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Abstract. The process of propagation of non-stationary waves in an
elastic half-space is studied, inside which a cylinder made of another
linearly elastic material is embedded, on the end of which a normal
impact is applied. A solution is found for the initial stages of the process,
graphs of some characteristic quantities are plotted.
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1 Introduction

The study of the dynamic resistance of bodies consisting of different materials is of great
interest, but it is accompanied by great mathematical difficulties. The purpose of this work
is to find methods for overcoming emerging complications and obtaining reliable analytical
results.

Considering that the impact process occurs in a rather short period of time, the part
that describes the initial moment of the process is extracted from the general solution. This
part of the decisions can be called the main part because it not only meets all theoretical
expectations but is also confirmed by the known data observed in practice [3].

The problem is solved using double integral transformations (Laplace and Fourier),
which leads to rather complex solutions in transformations. To find the original, a method is
used that was first used in [3]. Since this method has proven itself well for finding originals
of this type, the solution obtained in the named work coincides exactly with the known data
that are observed during tectonic processes in the earth’s crust.

Graphs of some basic quantities are constructed, which are in good agreement with the
theoretical assumptions of the process under study.

Nazila B. Rassoulova
Ministry of Science and Education Republic of Azerbaijan Institute of Mathematics and Mechanics, Baku, Azerbaijan
E-mail: rasulova@gmail.com

Tahmina M. Mahmudzade
Ministry of Science and Education Republic of Azerbaijan Institute of Mathematics and Mechanics, Baku, Azerbaijan
E-mail: tehminemahmudzade1996@gmail.com



52 Investigation of non-stationary processes of an elastic half-space with...

In the literature [2] on this topic, the work is known, where only the stationary motion
of the cylinder and half-space system is considered, and the dispersion characteristics of the
process are studied.

2 Statement and method of solution

An elastic half-space is considered, which occupies a region z ≥ 0, a < r ≤ ∞ in a
cylindrical coordinate system. An elastic cylinder made of another material is built into a
part of the space z ≥ 0, 0 ≤ r < a. The blow in the moment is made only in the end area
of the cylinder.

Fig. 2.1. Half space with built-in cylinder
The described process is controlled by the following initial-boundary value problem.
To solve the problem, the Lame equations are considered in the selected cylindrical

coordinate system, the centre of which is located in the centre of the end area of the cylinder:

∂σ
(i)
rr
∂r + ∂σ

(i)
rz
∂z +

σ
(i)
rr −σ

(i)
θθ

r = ρ(i)
∂2u

(i)
r

∂t2

∂σ
(i)
rz
∂r + ∂σ

(i)
zz
∂z + ∂σ

(i)
rz
∂z = ρ(i)

∂2u
(i)
z

∂t2

(2.1)

σ
(i)
rr = 2µ(i)ε

(i)
rr + λ(i)e

(i) , σ
(i)
θθ = 2µ(i)ε

(i)
θθ + λ(i)e

(i) , σ
(i)
zz = 2µ(i)ε

(i)
zz + λ(i)e

(i)

σ
(i)
rz = 2µ(i)ε

(i)
rz , e(i) = ε

(i)
rr + ε

(i)
θθ + ε

(i)
zz

ε
(i)
rr = ∂u

(i)
r
∂r ; ε

(i)
θθ = u

(i)
r
r ; ε

(i)
zz = ∂u

(i)
z
∂z

ε
(i)
rz = 1

2

(
∂u

(i)
r
∂z + ∂u

(i)
z
∂r

)
ε
(i)
zθ = ε

(i)
rθ = 0

(2.2)



Nazila B. Rassoulova, Tahmina M. Mahmudzade 53

Initial conditions are zero:
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Here are u(i)r , u
(i)
z − the components of the displacement vector, ε(i)ij , σ

(i)
ij −the compo-

nents, respectively, of the strain and stress tensors in different media, density, λi and µi−
Lame coefficients, t−time.

The value with index 1 refers to a cylinder, and the value with index 2 refers to a half-
space.

On the end area of the cylinder, and around it, the boundary conditions are given in the
following form:
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Because the blow is applied only along the cross section of the cylinder.
In addition, there are obvious contact conditions along the surface.
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Applying the double integral Laplace and Fourier transform with respect to systems (2.1),
considering (2.2) and (2.4), we obtain different systems of equations for different media [4]:
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Where pand q− are the parameters of the Laplace and Fourier transforms, B1, B2−the
Bessel operators:
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In formulas (2.6) and (2.7), the quantities us
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the Fourier transforms of the displacement components and φ(i), ψ(i) are associated with
the following formulas [4]:
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Considering the peculiarities of the form of domains, systems (2.6) and (2.7) can have
obvious solutions:

φ1 = − σ0f(p)

qυ
(1)2

1 (λ1+2µ1)
+A0I0

(
υ
(1)
1 r
)

ψ1 = − σ0f(p)

q2υ
(1)2

2 µ1
+ C0I0

(
υ
(1)
2 r
)

φ2 = A1K0

(
υ
(2)
1 r
)

ψ2 = C1K0

(
υ
(2)
2 r
)

(2.8)

The coefficients A0, C0, A1, C1 must be determined from the contact compatibility condi-
tions (2.5). In (2.8) I0
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)

- modified Bessel and Hankel functions, which
are linearly independent solutions of the modified zero-order Bessel equation.

Condition (2.5) is reduced to an inhomogeneous system of linear algebraic equations
with respect to unknown coefficients A0, C0, A1, C1:
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Where |D| −and |Dk| ,
(
k =

−
1, 4

)
− are fourth-rank determinants compiled according to

Cramer’s rules with respect to equation (2.9).
Thus, the task in transformations is solved completely. But the complete solution re-

quires the determination of the originals of these transformations. Judging by expression
(2.11), this is a rather complicated problem.

In order to obtain inverse transformations of the solutions (2.8) found here, one should
determine the behaviour of the expression |Dk|

|D| for p → ∞, because this is the main fac-
tor that will make it possible to find a solution for a short period of time during which
the shock process occurs. It should be noted that these transformations are twofold and
the transformation parameters p and q , are present everywhere in the formulas together

in the form
√
p2 + c2k · q2, therefore, assuming p → ∞, it is understood that the value√

p2 + c2k · q2 → ∞. In this case, the resulting expansion will obviously turn out to be a
Fourier transform as well.

For small values of time, one can be content with only the first term |Dk|
|D| when it is

expanded in powers of p . The fact is that in the work where solutions are represented
through the 5th rank of determinants and the use of only the first term, gave fairly accurate
results. These results quite accurately coincided with the results that were known from
practice, for example, in the study of tectonic processes in the earth’s crust.

This first term is easily determined by analysing the expressions of each matrix included
in the formulas |Dk|

|D| , since the ratio of the terms of the greatest degree in the parameter p of
these determinants, will give us the necessary part of the main solution [3].

These methods are used to obtain expressions for the constants appearing in the solutions
(2.8) of the problem.
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Then we can determine the longitudinal velocity of the particles inside and outside the
cylinder:
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For sufficiently large values, these formulas are converted to the following expressions:
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Without going into details, we can give ready-made formulas for inverse transformations
in formulas (2.14) for velocities. We only note that to derive these solutions, the second de-
composition formula, the Efros theorem and the tables given in [1]. The behavior of Bessel
functions at infinity is also taken into account.
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It is assumed here that f (t) = H (t) , H (t)−the Heaviside function.
Below are graphs of the dimensionless longitudinal velocity of particles of the central axis

of the cylinder ¯̇u(i)z = u̇
(i)
z

/
σ0c

(1)
1

(λ1+2µ1)
.

Let us assume that Poisson’s ratios υ1 = υ2 =
1
3 , and E1

E2
= 1, 5 ; ρ1

ρ2
= 1, 2.

The calculation is made for the following time values t̄ = tc
(1)
1
a · n , (n = 2, 3, 5, 7, 10):

Fig. 2.2. Distribution of the longitudinal velocity of particles of the central axis of the
cylinder for subsequent values of time

There are also graphs for the speed , on the free surface of the half-space around the end of

the cylinder, but now for the following values of time t̄ = tc
(2)
1
a · n , (n = 2, 3, 4):
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Fig. 2.3. Distribution of the normal velocity of particles of the free surface of the
half-space for subsequent values of time

3 Conclusions

The unsteady motion of an elastic half-space, inside which a cylinder made of another lin-
early elastic material is embedded, is studied. Formulas for calculating almost all necessary
quantities are obtained.

Graphical dependences of longitudinal velocities for each medium are given.
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