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Abstract. In this paper, a technique is developed for solving the prob-
lem of elastic wave propagation in a medium with a cylindrical inclu-
sion. On the basis of the obtained theoretical solution, numerical cal-
culations were carried out. The analysis of constructed wave graphs
describing wave propagation in various rocks and soils is given.
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1 Introduction

Two-dimensional problems on wave propagation in an elastıc medıum are ınterestıng both
from theretical and partical point of view [1-4]. Especially, a problem on seismic wave prop-
agation can be considered two-dimensional taking into acoount their fast damping on depth.
Below we consider the movement of a rigid cylinder in an unbounded elastic medium.

For applying the Duamel principle, the solution of the problem under the boundary con-
ditions in the form of istant increase in the subsequent values on the rate of cylindrical
inclusion, is of great interest. But the solution of such problems is related with analytic dif-
ficulties. Constructing analytic solution of a dynamics problem characterized in the form of
impulses accompanied by instant increase parameters or subsequent damping in boundaries
is not difficult, and this was succeeded in this paper.
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1.1. Problem statement and the basics of determining the ratios.

We consider a two-dimensional problem on propagation of two kind of waves in elastic
medium with continuous breaks in the form of cylindrical connection

a2∆φ− ∂2φ
∂t2

= 0

b2∆ψ − ∂2ψ
∂t2

= 0
(1.1)

Here φ is a potential function describing the waves that characterize the extension of rota-
tion volume; the function ψ characterizes equivoluminal waves of rotation.

The quantities
a =

√
λ+2µ
ρ

b =
√

µ
ρ

determine the propagation rate of extensional and rotational

waves, respectively;
λ and µ are Lame constants;
ρ is medium density;
∆ is a Laplace operator.
u and v displacements in the polar coordinate system are represented in the form of

u =
∂φ

∂r
− 1

r

∂ψ

∂θ

v =
∂ψ

∂r
+

1

r

∂φ

∂θ
(1.2)

Here r, θ are polar coordinates

u1t/r = r0 = H(t)V0 (1.3)

Taking into account that the ratios are determined in limit conditions on the cylindrical
connection surface (1.1) we can find solutions of equations (1.2) in the polar coordinates r,
θ.

Here, V0 is constant rate of cylindrical connection;
r0 is a radius;
H(t) is a Heavisde function

H(t) =

{
1 t > 0
0, t < 0

1.2. The solution of the problem on propagation of nonstationary waves in an elastic
medium interacting with cylindrical inclusion.

By menas of the Laplace-Carsont transformation we can represent the solution of wave
equations (1.1) responding to the movement of the cylindrical connection in the following
form.

φ1 = CK1

(pr
a

)
ψ1 = DK1

(pr
b

) (1.4)

Here:
φ1 = φ / cos θ

ψ1 = ψ/ sin θ
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K1 is a first order McDonald function; p is a parameter of the Laplace-Carson transforma-
tion; C and D are determinants.

Without disconnecting during the movement of the medium, the boundary conditions

∂φ1

∂r
− ψ1

r
= −∂ψ1

∂r
+
φ1

r
(1.5)

for r = r0 in (1.5) taking into account the solution (1.4)

C = −f(p)
[
p
bK0

(pr0
b

)
+ 2

r0
K1

(pr0
b

)]
D = −f(p)

[
p
aK0

(pr0
a

)
+ 2

r0
K1

(pr0
a

)] (1.6)

Here: f(p) is a function determined from the boundary conditions.
Taking into account the expression (1.6) in (1.4) and then in (1.2), we obtain

u1 = ū/ cos θ = f(p)L (1.7)

L = p2

abK0

(pr0
b

)
K0

(pr0
a

)
+ p

brK0

(pr0
b

)
K1

(pr
a

)
+

+ 2b
ar0
K1

(pr0
b

)
K0

(pr0
a

)
+ 2

r0r
K1

(pr0
b

)
K1

(pr
a

)
−

− p
arK0

(pr0
a

)
K1

(pr
b

)
− 2

r0r
K1

(pr0
a

)
K1

(pr
b

)
From (1.7) in the boundary r = r0 we obtain

ū1 = pf(p)
( p
abK0

(pr0
a

)
K0

(pr0
b

)
+ 1

br0
K0

(pr0
b

)
K1

(pr0
a

)
+

+ 1
ar0
K0

(pr0
a

)
K0

(pr0
b

)) (1.8)

Using the asymptotic approximation of the McDonald function in determining the func-
tion f from the boundary conditions, we can obtain an exact solution of the wave equations,
and solutions in the field of wave propagation that respond to continuous attachment to the
motion of the medium.

Taking the solution in (1.8)

p→ ∞
K0(z) ≈

√
π
2z · e

−z

K1(z) ≈
√

π
2z · e

−z

and taking into account in (1.3)

V0 =
p2

ab
f(p)

√
πb

2pr0
·
√

πa

2pr0

(
p+

a+ b

r0

)
e−

pr0
a · e−

pr0
b

Here f = 2r0
√
ab e

pr0
a ·e

pr0
b

πp
(
p+a+b

r0

) substituting in (1.7) we obtain ū1t = pū1

ū1t =
2r0

√
ab

π
(
p+ a+b

r0

)V0e− pr0
a · e−

pr0
b L (1.9)
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in the boundary r = r0

ū1 = pf(p)
( p
abK0

(pr0
a

)
K0

(pr0
b

)
+ 1

br0
K0

(pr0
b

)
K1

(pr0
a

)
+

+ 1
ar0
K0

(pr0
a

)
K0

(pr0
b

)) (1.10)

In the expression (1.9) we determine the originals

pK0

(pr
c

)
−→

H
(
t− r

c

)√
t2 −

(
r
c

)2
K1

(pr
c

)
−→ r

c

√
t2 − r

c2
2

pK1

(pr
c

)
−→ r

c

t√
t2 − r

c2
2

pK0

(pr0
b

)
K0

(pr
a

)
e

pr0
a · e−

pr0
b −→ A1(a, b) =

=

t∫
r−r0

a

dτ√((
t− τ + r0

b

)
−
(
r0
b

)) ((
τ + r0

a

)
−
(
r0
a

)) =

=
2H

(
t− r−r0

a

)
F (k(a, b))

m(a, b)
(1.11)

Taking into account the originals, where F is a first kind complete elliptic integral

K(a, b) =

√(
t− r−r0

a

) (
t+ 2 r0b + r+r0

a

)(
t+ 2 r0b − r−r0

a

) (
t+ r+r0

a

)
m(a, b) =

√(
t+ 2

r0
b
− r − r0

a

)(
t+

r + r0
a

)
K0

(pr0
b

)
K1

(pr
a

)
e

pr0
b · e−

pr0
a −→ A2(a, b) =

=
a

r

t∫
r−r0

a

(
τ + r0

a

)
dτ√((

t− τ + r0
b

)2 − (
r0
b

)2)((
τ + r0

a

)2 − (
r0
a

)2) =

=
r0
r

t∫
r−r0

a

dτ√((
t− τ + r0

b

)2 − (
r0
b

)2)((
τ + r0

a

)2 − (
r0
a

)2)+

+
a

r

t∫
r−r0

a

τdτ√((
t− τ + r0

b

)2 − (
r0
b

)2)((
τ + r0

a

)2 − (
r0
a

)2) =
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=
r0
r

2HF (K(a, b))

m(a, b)
+

2Ha

rm(a, b)

(
2r

a
Π(n(a, b), k(a, b)− r + r0

a
F (K(a, b))

)
=

=
2H

(
t− r−r0

a

)
(2Π(n(a, b)K(a, b))− F (K(a, b)))

m(a, b)
. (1.12)

Here Π is a second kind complete elliptic integral n(a, b) = t− r−r0
a

t+
r+r0

a

pK1

(pr0
b

)
K0

(pr
a

)
e

pr0
b · e

pr0
a −→ A3(a, b) =

=
b

r0

t∫
r−r0

a

(
t− τ + r0

b

)
dτ√((

t− τ + r0
b

)2 − (
r0
b

)2)((
τ + r0

a

)2 − (
r0
a

)2) =

=

(
bt

r0
+ 1

) t∫
r−r0

a

dτ√((
t− τ + r0

b

)2 − (
r0
b

)2)((
τ + r0

a

)2 − (
r0
a

)2)−

− b

r0

t∫
r−r0

a

τdτ√((
t− τ + r0

b

)2 − (
r0
b

)2)((
τ + r0

a

)2 − (
r0
a

)2) =

=

(
bt

r0
+ 1

)
2HF (K(a, b))

m(a, b)
+

+
2bH

r0m(a, b)

(
2
r

a
Π(n(a, b), k(a, b)− r + r0

a
F/K(a, b)

)
=

=
2H

(
t− r−r0

a

) (
bt
r0

+ rb
r0a

+ b
a + 1

)
F (K(a, b))− 2 rb

r0a
Π(n(a, b),K(a, b))

m(a1b)
(1.13)

1

p
K1

(pr0
a

)
K1

(pr
b

)
e

pr0
a · e

pr0
b −→ A4(a, b) =

=
ab

r0r

t∫
r−r0

a

√((
t− τ +

r0
a

)2
−

(r0
a

)2
) ((

τ +
r0
b

)2
−
(r
b

)2
)

(1.14)

Taking into account,

p

p+ a+b
r0

−→ H(t)e
−a+b

r0
t

p

p+ a+b
r0

A −→
t∫
0

e
−a+b

r0
(t−τ)

A(τ)dτ

p2

p+ a+b
r0

A −→ A− a+ b

r0

t∫
0

e
−a+b

r0
(t−τ)

A(τ)dτ (1.15)
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fixing e−
a+b
r0

t
= µ, we obtain the resulting expression of the rate as follows:

ut =
2r0V0

√
ab

π

 1

ab

A1(a, b)−
a+ b

r0µ

t∫
r−r0

a

A1(a, b)µdτ

 +

+
1

brµ

t∫
r−r0

a

A2(a, b)µdτ) +
2

ar0µ

t∫
r−r0

a

A3(a, b)µdτ +
2

r0r
(A4(a, b)−

−a+ b

r0µ

t∫
r−r0

a

A4(a, b)µdτ)−
1

arµ

t∫
r−r0

a

A2(b, a)µdτ−

− 2

r0r
(A4(a, b)−

a+ b

r0µ

t∫
r−r0

a

A4(b, a)µdτ)

 (1.16)

It should be noted that the product in the denominator of the integrand function corre-
sponding to the field r > r0 vanishes at the value of the argument τ equal to the lower
bound of the integral. In the values of the quatity τ equal to the upper bound of the integral
the product corresponding to r = r0 vanishes. In the integrals of (1.15) when the quantity
τ equals the upper bound of the integral, the exponential argument vanishes.

So, the integration (1.11), (1.12), (1.13), (1.14) are fulfiled among special values of the
subintegrals function.

For r = r0 , F (a, b) = F (b, a)

A0
2(b, a) =

2

m
(2Π(n(b, a), k)− F (k)) = A0

3(a, b) =

=
2

m

((
bt

r0
+ 2

b

a
+ 1

)
F (k)− 2

b

a
Π(a, b)

)
(1.17)

Taking into account (1.17), thesolution (1.16) takes the form:

ut =
2r0V0

√
ab

π

 1

ab
A0

1 −
a+ b

r0µ

t∫
0

A0
1µdτ

+

+
1

br0µ

t∫
0

A0
2(a, b)µdτ +

1

ar0µ

t∫
0

A0
2(a, b)µdτ (1.18)

Here

A0
1 =

2F (k)

m

K = K(a, b) = K(b, a) =

√
t
(
t+ 2 r0b + 2 r0a

)(
t+ 2 r0b

) (
t+ 2 r0a

)
m = m(a, b) = m(b, a) =

√(
t+ 2

r0
b

)(
t+ 2

r0
a

)
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n(a, b) =
t

t+ 2 r0a

n(b, a) =
t

t+ 2 r0b

In the calculations the values of the quatities k and n can be close to a unit and this leads
to a large value of the elliptic integrals and make impossible to use tables.

Therefore, it is necsssary to use the following asymptotics formulas

φ =
π

2
n→ 1.

We must give asymptotic form to the third kind elliptic integral or as k2 → 1 this elliptic
integral is divided. For that we divide the integral into two parts

∏(π
2
, n, k

)
=

π
2∫

0

dφ

(1− n sin2 φ)
√
1− k2 sin2 φ

=

=

∫ 89
180

π

0

dφ

(1− n sin2 φ)
√
1− k2 sin2 φ

+

+

∫ π
2

89
180

π

dφ

(1− n sin2 φ)
√

1− k2 sin2 φ
=

=
∏

= (
89

180
π, n, k) +B

Here

B =

∫ π
2

89
180

π

dφ

(1− n sin2 φ)
√
1− k2 sin2 φ

(1.19)

Changing the parameter in the second integral and calling the new parameter as φ, we
obtain

B =

∫ π
180

0

dφ

(1− n cos2 φ)
√

1− k2 cos2 φ

Changing cos 2φ ≈ 1− φ2

B =

∫ π
180

0

dφ

(1− n (1− nφ2))
√
1− k2(1− φ2)

=

=
1

n
√
k2

∫ π
180

0

dφ

(φ2 + 1−n
n )

√
φ2 + 1−k2

k2

= Φ(n, k). (1.20)

In our problem

k = k(a, b) = k(b, a) =

√
t(t+ 2r0

a + 2r0
b )

(t+ 2r0
a )(t+ 2r0

b )

n = n(a, b) or n = (b, a).
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It can easily be seen that the such values of the quantities n and k

1− n

n
>

1− k2

k2

Then, according to the integration formulas we obtain

Φ(n, k) =
1

√
1− n

√
k2 − n

ln

∣∣∣∣φ√1−n
n − 1−k2

k2
+
√

1−n
n

√
φ2 + 1−k2

k2

∣∣∣∣√
φ2 + 1−n

n

∣∣∣∣∣∣∣∣
π

180

0

=

=
1

√
1− n

√
k2 − n

×

×

ln
∣∣∣∣ π
180

√
k2−n
nk2

+

√
1−n
n

((
π
180

)2
+ 1−k2

k2

)∣∣∣∣√(
π
180

)2
+ 1−n

n

− ln

√
1− k2

k2

 (1.21)

Taking into account the expression (1.21) the asymptotic representation of (1.19) as n→ 1
or k → 1 will be as follows:

Π
(π
2
, n, k

)
≈ Π

(
89

180
π, n, k

)
+ Φ(n, k)

Thus, the integrals in the expressions (1.11), (1.12), (1.13) with the subintegral function
properties were shaped as an elliptic integral.

For determining the rate νt it suffices to interchange the values of a and b. The con-
structed solution of the problem meets the implusive boundary conditions with further
change in the rate with respect to time t.

1.3. Taking numerical calculations
The numerical calculations were made by means of the Turbo Paskal 7.0 software pack-

age.
In the below calculations, the estimations for propagation rate of elastic waves for vari-

ous kind soil and mountain rocks indicated in Table 1 were used. Reference information on
propagation rate and seismic density of elastic waves, the encountered sizes (volume mass)
of density for various kinds of soil and mountain rocks was given.
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Using the numerical solution program of 1.2 and also the formulas (1.16) and (1.18) we
make calculation for the following values of parameters:

a = 2000m/sec; b = 1400m/sec;

r0 = 10m; r = 100m; 1000m; 10000m.

In the considered medium, the nonstationary elastic wave that is in contact with connec-
tiop and creates waves reflected by connection, also acts together with connection.

Taking into account fast damping of semismic waves in depth, we can consider the
problem as a two dimensinal one. Obtaining numerical and analytic solution of the problem
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characterized by the parameters in the from of impluses accompanied with instant increase
and further damping is of theretical and practical importance.

In numerical calculations the time changes between the interval 0 ≤ t ≤ 10 sec ∆t =
0, 01 sec was accepted as a calulation step.

Time-dependence graphs were built based on the carried out numerical calculations and
r = 100; 1000; 10000 m from the connection center.

In Fig. 1.1 the upper curve corresponds to the dependence of ut(t) on t (for r = 100 m),
the middle curve corresponds to the dependence of ut(t) on t (for r = 1000 m); the lower
curve corresponds to the dependense of ut(t) on t (for r = 10000 m).

Fig. 1.1. The upper curve corresponds to the dependence ut(t) vs. t (at r = 100 m), the
middle curve corresponds to the dependence ut(t) vs. t (at r = 1000 m); the lower

curve corresponds to the dependence ut(t) vs. t (at r = 10000 m)

We can see from the figure that far away from the connection center, the damping of dis-
placement waves is more noticable.

As can be seen, for r = 100 m and t = 0.05 sec, ut(t) = 0.318656 m/sec, t = 0; in the
seconds 0.01; 0.02; 0.03; 0.04 the function ut(t) vanishes for r = 1000 m the time-delay is
more observed. So, for t = 0.50 sec ut(t) is characterized by the value 0.092911 m/sec For
0 = t = 0.49 sec the function ut(t) vanishes. At the distance r = 10000; m= 10 km for
t = 5.00 sec the function becomes U(t) = 0.029137 m/sec and weak increase close to the
constant value is observed.

It should be noted that the values of the rates of longitudinal and transverse waves used
in calculations, correspond to propagation value of these elastic waves in mountain roks
(granit, bazalt, gabbro and other rocks in open air and with natural moisture).

The calculations were carried out just in these media without changing (Fig. 1.2) the
values of elastic rates. As can be seen from the figure, propagation of displacement waves
delay at various values of the quantity r , as r beconme larger, the value incerases. Unlike
Fig. 1.1, in creasing the radius of the cylindrical connection obtained based on the values
a = 2000 m/sec; b = 1400 m/sec; r0 = 90 m; r = 100 m; 1000 m; 10000 m and represented
in Fig. 1.3 we observe weak increase in the value of displacement rate.
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Fig. 1.2. Diagram of distribution of displacement wave velocities at different r values
It is seen from Fig. 1.4 that for r0 = 10 m the curvature corresponding to the value r = 100
m unlike the curvature corresponding to the value r = 100 m for r0 = 90 m takes its origin
not from the point t = 0 (Fig. 1.3), but from the point where t = 1 sec and each value
of t the value of the displacement rate (Fig. 1.1) is more than the value of the appropriate
curvature in Fig. 3.

Fig. 1.3. Graph of a weak increase in the value of the displacement velocity by
increasing the radius of the cylindrical coupling

Fig. 1.4 represents dependence curvature at various radius of cylindrical connection r0 =
10 m; 50 m; 90 m during displacement. In these three cases in the carried out calculations
the distance from the connection center was accepted as r = 100 m. Propagation rate
of elastic waves are a = 2000 m/sec; b = 1400 m/sec. It is seen from the figure that the
curvatures are close to each other and they intersect in some places. This is characterized
by the propagation of the waves at a close distance in to the same soil.

Fig. 1.4. Graphs of the dependence of the displacement time at different radii r0=10
m; r0=50 m; r0=90 m
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