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Free vibrations of a nonhomogeneous rod-cylindrical shell-fluid system
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Abstract. In the present paper, we consider free vibrations of an inho-
mogeneous anisotropic, fluid-contacting cylindrical shell stiffened with
inhomogeneous rods. The Hamilton-Ostogradsky variational principle
was used when solving the problem. It was accepted that the nonho-
mogeneity of rods used in the strengthening change by the exponential
law. The nonhomogenity of the cylindrical shell change by the linear
law in the direction of the thickness. The fluid was accepted as ideal.
Rigid contact condition between the rods and the cylindrical shell was
considered. Using the contact conditions, the frequency equation was
structured, the roots were found implemented by the numerical method,
characteristical curves were built.
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1 Introduction

Studying constructions and structural elements under the dynamic action with taking into
account their adequate features is of great importance. Depending on mechanical and ther-
mal processing, the type of technology, composition of the material, the homogeneity and
anisotropy features are created in the material of the structure. On the other hand, such
constructions are in contact with different nature media. In many cases, there arises a need
to stiffen such thin-walled structures for increasing their serviceability. In [7], free vibra-
tions of an orthotropic homogeneous cylindrical shell contacting with viscous fluid and soil
and stiffened with homogeneous rings, are studied. The papers [5, 6] study vibrations of a
sharp nonhomogeneity feature cylindrical shell. In [2] the vibrations of a fluid-contacting
inhomogeneous cylindrical shell stiffened with homogeneous rods, are studied. [1] studies
vibrations of a nonhomogeneous cylindrical shell dynamically contacting with fluid and
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stiffened with homogeneous rods. The conducted analyses show that vibrations of a nonho-
mogeneous cylindrical shell dynamically contacting with moving fluid and stiffened with
inhomogeneous rods have not been studied.

2 Problem statement

Fig 2.1. Inhomogeneous, fluid-contacting orthotropic cylindrical shell stiffened with
inhomogeneous rods

Assume that ideal fluid-contacting cylindrical shell inhomogeneous along its genera-
trix has been stiffened with inhomogeneous rods (Fig. 2.1). According to the Hamilton-
Ostogradsky variation principle:

δ

∫ t1

t0

(K −W −Am) dt = 0 (2.1)

K = Vk +

k1∑
i=1

Ki;W = Vp +

k1∑
i=1

Πi (2.2)

Here Vp, Vk are potential and kinetic energies of the cylindrical shell, Πi , Ki are poten-
tial and kinetic energies of the i-th rod, Am is the work done by the forces acting on the
cylindrical shell as viewed from fluid at the displacement points of the shell. For taking into
account the homogeneity of the cylindrical shell and rods, we will assume that their elas-
ticity module and densites is a coordinate function. In this case, the expressions for their
enerjies will be as follows:

Vp =
Rh

2

∫∫
(σ11ε11 + σ12ε12 + σ22ε22)ds (2.3)

σ11 = b11 (x) ε11 + b12 (x) ε22, σ22 = b12 (x) ε11 + b22 (x) ε22, σ12 = b66 (x) ε12

ε11 =
∂φ

∂x
; ; ε22 =

∂v

∂y
; ; ε12 =

∂U

∂y
+

∂v

∂x

b̃11 =

∫ l

0
b11 (x) dx;b̃12 =

∫ l

0
b12 (x) dx;b̃22 =

∫ l

0
b22 (x) dx; ;b̃66 =

∫ l

0
b66 (x) dx;

b11 (x) =
E1(x)

1− ν1ν2
; b22 (x) =

E2(x)

1− ν1ν2
; b66 (x) = G12 (x) = G (x) ;

b12 (x) =
ν2E1(x)

1− ν1ν2
=

ν1E2(x)

1− ν1ν2
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Vk =

∫ 2π

0

∫ l

0
ρ (x)

((
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
)
dxdφ

Πi =
1

2

∫ l

0

[
Ẽi (x)F i

(
∂ui
∂x

)2

+ Ẽi (x) Jxi

(
∂2vi
∂x2

)2

+

+Ẽi (x) Jzi

(
∂2wi

∂x2

)2

+ Gi (x) Jkpi

(
∂φkpi

∂x

)2
]
dx (2.4)

Ki =

∫ l

0
ρ̃i (x)Fi

[(
∂ui
∂t

)2

+

(
∂vi
∂t

)2

+

(
∂wi

∂t

)2

+
Jkpi
Fi

(
∂φkpi

∂t

)2
]
dx

Am = −
∫ l

0

∫ 2π

0
qzwdxdφ (2.5)

In the expressions (2.3) - (2.5), u, v, w are the displacements of the points of the cylindrical
shell, Ẽi(x) is the modules of elasticity of the i-th rod, ρ̃i(x) is the density of the material
of the i-th rod, Fi is the area of the cross-section of the i-th rod, Ixi,Ikpi are the enertia
moments of the cross section of the i-th rod,Gi(x) is the elasticity modulus of the i-th rod in
shear, ui, vi, wi are displeacements of the points of the i-th rod, k1 is the amount of rods,
qz is pressure force to the cylindrical shell as viewed from fluid.

Under the cylindrical shell strengthened with rods we understand a cylindrical shell
and a system consisting of rods rigidly strengthened to it along the coordinate lines. It
is considered that the coordinate axes coincide with the principal curvature lines of the
cylindrical shell and are in rigid contact along these lines. So, the following conditions
between the cylindrical shell and rods are satisfied [3]:

ui (x) = u (x, yi) , vi (x) = w (x, yi)wi (x) = w (x, yi) (2.6)

φi (x) = φ1 (x, yi) ;φ1 (x, yi) = − ∂w

∂x

∣∣∣∣
y=yi

The pressure p created in fluid is in the form of the following expression [8]:

p = Φαnρm

(
ω2
0

∂2w

∂t21
+ 2Uω0

∂2w

R∂ξ∂t1
+ U2 ∂2w

R2∂ξ2

)
(2.7)

Here

Φmk =


Ik (βr) /I

′
k (βR) , M1 < 1

Jk (β1r) /J
′
k (β1R) , M1 > 1

rk

kRk−1 , M1 = 1

,

M1 =
U +Rω/m

a0
, β2 = R−2

(
1−M2

1

)
m2, β2

1 = R−2
(
M2

1 − 1
)
m2,

Ik is the k-th order modified first kind Bessel function, Jk is the k-th order first kind Bessel
function, a0 is sound propagation in fluid, U is motion speed of fluid, ξ = x

l , m is the wave
number in the direction of the axis x.

The following contact conditions between the fluid and cylindrical shell are satisfied [8]:

vr|r=R = −
(
ω
∂w

∂t
+ U

∂w

∂x

)
(2.8)

qz = −p|r=R (2.9)
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We will consider that the Navier conditions are satisfied at the edges of the cylindrical shell
[4]:

v = w = M11 = N11 = 0; for (x = 0, x = l) (2.10)

So, the solution of the problem of vibrations of a cylindrical shell dynamically contact-
ing with fluid and strengthened with rods is reduced to joint integration of the of total energy
(2.6), (2.8), (2.9) of the construction consisting of a cylindrical shell with flowing fluid in
the inner area and strengthened with discretely distributed inhomogeneous rods under the
boundary conditions (2.10).

3 Problem solution

We will look for the displacements of the shell in the following form:

u = u0cos
πmx

l
sin kφsinωt

v = v0sin
πmx

l
cos kφsinωt (3.1)

w = w0sin
πmx

l
sin kφsinωt

Here u0, v0, w0 are unknown constants, m ,n are wave numbers in the direction of the
generatrix and in the circular direction.

Using solutions (3.1), formulas (2.3) and (2.4), contact conditions (2.6), we obtain:

Πi =
m2π2

2l2
[FiI1 sin

2kφiu
2
0 + (JxiI2 + JkpiI3)cos

2kfiv
2
0+ (3.2)

+(JziI2 + JkpiI3)sin
2kfiw

2
0 + kJkpi I3sin2kφiv0w0] sin

2ωt

Ki = ω2Fi

[
I10sin

2kφiu
2
0 + I11

(
1 +

Jkpi
FiR2

)
cos2kφiv

2
0+

+I11

(
1 +

Jkpik
2

FiR2

)
sin2kφiω

2
0+I11

Jkpi
FiR2

sin2kφiv0w0

]
sin2ωt

Vp =
πRh

2

[(
π2m2

e2
I4 +

k2

R2
I5

)
u20 +

(
k2

R2
I6 +

π2m2

e2
I5

)
v20 + I5w

2
0+

+

(
2πkm

lR
I7 +

2πkm

lR
I5

)
u0v0 −

2πm

l
I7u0w0 −

2k

R
I6v0w0

]
sin2ωt

Vk = ω2π
(
I8u

2
0 + I9v

2
0 + I8w

2
0

)
sin2ωt

A = − πl

2R
ρmΦmn

(
−ω2 + 2Umω − U2m2

)
w2
0

In the expressions (3.2)

I1 =

∫ l

o
Ẽi (x) cos

2mπx

l
dx;

I2 =

∫ l

o
Ẽi (x) sin

2mπx

l
dx I3 =

∫ l

o
G̃i (x) sin

2mπx

l
dx

I4 =

∫ l

0
b11 (x) sin

2πx

l
dx ; I5 =

∫ l

0
b66 (x) cos

2 px

l
dx; I6=

∫ l

0
b22 (x) sin

2πx

l
dx;
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I7 =

∫ l

0
b12sin

2πx

l
dx; I8 =

∫ l

0
ρ (x) cos2

πx

l
dx; I9=

∫ l

0
ρ (x) sin2πx

l
dx;

I10 =

∫ l

0
ρ̃ (x) cos2

πx

l
dx; I11 =

∫ l

0
ρ̃ (x) sin2 px

l
dx

By means of expressions (3.2) we obtain:

K −W −A =

{{
ω2

(
πI8 +

k1∑
i=1

FiI10sin
2kφi

)
−
[
πRh

2

(
π2m2

e2
I4 +

k2

R2
I5

)
+

+
m2π2

2l2

k1∑
i=1

FiI1sin
2kφi

]}
u20 +

{
ω2

(
πI9 +

k1∑
i=1

FiI11

(
1 +

Jkpi
FiR2

)
cos2kφi

)
−

−

[
πRh

2

(
k2

R2
I6 +

π2m2

e2
I5

)
+

m2π2

2l2

k1∑
i=1

(JxiI2 + JkpiI3)cos
2kφi

]}
v20+

+

{
ω2

(
πI8 +

k1∑
i=1

FiI11

(
1 +

Jkpik
2

FiR2

)
sin2kφi

)
−

−

[
πRh

2
I5 +

m2π2

2l2

k1∑
i=1

(JziI2 + JkpiI3) sin
2kφi

]
−

− πl

2R
ρmΦmn

(
−ω2 + 2Umω − U2m2

)}
w2
0−

−πRh

2

(
2πkm

lR
I7 +

2πkm

lR
I5

)
u0v0 +

π2mRh

l
I7u0w0+

+

{
k1∑
i=1

FiI11
Jkpi
FiR2

sin2kφi − [−πkhI6 +
m2π2

2l2
kJkpi I3sin2kφi]

}
v0w0

}
sin2ωt

Applying the Hamilton-Ostrogradsky variational principle, we obtain the following sys-
tem of equations with respect to the constants u0, v0, w0:

2

{
ω2

(
πI8 +

k1∑
i=1

FiI10sin
2kφi

)
−
[
πRh

2

(
π2m2

e2
I4 +

k2

R2
I5

)
+

+
m2π2

2l2

k1∑
i=1

FiI1 sin
2kφi

]}
u0 −

πRh

2

(
2πkm

lR
I7 +

2πkm

lR
I5

)
v0+

+
π2mRh

l
I7w0 = 0 (3.3)

−πRh

2

(
2πkm

lR
I7 +

2πkm

lR
I5

)
u0−

−

{
ω2

(
πI9 +

k1∑
i=1

FiI11

(
1 +

Jkpi
FiR2

)
cos2kφi

)
−
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−
[
πRh

2

(
k2

R2
I6 +

π2m2

e2
I5

)
+

m2π2

2l2

k1∑
i=1

(JxiI2 + JkpiI3)cos
2kφi

]}
v0+

+

{
k1∑
i=1

FiI11
Jkpi
FiR2

sin2kφi − [−πkhI6 +
m2π2

2l2
kJkpi I3sin2kφi]

}
w0 = 0

π2mRh

l
I7u0 +

{
k1∑
i=1

FiI11
Jkpi
FiR2

sin2kφi − [−πkhI6+
m2π2

2l2
kJkpi I3sin2kφi]

}
v0−

−

[
πRh

2
I5 +

m2π2

2l2

k1∑
i=1

(JziI2 + JkpiI3) sin
2kφi

]
−

− πl

2R
ρmΦmn

(
−ω2 + 2Umω − U2m2

)}
w0 = 0

Since the obtained system (3.3) is the system of linear homogeneous algebraic equa-
tions, the necessary and sufficient condition for its non-trivial solution is the equality of its
principal determinant to zero. As a result we obtain the following frequency equation:

det ∥apq∥ = 0 , p, q = 1, 2, 3 (3.4)

The constants apq are the coeffients of the unknown constants u0, v0, w0. Equation (3.1)
is a transcendental equation with respect to the desired frequency ?. Its roots have been
calculated by the numerical method.

4 Numerical results

It was accepted that

ρ (x) = ρ0

(
1 + α

x

l

)
, E1 (x) = E10

(
1 + β

x

l

)
,

E2 (x) = E20

(
1 + γ

x

l

)
, Ẽi (x) = Ẽi0

(
1 + δe

x
l

)
, ρ̃i (x) = ρ̃i0

(
1 + εe

x
l

)
,

G (x) = G0(1 + β
x

l
), Gi (x) = Gi0(1 + δe

x
l ), ω0 =

√
E10

(1− ν2)ρ0R
2 , ω1 = ω/ω0,

Here α, β, γ, δ, ε are inhomogeneity parameters. In the calculation, the following values
were taken for the parameters characterizing the fluid, shell and rods:

E10 = 18, 3QPa, E20 = 2, 77QPa, G0 = 3, 5QPa, ρ0 = ρi0 = 1850kg/m3, Ẽi0 = 6, 67QPa

a0 = 1800
m

sec
, h = 0, 45cm, ρm/ρ0 = 0, 15, R = 160mm,L = 800mm, Izi = 1, 3mm4,

Ikpi = 0, 23mm4, Ixi = 5, 1mm4, ν1 = ν2 = 0, 35, hi = 1, 39 cm, Fi = 5, 2mm2, U/a0 = 0, 005

The results of the calculations were given in Fig. 4.1 in the form of dependence of
the frequency parameter of the system on the amount of rods, in Fig. 4.2 in the form of
dependence of the frequency parameter of the system on the inhomogeneity parameter for
cylindrical shells made of different feature orthotropic materials.
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Fig. 4.1. Dependence of the frequency parameters on the number of rods

Fig. 4.2. Dependence of the frequency parameter on the inhomogenity parameter

5 Conclusions

Based on the conducted research, the following conclusions can be drawn:

1 Fig. 4.1 shows that increasing the number of rods, as first vibrations of the system in-
crease and after certain kind decrease.

2 Fig. 4.2 shows that increasing the value of the inhomogenety parameter, natural vibra-
tions of the system increase.
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