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Determination of the stress intensity factor during longitudinal
displacement in a composite material reinforced with unidirectional
fibers with linear cracks
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Abstract. This article considers a double periodic cage with round
plane holes filled with unstressed washers made of an isotropic elastic
material, the surface of which is uniformly covered with a homogeneous
film. Each fiber and medium (binder) is stretched by two biperiodic lin-
ear cracks. Each washer has a centrally located crack, the length of
which is less than the diameter of the washer. The introduced stresses
and their displacements are expressed by an analytical function. In the
process of solving the problem, boundary conditions are set along the
contour of round holes, as well as along straight cracks. Thus, on the
basis of the boundary conditions, a system of linear algebraic equations
is obtained. Their solution is solved by the Gauss method. In the latter
case, the stress intensity factor at the crack tips is determined.
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1 Introduction

The problem of fracture mechanics of the general regular structure of a linearly reinforced
medium formed by cells containing an arbitrary finite number of fibers of various diameters
is considered. The longitudinal shear of the plate, the cover of the holes, and the weakened
by a bi-periodic system of rectilinear through cracks, the collinear axes of abscissas and
ordinates are equal in length. The solution of the problem of equilibrium of a perforated
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42 Determination of the stress intensity factor during longitudinal displacement

body with a longitudinal shear with prefracture zones reduces to solving a single infinite
algebraic system and a nonlinear singular integro-differential equation with a core such as
a Cauchy kernel.

From the solution of these equations the forces in the crack zones are found. The crack
condition is formulated taking into account the limit discontinuity criterion for material
motions. Each singular integral equation reduces to a finite system of linear algebraic equa-
tions.

2 Formulation of the problem.

Let St
k and Sa

k be the regions of the cell structure occupied by the circular coating
of the k−th fiber and the fiber itself, the center of which is located at the point ak + P
(P = mω1 + nbω2, m, n = 0,±1,±2, ...,±∞) , λk, and λ′

k are the external and inter-
nal dimensionless radii of the surfaces of this coating; a single cell contains n fibers. The
Cartesian coordinate is combined with the axis of an arbitrary fiber, ω1 and ω2 basis vectors,
equal in modulus to the lengths of the corresponding sides of the main cell, of which the
macrostructure of the material is composed. For convenience, we should use the represen-
tation ω2 in terms of complex quantities ω2 = ω1be

iα, α ̸= 0, where ω1b is the length of
the inclined side of the cell 0 < b < ∞. Hereinafter, on the outer surface of the coating,
τ = λeiv, and on the inner τ1 = λ1e

iv = (λ− h) eiv, where h is the thickness of the
coating, α is the angle between the vectors ω1 and ω2.

Fibers over the entire macro section are arranged by doubly periodic continuation of the
main cell [1]. The binder medium is weakened by a doubly periodic system of rectilinear
cracks. Crack banks are free of external efforts. Lattices have average stresses τy = τ∞y ,
τx = 0 (shift at infinity).

The elastic moduli of the material are established through the expansion coefficients of
the function ϕs (z) according to the considered method. For bodies having one plane of
symmetry and belonging to the monoclinic system, Hooke’s law for the case of a pure shift
is expressed as follows:

γ31 = X44σ31 +X45σ21, γ12 = X45σ31 +X55σ21.

If the so-called ”technical” constants are introduced, then these relations have the form

γ31 =
1

G13
σ31 +

M31,21

G13
σ21, γ12 =

M12,31

G13
σ31 +

1

G12
σ21.

where M31, M21 and M12, M31 are called Chentsov coefficients and characterize the shifts
in the X3X1 plane caused by stresses (σ21), or in the X1X2 plane under stresses (σ31).
Elastic displacements caused by uniform shifts in the considered planes are established by
the dependence.

The increment of displacements in the reinforced medium in adjacent cells is expressed
by the formula

γ12 =
ωj+ωj

2 − iγ13
ωj−ωj

2 =

= ωjC0 − δj
n∑

k=1

(Ck,2 + Ck,1ak) + ωjC0 − δj
n∑

k=1

(
Ck,2 + Ck,1ak

)
.

(2.1)
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Consistently setting j = 1, 2, the desired relations are found using this formula

γ12 = C0 + C0 − δ1
ω1

n∑
k=1

(Ck,2 + Ck,1ak)− δ1
ω1

n∑
k=1

(
Ck,2 + Ck,1ak

)
,

γ12 cosα+ γ13 sinα = eiαC0 + e−iαC0−

− δ2
ω1b1

n∑
k=1

(Ck,2 + Ck,1ak)− δ2
ω1b1

n∑
k=1

(
Ck,2 + Ck,1ak

)
.

(2.2)

If we take into account the relations eiv = −idzds , e
−iv = idzds , s the arc of the circle of

the fiber contour that follows from consideration, it is directly converted to the form

T = −iG
d

ds

[
ϕ (z)− ϕ (z)

]
. (2.3)

The holomorphic function Φs(z) for the region under consideration should be chosen
based on the general representation of the elliptic function, according to which

Φs(z) = C0 +
n∑

k=1

∞∑
s=1

(−1)s

(s− 1)!
Ck,sς

(s−1) (z − ak) . (2.4)

Here we introduce the Weierstrass sigma function, according to the definition of which

d

dz
lnσ (z) = ς (z) and lim

x→0

σ (z)

z
= 1. (2.5)

The solution of the problem of the shear of a reinforced medium with the structure under
consideration is reduced to the construction of n functions Φk(z), holomorphic in the areas
occupied by coatings and a function Φk,a(z) under the corresponding boundary conditions.

Unknown functions are constructed in the form of series:

ϕ′
k (z) = Φk (z) =

∞∑
m=−∞

bm,k (z − ak)
m (k = 1, 2, ..., n ) ,

for z ∈ St
k,

ϕ′
a,k (z) = Φa,k (z) =

∞∑
n=1

dn (z − ak)
n (k = 1, 2, ..., n) ,

for z ∈ Sa
k .

Satisfying the boundary conditions at the boundaries of the fiber – coating ωmn and
the coating – binder Ωmn, where the indices m,n = 0,±1,±2, ...,±∞ determine the
condition on the contour of the m−th fiber. In the case of perfect contact, the displacements
and stresses on the mating sites are equal to each other.

Boundary conditions are expressed through unknown functions as follows. From the
conditions of equality of displacements and stresses on the surface of the junction of coating
films with a binding medium in one cell at z − ak = λke

ivk = τk.(
1 +

Gt

Gs

)
ϕk (τk) +

(
1− Gt

Gs

)
ϕk (τk) = 2fs (τk) (k = 1, 2, ..., n) . (2.6)
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The second system of boundary equations follows from the one given when replacing
functions with complex-stressed (conjugate) functions. On the inner surfaces of the fiber
coatings for z − ak = λ′

ke
ivk = tk, n relations

(
1 +

Ga

Gt

)
ϕa,k (tk) +

(
1− Ga

Gt

)
ϕa,k (tk) = 2ϕk (tk) (k = 1, 2, ..., n) . (2.7)

resulting from ideal contact conditions.
The boundary conditions on the banks of the cracks are:

f ′
s (t)− f ′

s (t) = 0, (2.8)

f ′
s (t1)− f ′

s (t1) = 0, (2.9)

f ′
b (t)− f ′

b (t) = 0. (2.10)

We rewrite the boundary conditions (2.6), (2.7), (2.8), (2.9) and (2.10) as follows [2. 3].

fs (z) = f1 (z) + f2 (z) + f3 (z) ,

fb (z) = f1b (z) + f2b (z) ,
(2.11)

Φs (z) = C0 +

n∑
k=1

∞∑
s=1

(−1)s

(s− 1)!
Ck,sς

(s−1) (z − ak) ,

f ′
2 (z) =

1
iω

∫
L1

g (t) ξ (t− z) dt+A,

f ′
3 (z) =

1
iω

∫
L2

g1 (t1) ξ (t1 − z) dt1 +B,
(2.12)

f2b (z) =
1

iπ

∫ l

−l

g (t)

t− z
dt, (2.13)

where the integrals in (2.12), (2.13) are taken along the line L1 = {[−l,−a] + [a, l]} ,
L2 = {[−d,−b] + [b, d]} , γ (z) and ξ (z) are the Weierstrass functions [2], g (t) , g1 (t1)
are the desired function, A,B are constant, t and t1 are the affix of the points of the crack
faces directed along the abscissa axes and ordinates. Related to the coating, the fiber and
the binder, hereinafter marked respectively by the indices k, a and s.

To the main concepts (2.12)–(2.13), additional conditions arising from the physical
meaning of the problem are added

∫ −a
−l g (t) dt = 0,

∫ l
a g (t) dt = 0,

∫ l
−l g (t) dt = 0,∫ −b

−d g1 (t1) dt1 = 0,
∫ d
b g1 (t1) dt1 = 0,

(2.14)
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3 The solution of the boundary value problem

The unknown function g (x) , g1 (y) and the constants bm,k, dn, ck,s must be determined
from the boundary conditions (2.6) – (2.7). To compose equations for unknown coefficients
ck,s, we represent the boundary condition (2.1) in the function f ′

1 (z).
The constant decompositions of the displacement function is determined from an infinite

system of algebraic equations that follows when the boundary conditions are satisfied.
To determine arbitrary constants, boundary conditions (2.6), (2.7) are considered where

instead of the functions Wa, Ws, Wt and the corresponding stresses are introduced in the
Fourier series. As a result of simple transformations, the following system of algebraic
equations is obtained:

λ2ka2k = Gc (λ)Ga

{
D2k+1

[
F (gλ)M 1

2
,2k+1 (gλ)

]′
+ S2k+1

[
F (gλ)M 1

2
,2k+1 (gλ)

]′}
,

λ2k+1

2k + 1
a2k = F (gλ)

[
D2k+1M 1

2
,2k+1 (gλ) + S2k+1W 1

2
,2k+1 (gλ)

]
(k = 0, 1, 2, ...,∞) ,

∞∑
s=0

C2s+2λ
2s+1αk,s − C2k+2λ

2k+2

b4k+2 = (2k + 1)F (gb) b2k+1×

×
[
D2k+1M 1

2
,2k+1 (gb) + S2k+1W 1

2
,2k+1 (gb)

]
(k = 0, 1, 2, ...,∞) ,

C0 − λ2b2C2 +
∞∑
k=1

C2s+2λ
2s+1α0,k = F (gb)

b

[
D1M 1

2
,1 (gb) + S1W 1

2
,1 (gb)

]
,

(3.1)

C0δk0 +
λ2k+1

b2k+2C2k+1
−

∞∑
s=0

C2s+2λ
2s+1αk,sb

2k = Dk+1

[
F (gb)M 1

2
,2k+1 (gb)

]′
+

+S2k+1

[
F (gb)W 1

2
,2k+1 (gb)

]′
(k = 0, 1, 2, ...,∞) .

Marked here

F (x) = x−
1
2 e

x
2 ,

[
F (gλ)M 1

2
,n (gλ)

]′
=

d

dρ

[
F (gχ)M 1

2
,n (gχ)

]
,

χ = λ, δk,0− Kronecker symbol. The remaining equations follow from the above given
when replacing constants with complex conjugates. An additional algebraic relation that
establishes a relation between the average voltages and arbitrary constants can be written in
the form

σ12 − iσ13 = 2ξGaa0 + 2ηsGsC0 − 2ηsGs

∞∑
k=1

C2k+2λ
2k+2α0,k +D1β1 + S1β2, (3.2)

where η0 =
πb2

(ω2
1 sinα)

, ηs = 1− η0,

D1β1 + S1β2 = G (χ)

(
e−iθ ∂uc

∂χ
− ie−iθ 1

χ
· ∂uc
∂v

)
,

β1 =
2π

ω2
1 sinα

[
GsF (gb)M 1

2
,1 (gb)−G0F (gλ)M 1

2
,1 (gλ)

]
+
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+(1 + 2gλ)

∫ b

λ
dχGs (χg)F (χg)M 1

2
,1 (χg) .

The formula for β2 is similar to the formula for β1 you only need to replace M 1
2
,1 (x)

with W 1
2
,1 (x).

The solution to system (3.2) is constructed as follows. Of the first two formulas, the
constants D2k and S2k are expressed in terms α2k, and from the third and fourth groups
of equations (3.2), a connection is established between C2k and α2k, finally, the constants
C2k are found from the last equation taking into account dependence (3.2). The resolving
equation has the form

C2p+2 =
∞∑
k=1

Ap,kC2k+2 +B2p (p = 1, 2, ...,∞) , (3.3)

here, with increasing p and k, the following estimates hold:

Ap,k ≈ b4p+2λ2k+2pαp,k,

Bp,k ≈ b4p+4λ−2k−2pαp,0.
(3.4)

Given estimates (3.4), it follows

|Ap,k| ≤
(2p+ 2k)!Nb4p+2λ2k−2p

(2k + 1)! (2p)!ω2p+2k+2
|B2p| ≤

N

ω2p+2
1

b4p+4λ2p−2.

Thus, solving the boundary value problem (2.6), (2.7), the definition of the desired co-
efficients Ck,s is reduced to infinite algebraic equations, on the right side of which there are
quantities depending on the sought functions g (x) and g1 (y) (y in the form of integrals).
To determine the desired functions g (x) , g1 (y), there are boundary conditions (2.8), (2.9),
(2.10) on the crack faces.

1

π

∫
L1

g (t) ξ (t− x) dt− Im
[
A+ f ′

1 (x)
]
= 0 on L1, (3.5)

1

π

∫
L2

g1 (t1) ξ (t1 − y) dt1 − Im
[
A+ f ′

1 (y)
]
= 0 on L2, (3.6)

1

π

∫ l

−l

g (t)

t− x
dt− Im

[
f ′
1b (x)

]
= 0. (3.7)

Each singular integral equation can be reduced to a standard form by changing variables.
Further, applying the algebraization procedure instead of each integral equation, we obtain
a finite system of linear algebraic equations [5, 6].

Depending on the type of bond and the strength of the boundary, the destruction of the
composite can occur in different ways. If the crack propagating in the composite crosses
the fibers, then the fracture toughness increases the more, the more the fibers exfoliate from
the matrix. In this case, to increase the fracture toughness, a weak bond at the fiber–matrix
interface is preferable. When a crack propagates parallel to the fibers, a strong bond at the
fiber–matrix interface is preferable, which helps prevent fracture along the interface.

System (3.3), together with the singular equation (3.5), (3.6), and (3.7), are the main
controls of the problem allowing one to determine g (x) , g1 (y) and the coefficients α2k,
b2k, c2k. Recall that system (3.3) contains the coefficients C2k, B2k and depending on the
desired function g (x) , g1 (y). System (3.3) and equation (3.5), (3.6) and (3.7) turned out to
be coupled, should be solved together.
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Knowing the functions Φk (z) , Φa,k (z) , Φs (z), we can find the stress-strain state of the
plate.

In practice, the thickness of the barrier coatings of metal fibers is usually in the order
of one tenth of the diameter of the fiber (f ≈ 0, 1). For the selected f , we determine the
change in the shear stiffness of the linearly reinforced material depending on the volumetric
fiber content ξ0 = f2ξ and the given ratio Ga

Gt
and Gs

Ga
.

a) the results of calculations are presented in relation to fiberglass plastic. Here, the
change in the ratio Gs

Ga
is with an increase in ξ for fiberglass without coating Ga

Gs
= 25, and

for fiberglass with a coating in which Ga
Gt

= 50.
b) for stiffer coatings, the macroscopic shear modulus changes very little. The depen-

dence of the shear stiffness of coated materials on the shear modulus of the coating at t = 0
is more obvious. Using coatings, as follows from the results found, it is possible to vary the
stiffness of the composition over a wide range.

In practice, they have been used as a filler along with continuous hollow fiberglass. The
task of studying the stress-strain state of this material with a longitudinal shear is reduced
to determining the harmonic functions Φk (z) , Φa,k (z) and Φs (z) under given boundary
conditions on the areas of contact between the components.

In particular, for the stress intensity factor KIII at the crack tips we will have the formula

KIII = ∓ lim
x→c

{√
2π |x− c|g (x)

}
, (3.8)

moreover, the upper sign is taken at c = a, the lower sign is taken at c = l.

Fig. 3.1. The dependence of the critical external load τ∗ = τπy
√
ω1

/
KIIIc on the

dimensionless length in cracks along the X axis of the binder material l∗ = a− l for
some values of the fiber cross-section radius λ = 0.2, 0.3, 0.4, 0.5, 0.6 (curves 1–5)

System (3.5) – (3.7) is connected (closed) by infinite systems (3.3), in which relation
(3.1) is substituted for C2k and B2k. The four systems noted completely determine the solu-
tion to the problem. After finding the value P 0

v , the stress intensity factor KIII is determined
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on the basis of relations (3.8):

Ka
III =

√
πl(1−λ2

1)
λ1

1
2π

n∑
v=1

(−1)v+n P 0
v tg

θv
2 , K

−a
III =

√
πl 1n

n∑
k=1

(−1)k+n P 0
k tg

θk
2 ,

K−l
III =

√
πl 1n

n∑
k=1

(−1)k P 0
k ctg

θk
2 , K

l
III =

√
πl

(
1− λ2

1

)
1
2π

n∑
v=1

(−1)v P 0
v tg

θv
2 ,

(3.9)

4 Decision analysis
For numerical calculations, the case of the location of the hole at the apex of the trian-

gular ω1 = 2, ω2 = 2e
1
3
iπ and square ω1 = 2, ω2 = 2i lattices was taken. The calculations

were performed on an IBM computer using the MATLAB program. It was assumed that
n = 10 and n = 20, which corresponds to dividing the interval into 10 and 20 Chebyshev
nodes, respectively. The resulting systems were solved by the Gauss method with the choice
of the main element.

Based on the results in Fig. 3.1, 4.1 and 4.2, we plotted the dependences of the critical
(limiting) load τ∗ = τπy

√
ω1

/
KIIIc for both crack tips on its length l∗ = a − l for some

values hole radius λ = 0.2, 0.3, 0.4, 0.5, 0.6 (curves 1–5).

The calculations were carried out for the following elastic parameters Ga
Gs

= 25, Ga
Gt

=
50.

Fig. 4.1. The dependence of the critical external load τ∗ = τπy
√
ω1

/
KIIIcon the

dimensionless length in cracks along the Y axis of the binder material l∗ = a− l for
some values of the fiber cross-section radius λ = 0.2, 0.3, 0.4, 0.5, 0.6 (curves 1–5)
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Fig. 4.2. Dependence of the critical external fiber load τ∗ = τπy
√
ω1

/
KIIIc on the

dimensionless crack length l∗ = a− l for some values of the fiber cross-section radius
λ = 0.2, 0.3, 0.4, 0.5, 0.6 (curves 1–5)

5 Conclusions
Analysis of the maximum equilibrium state of the composite with longitudinal shear.

The fracture toughness viscosity equations of the fibrous composite stress coefficient are
obtained depending on the nature of the internal structural defects. A mathematical descrip-
tion of the strength of the composite is carried out both at separation and at shear. As a
result, the stress – strain state of the fibrous composite, weakened by periodic linear cracks,
was determined.
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