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Abstract. The pulsating motion of an incompressible viscous fluid in a
deformable tube is investigated. The problem is solved analytically by
taking the contraction in the pipe.
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1 Introduction

Let R = R(x) be a tube of semi-infinite variable cross-section and thickness h, and x
is the longitudinal coordinate. System of one-dimensional hydroelasticity equations from
continuity equations [1 - 5]:

∂

∂x
(Su) + L

∂w

∂t
= 0 (1.1)

momentum equation

ρ
∂u

∂t
=

∂

∂x
(−p+ σ) (1.2)

and consists of the tube’s equation of motion for linear viscoelasticity

p =
n

R2(x)
Eνw = ρ∗h

∂2w

∂t2
(1.3)

When writing equation (1.3), the tube is thin-walled and rigidly attached to the environ-
ment. As a result, the tube cannot move along the axis. Classical descriptions of the hy-
drodynamics of an ideal and viscous Newtonian fluid are unacceptable when describing the
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flow of a medium with long macromolecular assemblies. This fact is of primary importance
for many technological processes, such as colloidal solutions, suspensions, emulsions, etc.
This includes for this, in order to relate the above equations, we write down the rheological
relations of the fluid and assume it to be linear viscoelastic:

r
Π
j=1

(
1 + λj

∂

∂t

)
· σ = 2η

s
Π
j=1

(
1 + θj

∂

∂t

)
· e (1.4)

In equations (1.1) - (1.4) u(x, t)-the flow rate of the liquid, w(x, t)- the radial displacement
of the pipe walls, p(x, t) is the hydrodynamic pressure, σ(x, t) - stress, ρband ρ∗- the density
of the liquid and the material of the pipe, e(x, t)- the rate of deformation, S = πR2- the
cross-sectional area, L = 2πR(x)- the length of the pipe circumference, η- the dynamic
viscosity coefficient of the liquid, λj and θjcharacterize relaxation and retardation. In (1.3)
Eν- is an operator of inherited type.

Eν = E (1− Γ ∗) , Γ ∗w(x, t) =

∫ l

−∞
Γ (t− τ)w(x, τ)dτ,

where E - the modulus of elasticity, Γ ∗- the relaxation operator, Γ (t − τ)- the difference
kernel of the relaxation. (1.3) is written in the open form as follows:

p =
h

R2(x)
E

{
w(x, t)−

∫ l

−∞
Γ (t− τ)w(x, τ)dτ

}
(1.5)

If we consider the equality e = ∂u/∂x in (1.4):

r
Π
j=1

(
1 + λj

∂

∂t

)
· σ = 2η

s
Π
j=1

(
1 + θj

∂

∂t

)
· ∂u
∂x

(1.6)

Written R(x) as the function R(x) = R∞g(x), the function g(x) is second order differ-
entiable. At infinity, the tube has R∞ constant cross-section.

From here we find that
lim
x→∞

g(x) = 1 (1.7)

At the same time
lim
x→∞

g′(x) = 0, lim
x→∞

g′′(x) = 0, (1.8)

Bars denote differentiation with respect to the x coordinate. For example, this function
can be shown as follows:

g(x) = 1 + e−βx (β > 0), (1.9)

which shows that the tube tapers into a conical shape along its length. Then, considering
(1.5) and (1.6), we get the following system of closed equations:

∂u

∂t
+ 2

g′(x)

g(x)
u+

2

R∞g(x)

∂w

∂t
= 0 (1.10)

ρ
∂u

∂t
= −∂p

∂x
+
∂σ

∂x
(1.11)

p =
h

R2
∞g

′(x)
E

(
w(x, t)−

∫ l

−∞
Γ (t− τ)w(x, τ)dτ

)
(1.12)

r
Π
j=1

(
σ + λj

∂σ

∂t

)
= 2η

s
Π
j=1

(
∂u

∂x
+ θj

∂2u

∂x∂t

)
(1.13)
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All the above-mentioned search functions can be described proportionally exp(iωt)to
the time product, where given ω− is the real angular frequency, i- is an imaginary number.
Therefore, for the class of returning waves, we write:

u = u1(x) exp(iωt),
w = w1(x) exp(iωt),
p = p1(x) exp(iωt),
σ = σ1(x) exp(iωt).

(1.14)

Here u1, w1, p1, σ1- are complex functions of coordinates. First, let’s write the equation
(1.12). If we consider formulas (1.2) and (1.3) in (1.4) and (1.12), we get the following
expression:

p1 = exp(iωt)− h

R2
∞g(x)

E

{
w1 exp(iωt)− w1

∫ l

−∞
Γ (t− τ)eiωtdτ

}
(1.15)

Accepting here t− τ = θand after some changes, (1.5) can be written as follows:

p1 = w1h

{
E

R2
∞g

2(x)
(1− α)− ρ∗ω

2

}
here,

α =

∫ ∞

0
Γ (θ)e−iωθdθ (1.16)

Based on the possible relaxation kernels, the complex value α determined by the formula
can be determined analytically or algebraically. After changes in equations (1.10), (1.11)
and (1.13) as above, we find that:

u′1 + 2
g′(x)

g(x)
u1 + 2i

ω

R∞g(x)
w1 = 0, (1.17)

iωρu1 = −p′1 + σ′′1 , (1.18)

p1 = k(x)w1, (1.19)

σ1 = 2η
b

a
u′1, (1.20)

and here

a =
r
Π
j=1

(1 + iλjω), b =
s
Π
j=1

(1 + iθjω), k(x) = h

{
E

R2
∞g

2(x)
(1− α)− ρ∗ω

2

}
(1.21)

Then

2η
b

a
u′′1 − k′w1 − kw′

1 − iωρu1 = 0. (1.22)

From (1.7) it can be seen that

w1 = − 1

Q2(x)
u′1 −

Q1(x)

Q2(x)
u1. (1.23)

Q1(x) = 2
g′(x)

g(x)
, Q2(x) = 2i

ω

R∞g(x)
.
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Now we can find w′
1 from (1.23) and by writing it in (1.22) we can get an equation for the

function u1.
G1(x)u

′′
1 +G2(x)u

′
1 +G3(x)u1 = 0, (1.24)

here,

G1(x) = 2η
b

a
− i

R∞
2ω

k(x)g(x), (1.25)

G2(x) = − iR∞
2ω

{
(gk)′ + kg′

}
, (1.26)

G3(x) = −i
{
R∞
2ω

(kg′) + ωρ

}
. (1.27)

Let’s bring the solution of the problem to the solution of the singular boundary problem for
the Sturm-Louisville equation. Let’s use the Louisville substitute for this

y(x) = u1 exp
1

2

∫
G2(x)

G1(x)
dx ≡ u1(x)χ(x), (1.28)

Then (1.24) will be written like this

y′′ + I(x)y = 0 (1.29)

The invariant I(x) is found by this formula:

I(x) =
G3

G1
− 1

4

(
G2

G1

)2

− 1

2

(
G2

G1

)′

(1.30)

Based on (1.7) and (1.8), we get the following equation

lim
x→∞

k(x) = h

{
E

R2
∞
(1− α)− ρ∗ω

2

}
.

It is clear from here,

lim
x→∞

G1(x) = 2η
b

a
− i

R∞h

2ω

{
E

R2
∞
(1− α)− ρ∗ω

2

}
,

lim
x→∞

G2(x) = 0, lim
x→∞

G3(x) = −iωρ.

Then, we can write that

lim
x→∞

I(x) = − iωρ

2η b
a − iR∞h

2ω

{
E
R2

∞
(1− α)− ρ∗ω2

} = δ2 (1.31)

Dividing the dispersion equation (1.31) into real and imaginary parts, we get the follow-
ing:

δ2 = µ0 − iµ1. (1.32)

Here
µ0 =

ωρm3

4η2m2
1 +m2

3

,

µ1 = 2η
ωρm1

4η2m2
1 +m2

3

,
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m1 = Re
b

a
,

m2 = Jm
b

a
,

m3 = −2ηm2 +
R∞h

2ω

{
E

R2
∞
(1− α)− ρ∗ω

2

}
.

From here, we find the square root of complex numbers δ

δ = ±

{√
ψ + µ0

2
− i

√
ψ − µ0

2

}
, ψ =

√
µ20 + µ21

Later, the root Jmδ < 0 will be used. It is obvious that,

δ = δ0 − iδ1.

δ0 =

√
ψ + µ0

2
, δ1 =

√
ψ − µ0

2
.

Taking into account that

q(x) = 1− I(x)

δ2
(1.33)

From (1.29) we get the differential equation of the problem:

y′′ + δ2y = δ2q(x)y. (1.34)

The integration condition is applied to the complex potential function q(x) [2]:∫ ∞

0
|q(x)| dx < +∞. (1.35)

The function q(x) obtained according to the formula (1.33) together with (1.9) satisfies
the condition (1.33).

Then let us add the following boundary conditions to equation (1.32) to construct the
solution.

y(0) = y0,

lim
x→∞

y(x) = 0. (1.36)

Condition (1.36) shows the boundedness of the sought condition. Thus, the obtained
hydroelasticity problem (1.34), (1.36) was brought to the solution of the Sturm-Louisville
singular boundary problem.

Let us bring the solution of the Sturm-Louisville boundary value problem to the solution
of the integral equation. Consider the homogeneous equation

y′′ + δ2y = 0 (1.37)

has the following system of fundamental solutions

y1 = e−iδx,

y2 = eiδx.
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(1.37) is treated as an inhomogeneous equation whose right-hand side is known as δ2q(x)y,
using the variational method, (1.34), (1.36), we bring the solution to the equivalent integral
equation.

y(x,−δ) = Ce−iδx + δ

∫ ∞

x
sin δ(η − x)q(η)y(η,−δ)dη, (1.38)

yn+1(x,−δ) = Ce−iδx + δ

∫ ∞

x
sin δ(η − x)q(η)yn(η,−δ)dη

To find the number C-, it is necessary to choose it in such a way that it satisfies the boundary
conditions (1.34). Therefore, let’s write the following integral equation for equation (1.38):

f(x,−δ) = e−iδx + δ

∫ ∞

x
sin δ(η − x)q(η)y(τ,−δ)dη (1.39)

We denote f(x,−δ) as its solution and then find C:

C =
y0

f(0,−δ)
(1.40)

Function

y(x,−δ) = y0
f(x,−δ)
f(0,−δ)

(1.34), (1.37) is the solution of the Sturm-Louisville boundary value problem.
Based on the method of successive approximations, the solution of equation (1.39) is

written as follows:

f(x,−δ) =
∞∑
n=0

δnfn(x,−δ), (1.41)

Here,
f0(x,−δ) = e−iδx (1.42)

fn(x,−δ) =
∫ ∞

x
sin δ(η − x)q(η)fn−1(η,−δ)dη (n = 1, 2, . . . )

Using the formulas (1.17) and (1.20) we find from the current coordinates the functions
u,w, p, σ. Let’s take into account that,

F (x) =
1

χ(x)

f(x,−δ)
f(0,−δ)

Then,
u = y0F (x) exp(iωt) (1.43)

w = y0
iR∞
ω

{
1

2
g(x)F ′(x) + g′(x)F (x)

}
exp(iωt) (1.44)

p = y0k(x)
iR∞
ω

{
1

2
g(x)F ′(x) + g′(x)F (x)

}
exp(iωt) (1.45)

σ = 2y0η
b

a
F ′(x) exp(iωt). (1.46)

Let’s set the pulsating pressure to record the fluid velocity, displacement, pressure and
viscoelastic stress as the boundary condition in the pipe cross-section.

p(0, t) = p0 exp(iωt), (1.47)
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p0- is a given empirical unit. If we compare (1.47) and (1.45),

y0 = p0
ω

iR∞k(0)
{
1
2g(0)F

′(0) + g′(0)F (0)
} ,

and from formulas (1.43) - (1.46) we get:

u(x, t) = −p0
iω

R∞k(0)

F (x)
1
2g(0)F

′(0) + g′(0)F (0)
exp(iωt),

w(x, t) =
p0
k(0)

1
2g(x)F

′(x) + g′(x)F (x)
1
2g(0)F

′(0) + g′(0)F (0)
exp(iωt), (1.48)

p(x, t) = p0
k(x)

k(0)

1
2g(x)F

′(x) + g′(x)F (x)
1
2g(0)F

′(0) + g′(0)F (0)
exp(iωt),

σ(x, t) = −2ip0η
b

a

ω

R∞k(0)

F ′(x)
1
2g(0)F

′(0) + g′(0)F (0)
exp(iωt).

Similarly, pulsating liquid consumption was given as a boundary condition in the cross
section of the pipe:

Q = Q0 exp(iωt),

Here
Q(x, t) = S(x)u(x, t)

then,

y0 =
Q0

πR2
∞g(0)

1

F (0)
From here

u(x, t) =
Q0

πR2
∞g(0)

F (x)

F (0)
exp(iωt),

w(x, t) =
iQ0

πR∞ωg2(0)F (0)

{
1

2
g(x)F ′(x) + g′(x)F (x)

}
exp(iωt) (1.49)

p(x, t) = iQ0
k(x)

πR∞ωg2(0)F (0)

{
1

2
g(x)F ′(x) + g′(x)F (x)

}
exp(iωt),

σ(x, t) = 2Q0
η

πR2
∞g

2(0)

b

a

F (x)

F (0)
exp(iωt).

Formulas (1.48) and (1.49) describe the real parts, and our example is considered solved.
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