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Abstract. The article proposes an approach to solving the problem of
synthesizing the control of the motion and power of lumped point-wise
heat sources. For concreteness, the problem of control with nonlinear
feedback by moving heat sources during the heating of the rod is consid-
ered. The power and motion of point sources involved in the right side
of the parabolic type differential equation are determined depending
on the measured values of the state of the process at the measurement
points. As a result, the right side of the differential equation depends
nonlinearly on the values of the state of the process at given points of
the rod. Formulas for the components of the gradient of the functional
with respect to feedback parameters are obtained, which make it possi-
ble to use first-order optimization methods for the numerical solution of
synthesis problems.
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1 Introduction

The article studies the problem of synthesis of control of the heating process of a rod by
lumped point-wise heat sources moving along the rod. The current values of power and
control of the movement of sources are determined by the results of measurements of tem-
perature at given points of the rod. The paper proposes to use a nonlinear dependence of the
control actions of the power and movement of sources on the measured temperature values.
After substituting these dependencies into the differential equation, a loaded differential
equation is obtained, in which the loading points are the state measurement points. The
constant coefficients involved in these dependencies are the desired feedback parameters
that need to be optimized. Thus, the problem of control synthesis for moving heat sources
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with nonlinear feedback is reduced to the problem of parametric optimal control described
by a loaded equation.

It is known that the problems of control of objects with feedback, described by both
ordinary and partial differential equations, are the most difficult both in the theory of optimal
control and for the practice of their application [6,7,8,11,12,13,14,15].

If there are sufficiently general approaches to study control synthesis problems for ob-
jects with lumped parameters [8,11,12,15], then for objects with distributed parameters
[6,7,12,14] there are no such approaches yet. This is due to the complexity, diversity and
mathematical models and options for the corresponding formulations of control problems
for such objects [6,12]. The implementation of currently known methods for controlling
objects with feedback in real time is also very difficult; it requires the use of expensive
telemechanics, measuring and computer technology [7,12,14].

Nevertheless, in practice, as is known, a fairly large number of automatic control sys-
tems, automatic control of both objects with lumped and distributed parameters operate
[3,4,6,7,8,9,12,14,16].

In this paper, the problem of optimizing the feedback parameters is reduced to the prob-
lem of parametric optimal control. To solve it, it is proposed to apply first-order numerical
optimization methods using the obtained formulas for the components of the gradient of the
objective functional with respect to the synthesized feedback parameters being optimized.

The described approach to the synthesis of the control of moving sources can be used to
control other evolutionary processes described by other types of differential equations and
types of initial–boundary conditions.

2 Formulation of the problem

Consider the following problem, which describes the process of heating a rod by moving
point-wise heat sources [7]:

ut(x, t) = a2uxx(x, t)− λ0[u(x, t)− θ] +

Nc∑
i=1

qi (t) δ (x− zi (t)), (2.1)

x ∈ (0, l) , t ∈ (t0, tf ],

ux(0, t) = λ1(u(0, t)− θ), ux(l, t) = −λ2(u(l, t)− θ), t ∈ (t0, tf ], (2.2)

Here u(x, t) is the temperature of the rod at the point x ∈ [0, l] at time t ∈ [t0, tf ]; l is the
rod length; t0 is start and tf is the end time of the heating process; a > 0, λ0, λ1, λ2 are
given parameters of the heating process; δ(·) is the Dirac delta function, qi (t) and zi (t) are
piece-wise continuous functions with respect to t, which determine the power and location
of the ith heat source moving along the rod and satisfies constraints:

qi ≤ qi (t) ≤ qi, t ∈ [t0, tf ], i = 1, 2, . . . , Nc, (2.3)

0 ≤ zi (t) ≤ l, t ∈ [t0, tf ], i = 1, 2, . . . , Nc, (2.4)

where qi, qi, i = 1, 2, . . . , Nc are given; Nc is the number of point-wise heat sources.
θ is the time-constant ambient temperature, the exact value of which is not specified.

But is known the set Θ of possible values of θ and the distribution density function ρΘ(θ)
is such that:

ρΘ(θ) ≥ 0, θ ∈ Θ,

∫
Θ

ρΘ(θ)dθ = 1.
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The temperature of the rod at the initial moment of time is not set, but the set of its pos-
sible values is given, determined by parametric functions depending on the s-dimensional
vector of parameters b:

u(x, t0) = φ(x; b), x ∈ [0, l] , b ∈ B ⊂ Rs. (2.5)

Here B is a given set of values of the parameters of the initial function φ(x; b), while the
distribution density function ρB(b) is known such that:

ρB(b) ≥ 0, b ∈ B,

∫
B

ρB(b)db = 1.

Motions of point-wise heat sources zi (t) are controlled and are determined by the initial-
value problems with second-order ordinary differential equations and initial conditions

z̈i(t) = aiżi(t) + bizi (t) + ϑi(t), t ∈ (t0, tf ], (2.6)

zi(t0) = z0i , żi(t0) = z1i , i = 1, 2, . . . , Nc. (2.7)

Here ai, bi are the given parameters of the movement of sources; z0i and z1i are given initial
values of heat sources; ϑi(t) is a piece-wise continuous function that determines the motion
control of the ith heat source and satisfies the following constraints:

ϑi ≤ ϑi(t) ≤ ϑi, t ∈ [t0, tf ], i = 1, 2, . . . , Nc. (2.8)

ϑi, ϑi, i = 1, 2, . . . , Nc are given.
The problem is to determine the functions that control the process under considera-

tion: q (t) = (q1(t), q2(t), . . . , qNc(t)), ϑ(t) = (ϑ1(t), ϑ2(t), . . . , ϑNc(t)), w = w(t) =
(q(t), ϑ(t)), minimizing the given functional:

J(w) =

∫
B

∫
Θ

I(w; b, θ)ρΘ(θ)ρB(b)dθdb, (2.9)

I(w; b, θ) =

l∫
0

µ(x)[u(x, tf )− U(x)]2dx+ (2.10)

+ε1∥q (t)− q̂∥2
LNc
2 [t0,tf ]

+ ε2∥ϑ (t)− ϑ̂∥2
LNc
2 [t0,tf ]

.

Here U(x), x ∈ [0, l] is a given piece-wise continuous function that determines the desired
final temperature distribution on the rod at the moment t = tf ; µ(x) ≥ 0, x ∈ [0, l] is
the weight function; u(x, t) = u(x, t;w, b, θ) is the solution of the initial–boundary-value
problem (2.1), (2.2), (2.5) with admissible given control w(t), parameters of the initial
condition φ(x; b) and ambient temperature θ.

Let at the given No points of the rod ξj ∈ [0, l], j = 1, 2, . . . , No, temperature measure-
ments are continuously over time is taken:

ǔj(t) = u (ξj , t) , t ∈ [t0, tf ], ξj ∈ [0, l] , j = 1, 2, . . . , No.

The results of these measurements are used to form the current values of the controls
in the form of the following dependencies that are nonlinear with respect to the distance
between point-wise sources and measurement points and linear with respect to the measured
u (ξj , t) and nominal γj1i and γj2i values of the jth measurement point.
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Here the constants αj
1i, β

j
1i, γ

j
1i, α

j
2i, β

j
2i, γ

j
2i, ξj , i = 1, 2, . . . , Nc, j = 1, 2, . . . , No,

are synthesized feedback parameters. The parameter γj1i and γj2i characterizes the required
value of the nominal temperature at the point x = ξj , which must be achieved due to the
ith point-wise source. It is clear that this value should be close to the given desired value
U (ξj), i = 1, 2, . . . , Nc, j = 1, 2, . . . , No. Parameters αj

1i, α
j
2i and βj1i, β

j
2i by analogy

with synthesis problems for objects with lumped parameters will be called gain factors.

qi (t) =

No∑
j=1

(
αj
1i(zi (t)− ξj)

2 + βj1i

) [
u (ξj , t)− γj1i

]
, (2.11)

t ∈ [t0, tf ], i = 1, 2, . . . , Nc,

ϑi(t) =

No∑
j=1

(
αj
2i(zi (t)− ξj)

2 + βj2i

) [
u (ξj , t)− γj2i

]
, (2.12)

t ∈ [t0, tf ], i = 1, 2, . . . , Nc.

The are natural constraints on the locations of measurement points

0 ≤ ξj ≤ l, j = 1, 2, . . . , No. (2.13)

Substituting dependencies (2.11), (2.12) into equations (2.1), (2.6), we obtain:

ut(x, t) = a2uxx(x, t)− λ0[u(x, t)− θ] +

Nc∑
i=1

δ (x− zi (t))× (2.14)

×


No∑
j=1

(
αj
1i(zi (t)− ξj)

2 + βj1i

) [
u (ξj , t)− γj1i

] , x ∈ (0, l) , t ∈ (t0, tf ],

z̈i(t) = aiżi(t) + bizi (t) +

No∑
j=1

(
αj
2i(zi (t)− ξj)

2 + βj2i

) [
u (ξj , t)− γj2i

]
, (2.15)

t ∈ (t0, tf ], i = 1, 2, . . . , Nc.

The specificity of equations (2.14), (2.15) is, firstly, that they are point loaded with
respect to the spatial variable. Second, equations (2.14), (2.15) with respect to the time vari-
able must be solved simultaneously. Note that linearly loaded equations have been studied
in such works as [1,2,5,10].

Combine parameters α1 = ((αj
1i)), β1 = ((βj1i)), γ1 = ((γj1i)), α2 = ((αj

2i)), β2 =

((βj2i)), γ2 = ((γj2i)), ξ = (ξj) into one N = 6No (Nc + 1) dimensional synthesized vector
of feedback parameters y = (α1, β1, γ1, α2, β2, γ2, ξ), i = 1, 2, . . . , Nc, j = 1, 2, . . . , No.

The objective functional in this case can be written as follows:

J(y) =

∫
B

∫
Θ

I(y; b, θ)ρΘ(θ)ρB(b)dθdb, (2.16)

I(y; b, θ) =

l∫
0

µ(x)[u(x, tf )− U(x)]2dx+ ε ∥y − ŷ∥2RN . (2.17)
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Thus, the original considered control problem for moving point-wise sources (2.1)–
(2.10) with feedback (2.11), (2.12) is reduced to a parametric optimal control problem
(2.16), (2.17), (2.14), (2.2), (2.5), (2.15), (2.7) [13,16].

Let us note the following features of the obtained parametric optimal control problem.
First, the process under study is described by a system of loaded differential equations

with partial and ordinary derivatives.
Secondly, the problem is specific because of the objective functional (2.9)–(2.10), which

estimates the behavior of not a single trajectory, but a bunch of phase trajectories with values
of initial conditions and ambient temperature from given sets.

In general, the resulting problem can be described to the class of finite-dimensional
optimization problems with respect to the vector y ∈ RN . In this problem, in order to
calculate the objective functional for admissible values of the feedback parameters, it is
required to solve initial–boundary-value problems with respect to differential equations with
partial and ordinary derivatives.

3 Approach to determining feedback parameters

For the numerical solution of problem (2.1)–(2.10), namely, to finding the local minimum
of the objective functional (2.16), (2.17), it is proposed to use the external penalty method
to take into account constraints on power (2.3) and constraints on the motion controls (2.8)
of the moving point-wise heat sources [16].

The constraints (2.3) for the power and (2.8) for the motion controls of each ith point-
wise heat sources with continuous feedback (2.11) and (2.12) will become the following
constraints for the optimized parameters y and the temperature at the measurement points
u (ξj , t), j = 1, 2, . . . , No:

qi ≤
No∑
j=1

(
αj
1i(zi (t)− ξj)

2 + βj1i

) [
u (ξj , t)− γj1i

]
≤ qi, t ∈ [t0, tf ], i = 1, 2, . . . , Nc,

ϑi ≤
No∑
j=1

(
αj
2i(zi (t)− ξj)

2 + βj2i

) [
u (ξj , t)− γj2i

]
≤ ϑi, t ∈ [t0, tf ], i = 1, 2, . . . , Nc,

which we denote and present in the following equivalent form:

gi1(t; y) = |ǧi1(t; y)| −
qi − qi

2
≤ 0, t ∈ [t0, tf ], i = 1, 2, . . . , Nc, (3.1)

ǧi1(t; y) =

No∑
j=1

(
αj
1i(zi (t)− ξj)

2 + βj1i

) [
u (ξj , t)− γj1i

]
−
qi + qi

2
,

gi2(t; y) = |ǧi2(t; y)| −
ϑi − ϑi

2
≤ 0, t ∈ [t0, tf ], i = 1, 2, . . . , Nc, (3.2)

ǧi2(t; y) =

No∑
j=1

(
αj
2i(zi (t)− ξj)

2 + βj2i

) [
u (ξj , t)− γj2i

]
−
ϑi + ϑi

2
.

Taking into account the above constraints (3.1) and (3.2) we will choose the penalty
functional with respect to functional (2.16), (2.17) in the following form:

JR(y) =

∫
B

∫
Θ

I(y; b, θ)ρΘ(θ)ρB(b)dθdb, (3.3)
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IR(y; b, θ) =

l∫
0

µ(x)[u(x, tf )− U(x)]2dx+ε ∥y − ŷ∥2RN +R1G1 (y)+R2G2 (y) , (3.4)

G1 (y) =

Nc∑
i=1

tf∫
t0

[
gi,+1 (t; y)

]2
dt, G2 (y) =

Nc∑
i=1

tf∫
t0

[
gi,+2 (t; y)

]2
dt,

where R1 and R2 are the penalty coefficient tending to +∞. The functions gi,+j (·) means
that gi,+j (·) = gij(·) if gi,+j (·) > 0, gi,+j (·) > 0 and gi,+j (·) = 0 if gij(·) ≤ 0, j = 1, 2,
i = 1, 2, . . . , Nc.

To minimize the functional (3.3), (3.4), it is proposed to use the iterative procedure of
the gradient projection method [16]:

yk+1 = P(2.13)

[
yk − αk gradyJR(y

k)
]
, (3.5)

αk = arg min
α≥0

JR

(
P(2.13)

[
yk − α gradyJR(y

k)
])
, k = 0, 1, . . . .

Here αk is one-dimensional minimization step, y0 ∈ RN is arbitrary starting vector from the
set of feedback parameters; P(2.13)[·] is the projection operator onto the constraints defined
by (2.13).

In order to implement the procedure (3.5), it is assumed that the formula for the gradient
of the functional (3.3), (3.4) with respect to feedback parameters.

Theorem 3.1 Under the conditions imposed above on the functions and parameters in-
volved in problem (2.14), (2.2), (2.5), (2.15), (2.7), the functional (3.3), (3.4) is differentiable
with respect to the feedback parameters, and the gradient components are determined by
formulas:

∂JR(y)

∂αj
1i

=

∫
B

∫
Θ

{
−

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
(zi (t)− ξj)

2×

×
[
u (ξj , t)− γj1i

]
dt+ 2ε

(
αj
1i − α̂j

1i

)}
ρΘ(θ)ρB(b)dθdb, (3.6)

∂JR(y)

∂βj1i
=

∫
B

∫
Θ

{
−

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
×

×
[
u (ξj , t)− γj1i

]
dt+ 2ε

(
βj1i − β̂j1i

)}
ρΘ(θ)ρB(b)dθdb, (3.7)

∂JR(y)

∂γj1i
=

∫
B

∫
Θ

{ tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
×

×
(
αj
1i(zi (t)− ξj)

2 + βj1i

)
dt+ 2ε

(
γj1i − γ̂j1i

)}
ρΘ(θ)ρB(b)dθdb, (3.8)
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∂JR(y)

∂αj
2i

=

∫
B

∫
Θ

{
−

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
(zi (t)− ξj)

2×

×
[
u (ξj , t)− γj2i

]
dt+ 2ε

(
αj
2i − α̂j

2i

)
)

}
ρΘ(θ)ρB(b)dθdb, (3.9)

∂JR(y)

∂βj2i
=

∫
B

∫
Θ

{
−

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
×

×
[
u (ξj , t)− γj2i

]
dt+ 2ε

(
βj2i − β̂j2i

)}
ρΘ(θ)ρB(b)dθdb, (3.10)

∂JR(y)

∂γj2i
=

∫
B

∫
Θ

{ tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
×

×
(
αj
2i(zi (t)− ξj)

2 + βj2i

)
dt+ 2ε

(
γj2i − γ̂j2i

)}
ρΘ(θ)ρB(b)dθdb, (3.11)

∂JR(y)

∂ξj
=

∫
B

∫
Θ

{
−

Nc∑
i=1

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
× (3.12)

×
(
αj
1i(zi (t)− ξj)

2 + βj1i

)
ux (ξj , t) dt−

−
Nc∑
i=1

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)(
αj
2i(zi (t)− ξj)

2 + βj2i

)
ux (ξj , t) dt+

+

Nc∑
i=1

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
2αj

1i(zi (t)− ξj)
[
u (ξj , t)− γj1i

]
dt+

+

Nc∑
i=1

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
2αj

2i(zi (t)− ξj)
[
u (ξj , t)− γj2i

]
dt+

+2ε
(
ξj − ξ̂j

)}
ρΘ(θ)ρB(b)dθdb,

i = 1, 2, . . . , Nc, j = 1, 2, . . . , No. The functions ψ(x, t) and φi(t), i = 1, 2, . . . , Nc, are
solutions to the following conjugate problems:

ψt(x, t) = −a2ψxx(x, t) + λ0ψ(x, t)−
No∑
j=1

δ (x− ξj)× (3.13)
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×

{
Nc∑
i=1

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)(
αj
1i(zi (t)− ξj)

2 + βj1i

)}
−

−
No∑
j=1

δ (x− ξj)

{
Nc∑
i=1

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)(
αj
2i(zi (t)− ξj)

2 + βj2i

)}
,

x ∈ (0, l) , t ∈ [t0, tf ),

ψ(x, tf ) = −2µ(x) (u(x, tf )− U(x)) , x ∈ [0, l] , (3.14)

ψx(0, t) = λ1ψ(0, t), ψx(l, t) = −λ2ψ(l, t), t ∈ [t0, tf ), (3.15)

φ̈i(t) = −aiφ̇i(t) + biφi(t)+ (3.16)

+
(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

){ No∑
j=1

2αj
1i(zi (t)− ξj)

[
u (ξj , t)− γj1i

]}
+

+
(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

){ No∑
j=1

2αj
2i(zi (t)− ξj)

[
u (ξj , t)− γj2i

]}
+

+ψx (zi (t) , t)

{
No∑
j=1

(
αj
1i(zi (t)− ξj)

2 + βj1i

) [
u (ξj , t)− γj1i

]}
,

t ∈ [t0, tf ), i = 1, 2, . . . , Nc,

φ̇i(tf ) = −aiφi(tf ), φi(tf ) = 0, i = 1, 2, . . . , Nc. (3.17)

Proof. To prove the differentiable of the functional JR(y) with respect to y, we use the
increment method.

Under conditions imposed on the parameters involved in the problem, the formula takes
place:

gradyJR(y) = grady

∫
B

∫
Θ

IR(y; b, θ)ρΘ(θ)ρB(b)dθdb = (3.18)

=

∫
B

∫
Θ

gradyIR(y; b, θ)ρΘ(θ)ρB(b)dθdb.

Therefore, we define formulas for gradyIR(y; b, θ) for arbitrary admissible values b ∈ B
and θ ∈ Θ.

Denote the third term on the right side (2.14).

V (t; y) =

Nc∑
i=1

δ (x− zi (t))


No∑
j=1

(
αj
1i(zi (t)− ξj)

2 + βj1i

) [
u (ξj , t)− γj1i

] ,

x ∈ (0, l) , t ∈ (t0, tf ],

Denote by u(x, t) = u(x, t; y, b, θ), z(t) = z(t; y, b, θ) the solutions of the initial–
boundary-value problem (2.14), (2.2), (2.5) and initial-value problems (2.15), (2.7) for the
given values of the parameters b and θ. Suppose that the parameters y have been incremented
∆y: ỹ = y +∆y, then the solutions of the problems (2.14), (2.2), (2.5) and (2.15), (2.7):

ũ (x, t; ỹ, b, θ) = u(x, t; y, b, θ) +∆u(x, t; y, b, θ),
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z̃ (t; ỹ, b, θ) = z(t; y, b, θ) +∆z(t; y, b, θ).

It is clear that∆u(x, t; y, b, θ) and∆z(t; y, b, θ) satisfies the conditions of initial–boundary-
value and the initial-value problems:

∆ut(x, t) = a2∆uxx(x, t)− λ0∆u(x, t) +∆V (t; y), x ∈ (0, l) , t ∈ (t0, tf ], (3.19)

∆u(x, 0) = 0, x ∈ [0, l] , (3.20)
∆ux(0, t) = λ1∆u(0, t), t ∈ (t0, tf ], (3.21)
∆ux(l, t) = −λ2∆u(l, t), t ∈ (t0, tf ].

∆z̈i(t) = ai∆żi(t) + bi∆zi (t) +∆ϑi(t), t ∈ (t0, tf ], (3.22)
∆zi(t0) = 0, ∆żi(t0) = 0, i = 1, 2, . . . , Nc. (3.23)

Will receive an increment of the functional (2.17)

∆I(y; b, θ) = I(y +∆y; b, θ)− I(y; b, θ) = (3.24)

= 2

l∫
0

µ(x) (u(x, tf )− U(x))∆u(x, tf )dx+ 2ε ⟨y − ŷ, ∆y⟩+

+o
(
∥∆u(x, t)∥L2[Ω], ∥∆y∥RN

)
, Ω = [0, l]× [t0, tf ].

Let us shift the right-hand sides of the differential equations (3.19) and (3.22) to the left,
multiply both parts of the obtained equalities by the so far arbitrary functions ψ(x, t) and
φi(t), i = 1, 2, . . . , Nc, respectively, integrate over x ∈ [0, l] and t ∈ [t0, tf ] and adding
with (3.24):

∆I(y; b, θ) = 2

l∫
0

µ(x) (u(x, tf )− U(x))∆u(x, tf )dx+ 2ε ⟨y − ŷ, ∆y⟩+

+

tf∫
t0

l∫
0

ψ(x, t)
(
∆ut(x, t)− a2∆uxx(x, t) + λ0∆u(x, t)−∆V (t; y)

)
dxdt+

+

Nc∑
i=1

tf∫
t0

φi(t) (∆z̈i(t)− ai∆żi(t)− bi∆zi (t)−∆ϑi(t)) dt+

+o
(
∥∆u(x, t)∥L2[Ω], ∥∆z (t) ∥LNc

2 [t0,tf ]
, ∥∆y∥RN

)
.

Consider an increment of the penalty terms of functional:

∆G1(y) = G1(y +∆y)−G1(y) = 2R1

Nc∑
i=1

No∑
j=1

tf∫
t0

sgn
(
ǧi1(t; y)

)
gi,+1 (t; y)× (3.25)

×
{(

∆αj
1i(zi (t)− ξj)

2 +∆βj1i

) [
u (ξj , t)− γj1i

]
−∆γj1i

(
αj
1i(zi (t)− ξj)

2 + βj1i

)
+

+∆ξj

((
αj
1i(zi (t)− ξj)

2 + βj1i

)
ux (ξj , t)− 2αj

1i(zi (t)− ξj)
) [
u (ξj , t)− γj1i

]
+

+
(
αj
1i(zi (t)− ξj)

2 + βj1i

)
∆u (ξj , t) + 2αj

1i(zi (t)− ξj)
[
u (ξj , t)− γj1i

]
∆zi (t)

}
+

+o
(
∥∆u (ξj , t) ∥L2[Ω], ∥∆z (t) ∥LNc

2 [t0,tf ]
, ∥∆y∥RN

)
,
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∆G2(y) = G2(y +∆y)−G2(y) = 2R2

Nc∑
i=1

No∑
j=1

tf∫
t0

sgn
(
ǧi2(t; y)

)
gi,+2 (t; y)× (3.26)

×
{(

∆αj
2i(zi (t)− ξj)

2 +∆βj2i

) [
u (ξj , t)− γj2i

]
−∆γj2i

(
αj
2i(zi (t)− ξj)

2 + βj2i

)
+

+∆ξj

((
αj
2i(zi (t)− ξj)

2 + βj2i

)
ux (ξj , t)− 2αj

2i(zi (t)− ξj)
) [
u (ξj , t)− γj2i

]
+

+
(
αj
2i(zi (t)− ξj)

2 + βj2i

)
∆u (ξj , t) + 2αj

2i(zi (t)− ξj)
[
u (ξj , t)− γj2i

]
∆zi (t)

}
+

+o
(
∥∆u (ξj , t) ∥L2[Ω], ∥∆z (t) ∥LNc

2 [t0,tf ]
, ∥∆y∥RN

)
.

Having carried out the appropriate transformations and grouping, taking into account
(3.19)–(3.23), and adding increment of penalty functions (3.25), (3.26), we will have

∆IR(y; b, θ) = 2

l∫
0

µ(x) (u(x, tf )− U(x))∆u(x, tf )dx+

l∫
0

ψ(x, tf )∆u(x, tf )dx+

+

tf∫
t0

l∫
0

(
−ψt(x, t)− a2ψxx(x, t) + λ0ψ(x, t)

)
∆u(x, t)dxdt−

−a2
tf∫

t0

(ψx(l, t) + λ2ψ(l, t))∆u(l, t)dt− a2

tf∫
t0

(ψx(0, t)− λ1ψ(0, t))∆u(0, t)dt−

−
No∑
j=1

Nc∑
i=1

{ tf∫
t0

((
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)(
αj
1i(zi (t)− ξj)

2 + βj1i

)
+

+
(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)(
αj
2i(zi (t)− ξj)

2 + βj2i

))
∆u (ξj , t) dt

}
+

+

Nc∑
i=1

No∑
j=1

∆αj
1i

{
−

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
(zi (t)− ξj)

2×

×
[
u (ξj , t)− γj1i

]
dt+ 2ε

(
αj
1i − α̂j

1i

)}
+

+

Nc∑
i=1

No∑
j=1

∆βj1i

{
−

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
×

×
[
u (ξj , t)− γj1i

]
dt+ 2ε

(
βj1i − β̂j1i

)}
+
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+

Nc∑
i=1

No∑
j=1

∆γj1i

{ tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
×

×
(
αj
1i(zi (t)− ξj)

2 + βj1i

)
dt+ 2ε

(
γj1i − γ̂j1i

)}
+

+

Nc∑
i=1

No∑
j=1

∆αj
2i

{
−

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
(zi (t)− ξj)

2×

×
[
u (ξj , t)− γj2i

]
dt+ 2ε

(
αj
2i − α̂j

2i

)}
+

+

Nc∑
i=1

No∑
j=1

∆βj2i

{
−

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
×

×
[
u (ξj , t)− γj2i

]
dt+ 2ε

(
βj2i − β̂j2i

)}
+

+

Nc∑
i=1

No∑
j=1

∆γj2i

{ tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
×

×
(
αj
2i(zi (t)− ξj)

2 + βj2i

)
dt+ 2ε

(
γj2i − γ̂j2i

)}
+

+

No∑
j=1

∆ξj

{
−

Nc∑
i=1

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
×

×
(
αj
1i(zi (t)− ξj)

2 + βj1i

)
ux (ξj , t) dt−

−
Nc∑
i=1

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
×

×
(
αj
2i(zi (t)− ξj)

2 + βj2i

)
ux (ξj , t) dt+

+

Nc∑
i=1

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
×

×2αj
1i(zi (t)− ξj)

[
u (ξj , t)− γj1i

]
dt+
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+

Nc∑
i=1

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
×

×2αj
2i(zi (t)− ξj)

[
u (ξj , t)− γj2i

]
dt+ 2ε

(
ξj − ξ̂j

)}
−

−
Nc∑
i=1

(φ̇i(tf ) + aiφi(tf ))∆zi(tf ) +

Nc∑
i=1

φi(tf )∆żi(tf )+

+

Nc∑
i=1

{ tf∫
t0

(
φ̈i(t) + aiφ̇i(t)− biφi(t)−

−
(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

){ No∑
j=1

2αj
1i(zi (t)− ξj)

[
u (ξj , t)− γj1i

]}
−

−
(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

){ No∑
j=1

2αj
2i(zi (t)− ξj)

[
u (ξj , t)− γj2i

]}
−

−ψx (zi (t) , t)

{
No∑
j=1

(
αj
1i(zi (t)− ξj)

2 + βj1i

) [
u (ξj , t)− γj1i

]})
∆zi (t) dt

}
+

+o
(
∥∆u(x, t)∥L2[Ω], ∥∆z (t) ∥LNc

2 [t0,tf ]
, ∥∆y∥RN

)
.

Using the well-known results on the solution of the initial–boundary-value problem (2.14),
(2.2), (2.5), and the initial-value problem (2.15), (2.7), one can obtain estimates ∥∆u(x, t)∥ ≤
k1∥∆y∥, ∥∆z(t)∥ ≤ k2∥∆y∥. From there it follows that the functional of the problem is
differentiable.

Considering that the functions ψ(x, t) and φi(t), i = 1, 2, . . . , Nc are arbitrary, we
require the conditions (3.13)–(3.17) to be satisfied.

Then it is clear that the components of the gradient of the functional IR(y; b, θ) are
defined by the formulas:

∂I(y; b, θ)

∂αj
1i

= −

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
(zi (t)− ξj)

2×

×
[
u (ξj , t)− γj1i

]
dt+ 2ε

(
αj
1i − α̂j

1i

)
, (3.27)

∂I(y; b, θ)

∂βj1i
= −

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

) [
u (ξj , t)− γj1i

]
dt+

+2ε
(
βj1i − β̂j1i

)
, (3.28)
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∂I(y; b, θ)

∂γj1i
=

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
×

×
(
αj
1i(zi (t)− ξj)

2 + βj1i

)
dt+ 2ε

(
γj1i − γ̂j1i

)
, (3.29)

∂I(y; b, θ)

∂αj
2i

= −

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
(zi (t)− ξj)

2×

×
[
u (ξj , t)− γj2i

]
dt+ 2ε

(
αj
2i − α̂j

2i

)
, (3.30)

∂I(y; b, θ)

∂βj2i
= −

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

) [
u (ξj , t)− γj2i

]
dt+

+2ε
(
βj2i − β̂j2i

)
, (3.31)

∂I(y; b, θ)

∂γj2i
=

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
×

×
(
αj
2i(zi (t)− ξj)

2 + βj2i

)
dt+ 2ε

(
γj2i − γ̂j2i

)
, (3.32)

∂I(y; b, θ)

∂ξj
= −

Nc∑
i=1

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
× (3.33)

×
(
αj
1i(zi (t)− ξj)

2 + βj1i

)
ux (ξj , t) dt−

−
Nc∑
i=1

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)(
αj
2i(zi (t)− ξj)

2 + βj2i

)
ux (ξj , t) dt+

+

Nc∑
i=1

tf∫
t0

(
ψ (zi (t) , t)− 2R1sgn

(
ǧi1(t; y)

)
gi,+1 (t; y)

)
2αj

1i(zi (t)− ξj)
[
u (ξj , t)− γj1i

]
dt+

+

Nc∑
i=1

tf∫
t0

(
φi(t)− 2R2sgn

(
ǧi2(t; y)

)
gi,+2 (t; y)

)
2αj

2i(zi (t)− ξj)
[
u (ξj , t)− γj2i

]
dt+

+2ε
(
ξj − ξ̂j

)
.

Taking into account the formula (3.18) from (3.27)–(3.33), we obtain the desired formu-
las (3.6)–(3.12).
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4 Numerical experiments

Numerical experiments were carried out on the example of test problem, in which the pa-
rameters and functions involved in problem were as follows:

a2 = 1, λ0 = 0.01, λ1 = λ2 = 0.001, l = 1, t0 = 0, tf = 1,

µ(x) ≡ 1, U(x) = 30, x ∈ [0; 1], ε = 0.1, Nc = 2, No = 4,

a1 = 0.184, b1 = 0.259, a2 = −0.174, b2 = −0.254, ξj ∈ [0.05; 0.95], j = 1, 2, . . . , 4,

B = [4.8; 5.2], ρB(b) = 2.5 (1 + cos (5(x− 5)π)) ,

Θ = [4.75; 5.25], ρΘ(θ) = 2 (1 + cos(4(x− 5)π)) ,

0 ≤ q1(t) ≤ 80, 0 ≤ q2(t) ≤ 65, t ∈ [0; 1],

−3.5 ≤ ϑ1(t) ≤ 3.5, −3.5 ≤ ϑ2(t) ≤ 3.5, t ∈ [0; 1].

The direct initial–boundary-value (2.14), (2.2), (2.5) and conjugate boundary-value (3.13),
(3.14), (3.15) problems of parabolic type were solved using an implicit scheme by the grid
method with steps in the spatial variable hx = 0.01 and in the time variable ht = 0.001. To
solve direct (2.15), (2.7) and conjugate (3.16), (3.17) initial-value problems, Euler method
was used with a step ht = 0.001 [1,2].

The δ (·) – Dirac delta function was approximated as the following trigonometric every-
where smooth (differentiable) function:

δσ(x; η) =

{
0, |x− η| > σ,
1
2σ

[
1 + cos

(x−η
σ π

)]
, |x− η| ≤ σ.

In this case, for arbitrary value of σ > 0 satisfies equality:

η+σ∫
η−σ

δσ(x; η)dx = 1.

In test experiments the value of parameter σ of function δσ(x; η) was set equal to 3hx
where hx is the step of the grid approximation of the segment x ∈ [0; 1]. Such a choice
of the form of the Dirac δ-function ensures a certain smoothness of the functional JR(y)
with respect to the optimized measuring points location ξ and coordinates of point-wise
heat sources z (t).

Let us give a general description of the algorithm for solving the test problem of synthe-
sis of the parameter vector y, which dimension in this case is equal to N = No(6Nc+1) =
52. With the chosen penalty coefficients R1, R2 and regularization parameters ε, ŷ to imple-
ment the procedure (3.5), at each iteration of which, for the current values of the parameters
yk, k = 0, 1, 2, . . . to be optimized, for all possible values θ ∈ Θ and b ∈ B the following
steps are performed:

1 the direct initial–boundary-value problem (2.14), (2.2), (2.5) and initial-value problems
(2.15), (2.7), are solved;

2 the conjugate problems (3.13), (3.14), (3.15) and (3.16), (3.17) are solved;
3 components of gradient of the penalty function (3.6)–(3.12) are calculated;
4 into the direction of the projected on the positional constraints (2.13) anti-gradient of

the functional, one-dimensional minimization is carried out with respect to α ≥ 0:
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For finding anti-gradient direction step α at each iteration of procedure (3.5), the golden
section method was used [16].

These steps are repeated until any stop criterion is met. For example, step α or the
difference of the values of the functional (3.3) at two successive iterations is less than a
given small value. Further, according to known approaches, using the resulting parameter
values y∗ we change the regularization parameters ε, ŷ; in particular, we decrease (divide
by ten) ε, and take as ŷ the resulting optimal value of the vector y∗ and repeat procedure
until a stopping criterion is met. The penalty coefficients R1, R2 are increased until the
optimized values of the parameters y obtained for two consecutive values of the penalty
coefficient change by an amount that exceeds the specified required accuracy for solving
the entire problem.

Tables 4.1 and 4.2 shows the results of calculations in which two values y01 and y02 were
used as the initial vectors for the iterative procedure (3.5) for gradient projection method of
the penalty function (3.3), (3.4) . Values of matrices α1, β1, γ1 and α2, β2, γ2 and ξ are given
in the following order: (α1

11, . . . , α
1
1Nc

, . . . , αNo
11 , . . . , α

No
1Nc

, β111, . . . , β
1
1Nc

, . . . , βNo
11 , . . . ,

βNo
1Nc

, γ111, . . . , γ
1
1Nc

, . . . , γNo
11 , . . . , γ

No
1Nc

, α1
21, . . . , α

1
2Nc

, . . . , αNo
21 , . . . , α

No
2Nc

, β121, . . . ,

β12Nc
, . . . , βNo

21 , . . . , β
No
2Nc

, γ121, . . . , γ
1
2Nc

, . . . , γNo
21 , . . . , γ

No
2Nc

, ξ1, . . . , ξNo).
It can be seen that, as mentioned above, due to the possible multi-extremity of the ob-

jective functional, the optimization results obtained from different starting vectors differ in
arguments, although the difference is not significant in terms of the functional. Here it is
also necessary to take into account (as other specially conducted numerical experiments
have shown) that the functional of the problem has a strong ravine structure.

Fig. 4.1 and 4.2 shows the plots of point-wise heat sources trajectories, power respec-
tively to initial vector y01 and for the synthesized optimal vector y∗1 .

Fig. 4.1. Plots of point-wise sources motion trajectories
for initial y01 ( - - - ) and synthesized optimal vector y∗1

(——).

Fig. 4.2. Plots of point-wise sources powers for initial
vector y01 ( - - - ) and synthesized optimal vector y∗1

(——).

Computer experiments were carried out to measurement the heating process at optimal
values of the synthesized feedback parameters under the assumption that the measurements
are carried out with errors (noise), namely:

ũj(t) = [1 + χj(t)]u (ξj , t) , t ∈ [t0, tf ], ξj ∈ [0, l] , j = 1, 2, . . . , No.

Here χj(t), j = 1, 2, . . . , No for each t is a random variable uniformly distributed on the
segment [−ζ, ζ]. In the experiments performed, the values of ζ were chosen as 0.01; 0.03;
0.05, which corresponded to measurement errors of 1%, 3% and 5% of the measured values.

In table 4.3 shows the results obtained when solving the synthesis of feedback parame-
ters in the presence of an error in the measurements. As can be seen from the comparison
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Table 4.1 Solutions of the test problem obtained for initial vector y01 using of procedure (3.5) for the gradient projection
method for the functional (3.3), (3.4).

N JR(y)y1 = (α1, β1, γ1, α2, β2, γ2, ξ)

0

0.03518 0.08541 0.05315 -0.05637 -0.26985 -0.11157 -0.02281 0.00650

5.1499

-0.51182 -0.57293 -0.78061 -0.78465 -0.76613 -0.80055 -0.65828 -0.72692
26.0254 26.8899 29.4461 28.5202 27.6437 28.5494 26.8635 27.7104

-0.00213 -0.00000 0.00149 0.00597 0.00657 0.00115 -0.00069 0.00204
0.00709 0.00808 0.00212 0.00609 0.01766 0.01536 0.00657 0.01996
25.7799 24.9359 29.9999 26.6238 28.3120 27.4680 28.3120 29.1560
0.09434 0.36489 0.71126 0.93199

1

-0.10490 -0.11134 -0.15685 -0.19407 -0.13427 -0.11269 -0.11378 -0.13051

1.7586

-0.31767 -0.31766 -0.31767 -0.31766 -0.30976 -0.30976 -0.33353 -0.33352
30.00569 30.00578 30.00655 30.00736 30.00521 30.00493 31.00528 31.00551
-0.06743 -0.07591 -0.06949 -0.05782 0.07246 0.07681 0.06550 0.05190
0.02491 0.02492 0.02491 0.02492 -0.01623 -0.01624 0.07246 -0.01623

29.99877 29.99926 29.99889 29.99869 29.99913 29.99867 29.99905 29.99904
0.27089 0.46873 0.80772 0.95000

2

0.03316 0.08698 0.03728 -0.07231 -0.27267 -0.11134 -0.02100 0.00637

0.3562

-0.49054 -0.56866 -0.82530 -0.80955 -0.77727 -0.83669 -0.65307 -0.74264
28.9121 29.2129 30.0812 29.7261 29.4246 29.7656 29.2025 29.4876

-0.00210 0.00044 0.00387 0.01123 -0.00187 -0.00176 -0.00076 0.00161
0.01771 0.01851 0.01368 0.01690 -0.00049 -0.00231 -0.00187 0.00133
28.6458 28.3750 30.0000 28.9165 29.4584 29.1876 29.4584 29.7293
0.18274 0.41080 0.64419 0.87122

3

-0.14555 -0.09502 -0.16813 -0.19548 -0.12544 -0.12519 -0.07036 -0.11151

0.0039

-0.58800 -0.58662 -0.58700 -0.58536 -0.54044 -0.53960 -0.51331 -0.51185
30.07640 30.07446 30.07699 30.07872 29.95758 29.95985 30.97161 30.97209
-0.05245 -0.05857 -0.05058 -0.04315 0.05762 0.05883 0.04821 0.04085
0.01976 0.02043 0.02025 0.02097 -0.01008 -0.01097 0.05762 -0.00954

29.91602 29.98079 29.91922 29.89254 29.96091 29.88954 29.95553 29.96324
0.49206 0.41197 0.83733 0.82616

4

-0.21977 -0.04087 -0.05581 -0.02319 -0.0666 -0.13475 0.03527 -0.03495

0.0001

-0.77779 -0.77377 -0.77466 -0.76968 -0.71843 -0.71603 -0.4673 -0.46295
30.17152 30.16512 30.16483 30.16413 29.81274 29.82145 30.84935 30.84929
-0.02234 -0.02227 -0.01885 -0.01962 0.02276 0.02255 0.0183 0.02342
-0.02931 -0.02722 -0.02786 -0.02584 0.02643 0.02339 0.02276 0.02800
29.75672 29.94563 29.76523 29.68732 29.88733 29.67877 29.87166 29.89432

0.82655 0.24571 0.65390 0.485480

of the obtained values of the feedback parameters, approximately they differ in proportion
to the errors of the measurements.

5 Conclusions

An approach to feedback control of the motion and power of lumped point-wise heat sources
in systems with distributed parameters is proposed. The problem of control of moving
point-wise sources used for heating the rod is considered. Power and motion controls on
the movement of point-wise sources are determined in the form of proposed dependencies
on the results of measurements. The differentiability of the functional with respect to the
feedback parameters is shown, formulas for the gradient of the functional with respect to
the synthesized parameters are obtained. The formulas make it possible to solve the prob-
lem of point-wise source control synthesis using efficient first-order numerical optimization
methods and available standard software packages.
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Table 4.2 Intermediate iterations of gradient projection method of the functional (3.3), (3.4) for procedure (3.5) for
initial vector y02 .

N JR(y)y2 = (α1, β1, γ1, α2, β2, γ2, ξ)

0

-0.11768 -0.00264 -0.04027 -0.01600 -0.00502 -0.08881 -0.01202 -0.04145

2.6475

-0.25363 -0.25363 -0.25363 -0.25363 -0.35932 -0.35933 -0.39109 -0.39109
28.48576 27.94587 28.12459 29.12458 28.98575 29.02154 28.89745 28.88752

0.00259 -0.00002 0.00121 0.00029 -0.00008 -0.00138 -0.00017 -0.00059
0.00939 0.00939 0.00939 0.00939 -0.00565 -0.00565 -0.00008 -0.00565

28.87549 28.32548 29.12589 29.10258 28.45782 29.12898 28.98547 29.91257
0.88887 0.25326 0.55078 0.41375

1

-0.23781 -0.00575 -0.06449 -0.02774 -0.01321 -0.13047 -0.02436 -0.06894

1.5728

-0.45807 -0.45681 -0.45689 -0.45682 -0.55728 -0.55734 -0.64390 -0.64391
28.98574 28.96324 29.84572 30.05701 29.03132 28.93307 29.03513 29.03548

0.00146 -0.00034 0.00007 -0.00054 0.00023 -0.00012 0.00020 0.00012
0.01346 0.01346 0.01346 0.01346 0.00068 0.00068 0.00023 0.00068

29.27872 29.19297 28.95689 29.95876 28.932568 28.93268 29.92698 29.32587
0.95000 0.29361 0.45185 0.38077

2

-0.18353 -0.00408 -0.05577 -0.02300 -0.00906 -0.11677 -0.01889 -0.05866

0.1139

-0.37173 -0.37163 -0.37164 -0.37163 -0.48362 -0.48366 -0.55264 -0.55264
29.92060 29.91582 29.91624 29.81589 29.92294 29.32415 29.42534 28.92557

0.00087 -0.00024 0.00019 -0.00041 -0.00003 -0.00103 -0.00008 -0.00040
0.01157 0.01157 0.01157 0.01157 -0.00414 -0.00414 -0.00003 -0.00414

29.92872 29.91273 29.79368 29.73697 29.93268 29.24789 29.23268 29.12593
0.94415 0.27610 0.50028 0.39812

3

-0.23144 -0.00547 -0.06351 -0.02714 -0.01317 -0.12994 -0.02425 -0.06899

0.0025

-0.44875 -0.44789 -0.44796 -0.44791 -0.55487 -0.55496 -0.65599 -0.65601
30.06281 30.04656 30.04761 30.04679 30.03938 30.04122 30.04451 30.04490

0.00114 -0.00032 0.00005 -0.00054 0.00025 -0.00003 0.00024 0.00018
0.01303 0.01303 0.01303 0.01303 0.00111 0.00111 0.00025 0.00111

29.93268 29.91245 29.93698 29.97581 29.96598 29.98754 29.99568 29.99584
0.95000 0.29154 0.45284 0.37971

4

-0.34519 -0.01498 -0.08148 -0.04085 -0.04823 -0.15460 -0.04299 -0.09072

0.0001

-0.60453 -0.60331 -0.60336 -0.60331 -0.90687 -0.90697 -0.56974 -0.56966
30.11458 30.08816 30.08919 30.08834 29.73687 29.74135 30.79480 30.79543

0.01156 0.00218 0.00282 0.00208 -0.00016 -0.00071 -0.00036 -0.00047
0.00582 0.00925 0.00933 0.00930 -0.00709 -0.00769 -0.00016 -0.00768

30.00022 30.00017 30.00017 30.00017 29.99992 29.99992 29.99991 29.99992
0.94973 0.44209 0.45865 0.44977

Note that the proposed approach to synthesis leads to the problem of parametric optimal
control of a process described by loaded differential equations with ordinary and partial
derivatives.

The proposed approach to the control of point-wise sources with feedback can be used
in systems for automatic control and regulation of lumped sources for many other techno-
logical processes and technical objects.
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