 0, (k = 1, 3),

ε̇ij =
{
Cijkmσ

km
}·

+ ṗij + θ̇δij ,

2εij = ∇iuj +∇jui +∇iu
k∇juk,

T i = T̄ i, xk ∈ Sσ,

ui = ūi, x
k ∈ Su, (3.1)

ċ = div(D∇c)− kc,

ω̇ = φ(σαβ, ω, c).

where T k = σijnj
(
∇iu

k + δki
)

And S = Sσ
⋃
Su,∇j−a covariant differentiation operator is involved.

In some variational principles, based on varying tensors of stress and strain rates, a more
general assumption is made about the elastic-plasticity law for the instantaneous strain.

ε̇
(1)
ij =

{
Cijkl(x

k, d)σkl
}·
, xk ∈ E3

It is proved that the problem under consideration is equivalent to the problem formulated in
the form of a variational principle. Note that in the theory of unsteady creep the possibilities
of formulation of variational equations are wider than in the theory of steady-state creep and
nonlinear elasticity theory, because in addition to tensors σij and εij in the controls appear
tensors σ̇ij and ε̇ij . In three-dimensional Euclidean space we will consider the creep process
in an elastic-plastic anisotropic medium, which is subjected to irradiation by a neutron flux.
In the case of a complex stress state, one must know the dependences of stress components
on strain components in all stages of deformation. These dependencies are established in
the theories of plasticity and creep.

This paper investigates the carrying capacity of thin-walled structure elements and solids
under creep under the action of external physical fields and influences. A mixed-type varia-
tional principle in creep has been formulated for geometrically nonlinear problems of plastic
bodies, taking into account within one functional the damage, diffusion process and irradi-
ation with neutron flux.

J =

∫
V

{
σ̇ij ε̇ij +

1

2
σij∇iu̇

k∇j u̇k −
1

2
Cijkmσ̇

ij σ̇km−
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−Ċijkmσ
kmσ̇ij −

(
ε̇
(2)
ij + 2ṗij

)
σ̇ij + λω

(
1

2
ω̇2 − ω̇φ

)
+

+λc

[
1

2
ċ2 − ċdiv(D∇c)− kcċ

]}
dV −

∫
Sσ

˙̄T iu̇idS −
∫
Su

Ṫ i(u̇i − ˙̄ui)dS (3.2)

In the functional the independent varying quantities are and , and the weight functions
whose values are selected depending on the type of interpolation functions to refine the ap-
proximations. To overcome the difficulty of solving the variation problem by direct meth-
ods, we abandon the exact solution of the kinetic equations (2.4) and (2.5), replacing them
by approximate integral relations∫

V
λω[ω̇ − φ(σαβ, pij , ω)]

2dV ≈ 0

∫
c
λc[ċ− div(D∇c) + kc]2dV ≈ 0

where the damage and concentration level functions of the corrosive medium are searched
for as a series

ω =

p∑
k=1

ak(t)ψk(xj); ak(0) = 0;

c =
m∑
k=1

bk(t)ηk(xj); bk(0) = 0;

c =

m∑
k=1

ck(t)ηk(xj); ck(0) = 0;

c(t, xj)|xj=0 = c0,
∂c(t, xj)

∂xj

∣∣∣∣
xj=0

= c∗(t)

and the corresponding boundary conditions for the concentration function

dηk(0)

dxi
and ηk(0).

Thus, this creep problem is reduced to a system of differential equations with a known
systematics of procedures, i.e. with an algorithm that allows one to approach the mathemat-
ical solution of these problems.

Many different direct methods for constructing approximate solutions are possible, as
well as direct methods for qualitative analysis on the existence and uniqueness of the solu-
tion or for deriving a priori evaluations for this problem.

The stationarity condition of the functional δJ = 0 gives a system of equations, which
is a mathematical model of the problem of determining the true stress-strain state of an
elastoplastic continuous medium irradiated by a neutron flux in the process of creeping at
finite deformations.

Functional (3.2) is derived on the basis of variation principles [2, 18, 19], formulated for
the creep problems and variation method of the theory of plasticity of inhomogeneous bod-
ies, proposed for problems with regard to irradiation in the geometrically linear formulation
[3].
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Let’s find a variation of the functional (3.2) in the curvilinear coordinate system. Taking
into account that the variation operator acts on velocities of quantities, we obtain from (3.2)

δJ =

∫
V
{ε̇ijδσ̇ij + σ̇ijδε̇ij +

1

2
σij∇iu̇

kδ(∇j u̇k) +
1

2
σij∇j u̇kδ(∇iu̇

k)−

−1

2
Cijkmσ̇

kmδσ̇ij− 1

2
Cijkmσ̇

ijδσ̇km−Ċijkmσ
kmδσ̇ij−(ε̇

(2)
ij +ṗij)δσ̇

ij+λm(ω̇−φ)δω̇+

+λc[ċ− div(D∇c)− kc]δċ}dV −
∫
Sσ

˙̄T iδu̇idS −
∫
Su

[(u̇i − ˙̄ui)δṪ
i]dS. (3.3)

It was taken into account that, by definition, the volumetric deformation is a function of
coordinates and irradiation dose, and that the creep deformation rate generally depends on
stress, temperature, time and structural parameters [15, 18, 23], therefore

δθ̇ = 0, δṗij = 0,

and to satisfy the boundary conditions, the following equations δṪ i = 0 are taken
on Sσand δu̇i = 0 on Su, respectively.
Since the tensor Cijkl is velocity-independent, the relations are valid

δCijkm = 0, δĊijkm = 0, δε̇
(1)
ij = Cijklδσ̇

kl,

as well as equality
Cijkmσ̇

kmδσ̇ij = Cijkmσ̇
ijδσ̇km

−1

2
Cijkmσ̇

kmδσ̇ij − 1

2
Cijkmσ̇

ijδσ̇km − Ċijkmσ
kmδσ̇ij − (ε̇

(2)
ij + ṗij)δσ̇

ij =

= −
(
Cijkmσ̇

km + Ċijkmσ
km

)
δσ̇ij − (ε̇

(2)
ij + ṗij)δσ̇

ij =

= −
[(
Cijkmσ

km
)·

+ ε̇
(2)
ij + ṗij

]
δσ̇ij (3.4)

Consider separately the fourth term in expression (3.3). From the symmetry of the stress
tensor σij = σji, we have

1

2
σij∇j u̇kδ(∇iu̇

k) =
1

2
σij∇iu̇

kδ(∇j u̇k).

Hence, the equality of the third and fourth terms in (3.3) follows. This circumstance and
formula (3.4) allow us to simplify expression (3.3) and write it down as follows.

δJ =

∫
V

{
ε̇ijδσ̇

ij + σ̇ijδε̇ij + σij∇iu̇
kδ (∇j u̇k)−

1

2
Cijkmδσ̇

ij σ̇km −

−1

2
Cijkmσ̇

ijδσ̇km − Ċijkmσ
kmδσ̇ij−

−
(
ε̇
(2)
ij + ṗij

)
δσ̇ij + λω (ω̇ − φ) δω̇ + λc [ċ− div (D∇c)− kc] δċ

}
dV−

−
∫
Sσ

˙̄T iδu̇idS −
∫
Su

[
(u̇i − ˙̄ui) δṪ

i
]
dS. (3.5)

The time derivatives of the strain components are calculated using (3.1), namely

ε̇ij =
1

2

{
∇iu̇j +∇j u̇i +∇iu

k∇j u̇k +∇juk∇iu̇
k
}
,
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and its variation is written as

δε̇ij =
1

2

{
δ (∇iu̇j) + δ (∇j u̇i) +∇iu

kδ (∇j u̇k) +∇jukδ
(
∇iu̇

k
)}

.

Now rewrite the second term in (3.5) in a form suitable for the following tabs

σ̇ijδε̇ij =
1

2

{
σ̇ijδ∇iu̇j + σ̇ijδ∇j u̇i + σ̇ij∇iu

kδ∇j u̇k + σ̇ij∇jukδ∇iu̇
k
}

Let us rearrange in this formula the indices i and j. Using the tensor symmetry property σij
and performing some transformations characteristic of tensor analysis, we will have from
here

σ̇ijδε̇ij = σ̇ij
{
δki +∇iu

k
}
δ∇j u̇k (3.6)

Then the variational equation (3.5) is written by means of the equality

δJ =

∫
V
{ε̇ijδσ̇ij + σ̇ij

[
δki +∇iu

k
]
δ∇j u̇k + σij∇iu̇

kδ(∇j u̇k)−

−Cijkmσ̇
kmδσ̇ij − Ċijkmσ

kmδσ̇ij−

−
(
ε̇
(2)
ij + ṗij

)
δσ̇ij + λω(ω̇ − φ)δω̇ + λc [ċ− div(D∇c)− kc] δċ}dV−

−
∫
Sσ

˙̄T iδu̇idS −
∫
Su

[
(u̇i − ˙̄ui)δṪ

i
]
dS (3.7)

Separately, consider the integral∫
V
σ̇ij

{
δki +∇iu

k
}
δ(∇j u̇k)dV

By converting it using the Gauss-Ostrogradsky formula, we get:∫
V
σ̇ij

{
δki +∇iu

k
}
δ (∇j u̇k) dV =∫

S

{
σ̇ij

(
δki +∇iu

k
)
njδu̇k

}
dS −

∫
V

{
∇j

[
σ̇ij

(
δki +∇iu

k
)]
δu̇k

}
dV (3.8)

Similarly, calculate the third integral, for which we write∫
V
σij∇iu̇

kδ (∇j u̇k) dV =

∫
S
σijnj∇iu̇

kδu̇kdS −
∫
V
∇j(σ

ij∇iu̇
k)δu̇kdV (3.9)

Dividing in (3.8) and (3.9) the surface integrals S by the sum of the integrals over Sσand
Su, and considering that the surface integrals Sσ are nonzero only on the surface where the
load δT k = 0 is given Su, and on these integrals are equal to zero separately when the
displacement δui = 0 is given , these formulas can be rewritten as∫

V
σ̇ij

{
δki +∇iu

k
}
δ∇j u̇kdV =

=

∫
Sσ

{
σ̇ij

(
δki +∇iu

k
)
njδu̇k

}
dS −

∫
V

{
∇j

[
σ̇ij

(
δki +∇iu

k
)]
δu̇k

}
dV, (3.10)∫

V
σij∇iu̇

kδ∇j u̇kdV =

∫
Sσ

σijnj∇iu̇
kδu̇kdS −

∫
V
∇j

(
σij∇iu̇

k
)
δu̇kdV (3.11)
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By introducing the transformed values of integrals (3.10) and (3.11) into (3.7) and collecting
the terms at the same independent variations, we find

δJ =

∫
V
{[ε̇ij − (ε̇

(1)
ij + ṗij + θ̇δij)]δσ̇

ij−

−
[
∇j

(
σ̇ij

(
δki +∇iu

k
))

+∇j

(
σij∇iu̇

k
)]
δu̇k+

+λω(ω̇ − φ)δω̇ + λc[ċ− div(D∇c)− kc]δċ}dV+

+

∫
Sσ

{[
σ̇ij

(
δki +∇iu

k
)
+ σij∇iu̇

k
]
nj − ˙̄T kδu̇k

}
dS −

∫
Su

(u̇k − ˙̄uk) δṪ
kdS

Having the obvious equalities

∇j

[
σ̇ij

(
δki +∇iu

k
)]

+∇j(σ
ij∇iu̇

k) =
{
∇j

[
σij

(
δki +∇iu

k
)]}·

σ̇ij
(
δki +∇iu

k
)
+ σij∇iu̇

k =
{
σij

(
δki +∇iu

k
)}·

for the expression we find:

δJ =

∫
V

{[
εij − (ε

(1)
ij + pij + θδij)

]·
δσ̇ij −∇j

[
σij

(
δki +∇iu

k
)]·

δu̇k+

+λω(ω̇ − φ)δω̇ + λc [ċ− div(D∇c)− kc] δċ} dV+

+

∫
Sσ

[
σij

(
δki +∇iu

k
)
nj − T̄ k

]·
δu̇kdS −

∫
Su

(u̇k − ˙̄uk) δṪ
kdS = 0

Given the basic lemma of calculus of variations and formula (3.1), from the condition of
zero-turning δJ , as the Euler equations in the curvilinear coordinate system we obtain{

∇j

[
σij

(
δki +∇iu

k
)]}·

= 0, (3.12)

ε̇ij = ε̇Mij + ṗij + θ̇δij , (3.13)

ω̇ = φ, (3.14)

ċ = div(D∇c)− kc, (3.15)[
σijnj

(
∇iu

k + δki

)]
= T̄ k, xk ∈ Sσ, (3.16)

uk = ūk, x
k ∈ Su, (3.17)

After integrating in time t equations (3.12) and boundary conditions (3.16) and (3.17), we
finally write in curvilinear coordinate system

∇j

[
σij

(
δki +∇iu

k
)]

= 0, εij = (Cijklσ
kl) + pij + θδij , ω̇ = φ,

ċ = div(D∇c)− kc,
[
σkjnj

(
∇iu

k + δki

)]
= T̄ k, xk ∈ Sσ, uk = ūk, x

k ∈ Su.

If we make some simplifying assumptions regarding the dependence of various displace-
ments and stresses on some coordinate, we obtain modifications from the formulated theo-
rem for thin-walled structural elements subjected to neutron irradiation in a corrosive envi-
ronment during creep.



Yusif M. Sevdimaliyev 77

4 Modified variational principle for a composite body

The strength of real solids and structural elements is several orders of magnitude lower than
the theoretical strength of the ideal crystal lattice of structural metals, corresponding to the
simultaneous breaking of all intermolecular bonds, which is usually due to the existence of
lattice defects. The strength of most structural polymers does not exceed 100-150 MPa and
the Young’s modulus is 3-4 GPa [8]. Further improvement of the mechanical properties of
polymers through the design of the chemical structure of the molecules is not promising, so
we have to look for other ways to improve the elastic strength characteristics of structural
polymers, among which the transition from polymers to nanocomposites is currently con-
sidered most promising. Carbon nano-tubes (CNTs) are being used as a small strengthening
additive in polymers because of their combination of extraordinary mechanical, electrical
and thermal properties [7]. CNT production processes have been significantly improved
and some of them scaled up, as a result, high quality single and multi-layer CNTs have
become available on an industrial scale. For this reason, studying the mechanical properties
of polymer nano-composites with CNTs, as well as evaluating the prospects for practical
applications, is relevant. However, there are currently no mathematical models that can
quantitatively predict the mechanical characteristics of a nano-composite based on data on
its composition and some (as yet unknown) characteristics of individual components [5].
Based on the introduced index of carbon nanotube (CNT) efficiency in nanocomposite as
the ratio of the load carried by nanotubes at a given average deformation of the matrix to
the maximum possible load that can be transferred to the nanotubes at this deformation, the
paper [22] presents an analysis of the results. Analysis of the data given in the published
references has shown that in polymers the upper limit of CNT efficiency is achieved if a
mesh of interconnected nano-tubes is formed inside the polymer. This mesh can be formed
by integration of nano-tubes into polymer matrix through covalent bonding of nano-tubes
by molecular bridges or through physical entanglement of nano-tubes between each other.
In thermoplastic crystallising polymers, the upper limit of CNT efficiency is also achieved
by increasing the degree of crystallinity and improving the microstructure of the polymer,
including the use of orientation stretching of nanocomposite [19] and functionally graded
materials (FGM). Composite materials include all heterogeneous media consisting of two
or more phases; they also include virtually all alloys used in the manufacture of structural
elements subjected to stresses and irradiation. At present, nuclear installations are used not
only in stationary power facilities, but also in ship- and aircraft-building, space technology,
etc., whose structures are made of composite materials. In this connection, we will further
present a modification of the functional (3.2) for the case of a composite body, proved for ge-
ometrically nonlinear problems. For infinitely small deformations and small displacements
the corresponding variational theorem is proved in [3].

Let us introduce a composite body which in a three-dimensional Euclidean space with
curvilinear coordinates xα occupies a region V bounded by a closed surface S. Let us now
proceed to the description of the composite material. In formulating the contact boundary
problem, we assume that the body consists of K elements (Fig. 4.1). The element k with
number occupies a volume Vk with surface Sk. We assume that Sk = S

(1)
k

⋃
S
(2)
k , where

S
(1)
k is the boundary of the volume V (1)

k having no common points with S, and S(2)
k is the

boundary of the volume V (2)
k being a part of the common boundary of the body.

Fig. 4.1. Schematic of a composite body - V (1)
k is the volumes having no common points

with the surface S
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Apparently, the equality Sk = S
(1)
k is true for the volumes V (2)

k .
Let the surface S(2)

kσ be given the forces Tα(0), and the rest of the surface be given the
displacements u(0)α . Let us assume that the surfaces S, S(1)

k and S(2)
k are sufficiently smooth.

The theory of composite media used is based on the following assumptions:
- during the deformation process, the elements are in contact with each other along their

entire common surface;
- the deformations are finite;
- full adhesion conditions are met on the contact surfaces.
Further we will assume that materials of different elements are different and their phys-

ical and mechanical properties are described according to the elastic-plastic law of the flow
theory type (2.6).

For the k-th element we will introduce the following notations: σij(k) and εij(k) - stress
and strain tensor respectively; ui(k) - displacement vector; ni(k) - unit normal to the surface.
Then let us consider the equilibrium of the volume Vk by applying to a part of the boundary
S
(1)
k the forces T (00)

(k) acting on it from the other volumes contacting with it, or considering

the displacements u(00)i(k) . Then the geometrically nonlinear equilibrium theory is described
by the following boundary problem:

∇j

{
σij(k)

(
δαi +∇iu

α
(k)

)}
= 0,

(
α = 1, 3

)
(4.1)

ε̇ij(k) =
{
Cijmn(k)σ

mn
(k)

}·
+ ṗij(k) + θ̇(k)δij , (4.2)

ċ = div(D∇c)− kc,

ω̇ = φ(σαβ, ω, c).

2εij(k) = ∇iuj(k) +∇jui(k) +∇iuα(k)∇ju
α
(k), (4.3)

ui(k) = ūi(k), Sku, (4.4)

Tα
(k) = T̄α

(k), Skσ, (4.5)

where Tα
(k) = σij(k)nj (∇iu

α + δαi )

It is important to note here that in the most general case, according to the general state-
ment of the problem

ūi(k) =

{
u
(0)
i(k)

u
(00)
i(k)

∀S
∀S

∈ S
(2)
ku ,

∈ S
(1)
ku ,

(4.6)

T̄α
(k) =

{
T
α(0)
(k)

T
α(00)
(k)

∀S
∀S

∈ S
(2)
kσ ,

∈ S
(1)
kσ ,

(4.7)

To the above equations (4.1) - (4.5) the coupling conditions on S(1)
k . At full coupling be-

tween neighbouring elements on the interface, we have continuity of displacements and
forces

[ui] = 0,
[
T i

]
= 0.

where square brackets denote the jump in the corresponding value. In expanded form, the
last equations take the form

u+i(k) = u−i(k), T
i+
(k) = T i−

(k). (4.8)
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Here ”+” and ”-” denote the function values at the coupling points when approaching them
to the right and left of the contact line.

As before, let us again select an arbitrary element of volume Vk. Following (3.2), let us
write out the corresponding functional for this volume:

Jk =

∫
Vk

{σ̇ij(k)ε̇ij(k) +
1

2
σij(k)∇iu̇

α
(k)∇j u̇(k)α − 1

2
Cijkmσ̇

ij
(k)σ̇

km
(k) − Ċijkmσ̇

km
(k) σ̇

ij
(k)−

−
(
ε̇
(2)
ij(k) + ṗij(k)

)
σ̇ij(k) + λω

(
1

2
ω̇2 − ω̇ϕ

)
+

+λc

[
1

2
ċ2 − ċdiv(D∇c)− kcċ

]
}dV −

∫
Sσ

˙̄T i
(k)u̇i(k)dS−

∫
Su

Ṫ i
(k)(u̇i(k)− ˙̄ui(k))dS (4.9)

Here Sku and Skσ are the boundary areas where displacements ūi(k) and forces T̄ i
(k) are

assumed to be known or given by formulas (4.6) and (4.7).
Now, let us turn to generalisation of the functional for the whole volume when the body

is composed of elements. In this case, the functional (4.9) needs to be modified so that the
conjugation conditions (4.8) are taken into account. In this connection, let us first summarise
(4.9) over all its components. Further, without prejudice to the rigor and compactness of the
note, we will omit the index k of the quantities appearing under the integrals. Then we write

J =
K∑
k=1

Jk

or

J =
K∑
k=1

∫
Vk

{
σ̇ij ε̇ij +

1

2
σij∇iu̇

α∇j u̇α − 1

2
Cijkmσ̇

ij σ̇km−

−Ċijkmσ̇
ijσkm − (ε̇

(2)
ij + ṗij)σ̇

ij + λω

(
1

2
ω̇2 − ω̇φ

)
+

+λc[
1

2
ċ2 − ċdiv(D∇c)− kcċ]}dV −

∫
Sσ

˙̄T iu̇idS −
∫
Su

Ṫ i(u̇i − ˙̄ui)dS (4.10)

Then it becomes necessary to consider the contact conditions (4.9) of the problem. It
is easy to see that in this case the surface integrals in (4.10) cancel each other and the
functional (4.10) finally takes the form

J =
K∑
k=1

∫
Vk

{
σ̇ij ε̇ij +

1

2
σij∇iu̇

m∇j u̇m − 1

2
Cijkmσ̇

ij σ̇km−

−Ċijkmσ̇
kmσ̇ij − (ṗij + θ̇δij)σ̇

ij + λω

(
1

2
ω̇2 − ω̇φ

)
+

+λc

[
1

2
ċ2 − ċdiv(D∇c)− kcċ

]}
dV −

∫
Su

Ṫ i(u̇i − ˙̄ui)dS −
∫
Sσ

˙̄Tαu̇αdS. (4.11)

Thus, the derived functional (4.11) describes the equilibrium of the whole multicomponent
body under neutron irradiation.
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Let us consider a situation in which the materials of all volumes K1 of the composite
V

(1)
k , having a common surface with V , are described by the same physical and mechanical

characteristics C∗
ijmn. Then we have a matrix of volume Vm, equal to

Vm =

K1∑
k=1

V
(1)
k ,

with internal inclusions (phases) of volume V (2.2)
k . In this special case we write the func-

tional in the form

J =

∫
Vm

{σ̇ij ε̇ij +
1

2
σij∇iu̇

k∇j u̇k − (ε̇
(2)
ij + ṗij)σ̇

ij+

+

K2∑
k=1

∫
Vk

{
σ̇ij ε̇ij +

1

2
σij∇iu̇

k∇j u̇k − (ε̇
(2)
ij + ṗij)σ̇

ij

}
dV+

+λω(
1

2
ω̇2 − ω̇φ) + λc[

1

2
ċ2 − ċdiv(D∇c)− kcċ]}dV −

∫
Sσ

˙̄T iu̇idS −
∫
Su

Ṫ i(u̇i − ˙̄ui)dS.

Here K2 is the total number of inner contact surfaces, and K > K2. Finally, let us
formulate the essence of the proposed variational methods more definitely. A characteristic
feature of the constructed functionals is that they are written out in velocities. If similar
Reisner-type functionals are constructed, then application of numerical methods, for exam-
ple Ritz method, leads to solution of system of non-linear algebraic equations or system of
transcendental equations which are not easily realizable on computer [2]. Application of a
similar approximate method in this formulation leads to solution of a system of quasilinear
ordinary differential equations with given initial conditions (Cauchy problem), numerical
realization of which is much simpler [18].
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