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Abstract. In this paper we study regularity of solutions of degenerate
parabolic nonlinear obstacle problems. We prove optimal regularity re-
sults for obstacle problems involving nonlinear parabolic operators.
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1 Introduction

Let we to the study in cylindrical domains Q = Ω × (0, T ),where Ω ⊂ Rn, n ≥ 2 is a
bounded Lipschitz domain, T > 0, of regularity of solutions of obstacle problems involving
degenerate nonlinear parabolic operators Lu of the type

−Lu = ut − div −
(
ω(x) |Du|p−2Du

)
(1.1)

Let Γ (QT ) =
(
Ω × {0} ∪ (∂Ω × [0, T ])

)
the parabolic boundary ofQT ·ω(x)-Mackenxoupt

weight function (see [1]). Let h : QT → R continuous boundary datum and ψ : QT → R a
continuous obstacle, such that h ≥ ψ on Γ (QT ). We consider the problem{

max {Lu, ψ − u} = 0 in QT
u = h on Γ (QT ).

(1.2)

We are interested in the optima regularity of the solution u conditioned on the regularity
of h and ψ.

The goal of the paper is to prove that solutions to (2) have the same degree of regu-
larity as the data ψ and we emphasize that a key point of this paper is that we assume no
differentiability of the obstacle ψ with respect to time.
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Also this problem have many applying in mexanics.
In the case of linear and uniformly parabolic equations we refer to [4]. Optimal regularity

of the solution to the initial boundary problem for the heat equation was first proved in [6,7]
and the technique is based on the Harnack inequality for harmonic functions. This is the
basic idea of DiBenedetto’s intrinsic geometry and for this reason the cylinders considered
are referred to as intrinsic cylinders. One is led to consider cylinders of the type

B(x, r)×
(
t− λ2−prp, t+ λ2−prp

)
or B(x, r)×

(
t− λ2−pr2, t+ λ2−pr2

)
,

where λ > 0 is a parameter related to the size of the solution on the cylinder. Here B(x, r)
is the standard Euclidean ball inRn, centered at x and with radius r > 0. Note that whenRn
both of the above cylinders reduce to the standard parabolic cylinders used in the context of
the heat equation. Later we show in more detail describe the way intrinsic geometries are
used to obtain regularity results.

Let Cαω(x)(QT ) weighted space, where norm following:

‖f‖Cα
ω(x)

(QT )
= sup

z1,z2∈QT

|f(z1)ω(x1)− f(z2)ω(x2)|
‖z1 − z2‖α

<∞

where the parabolic metric is defined as

‖(x1, t1)− (x2, t2)‖α = max
{
|x1 − x2| , |t1 − t2|

1
|p−α(p−2)|

}
, α ∈ (0, 1] .

The metric is depending on the degree of regularity considered. When p = 2, these
spaces coincide with the spaces of functions which are Holder continuous of order α with
respect to the standard parabolic metric.

Generalization of this result to the nonlinear setting of operators of p-Laplace type first
came with the work of [4], while more recent work under assumptions of Lipschitz and
Holder continuity of the solution can be found in [3], [4]. Similarly results the fundamental
work of [10], under assumption Holder continuity of the solution can be found in [5-10].

The paper organized as follows. We will give in section 1 some information about pre-
vious results and some definitions. In section 2 we to the study of regularity of solution to
initial boundary problem for degenerate parabolic nonlinear obstacle problems. In section
3 a removability theorem for weak solution are proved. Also we define a Hausdorff mea-
sures, see, for instance, [10]. In sense Hausdorff measures we give a removability theorem
for weak solutions. Out results is the optimal parabolic analog of a series of results known
in the elliptic case and we recall that Carleson [9] was the first to prove that a sufficient
condition for a set E ⊂ Rn to be removable with respect to a Lipchitz harmonic function.

2 Main results

We are now ready to state our result which concerns regularity for solutions to the problem
(12). This is optimal interior regularity in the obstacle problem assuming that the obstacle
is in the space Cαω(x)(QT ).

Theorem 2.1 (interior regularity). Let’s consider problem (1.1), (1.2) and u(x, t) solve this
problem. Also ψ ∈ Cαω(x)(QT ). Let Q′T ⊂ QT be a bounded space-time cylinder such that
Q′T ∩ Γ (QT ) = �. Then u ∈ Cαω(x)(Q

′
T ) and

‖u(x, t)‖Cα
ω(x)

(Q′T )
≤ C

(
n, p, ω(x), Q′T , QT , osch

QT
, |ψ|Cα

ω(x)
(QT )

)
. (2.1)



50 Regularity of solutions of degenerate parabolic ...

Theorem 2.1 concerns optimal interior regularity. We also establish optimal regularity up
to the initial state. In particular, in this case we prove Cαω(x) estimates on Q′T = Ω′× (0, T )

for every Ω′ ⊂ Ω. We doing remark that in this case Q′T is not a compact subset of QT .
Therefore main result is the following.

Theorem 2.2 (Initial time regularity). Let’s consider problem (1.1), (1.2), u(x, t) solve
problem (1.2) and h(x) ∈ Cαω(x) (Ω) , ψ ∈ Cαω(x) (QT ). LetΩ′ ⊂ Ω andQ′T = Ω′×(0, T ).
Then u ∈ Cαω(x)(Q

′
T ) and

‖u(x, t)‖Cα
ω(x)

(Q′T )
≤ C

(
n, p, ω(x), QT , Q

′
T , osch

QT
, |ψ|Cα

ω(x)
(QT )

)
. (2.2)

Corollary 2.1. Let u(x, t) be a solution to (1.2) with Dψ, h ∈ L∞(QT ). Then Du ∈
L∞loc(QT ).

The obstacle problem in Sobolev spaces we refer to [3] for details. Optimal regularity of
the solution to the obstacle problem for the Laplas equation was first proved in [3,4]. The
parabolic obstacle problems have been treated in [2-4], see also [5-8].

Theorem 2.3 (removable singularities). LetQT ⊂ Rn+1 be a cylindrical domain,E ⊂ QT
be a closed set. Assume that u(x, t) is a weak solution to Lu = 0 in QT \E and that
u ∈ Cαω(x),loc(QT ). Also let Hω(x)(E) = 0. Then the set E is removable, i.e. u(x, t) can be
extended to be a weak solution in QT .

We note Hω(x)(E)-Hausdorff measures (se, [36]). Let L be as in (1.1). We say that a
function u(x, t) is a weak supersolution (subsolution) to (1.1) in an open set K ⊂ Rn+1 if,
whenever K ′ = U × (t1, t2) ∈ K with U ⊂ Rn and t1 < t2, then u ∈ LP

(
t1, t2;W

′
p(U)

)
and

S
K′

(
ω(x) |Du|p−2Du− uϕt

)
dxdt ≥ (≤) 0 (2.3)

for all nonnegative ϕ ∈ C∞0 (K ′). A weak solution is a distributional solution satisfying
(2.3) with equality and without sign restrictions for the test functions.

We now give the definition of solutions to the obstacle problem. In the following we
assume that the obstacle ψ and boundary value function h are continuous on QT and that
h ≥ ψ on the parabolic boundary of QT = Ω × (0, T ).

A function u(x, t) is a solution (1.2) if it satisfies the following properties:
1. u is continuous on QT , u ≥ ψ in QT and u = h on Γ (QT ),
2. u is a weak supersolution in QT ,
3. u is a weak solution in QT ∩ {u > ψ}.
4. As for the property 3 we recall that u(x, t) is a weak solution inQT ∩{u > ψ} means

that u is a standard distributional solution in the sense (2.3).

Proof of Theorem 2.1. Let u be the unique solution to (1.2). By the uniqueness u = u in
Ω × [0, T ] and hence u is an extension of u. Let R = max

{
1, diam Ω, T 1/2

}
. As clearly

T ≤ (ψ(R))2−pRp ≤ R2,

whenever R ≥ 1. By maximum principle implies that

oscu
QT
≤ osch

QT
≤ C

(
Ω, T, osch

Γ (QT )

)
. (2.4)

We may assume that Q′T,τ = Ω′× (τ, T ), where Ω′ ⊂ Ω and τ > 0. Let R be a number
subject to restrictions

R ≤ dist
(
Ω′, ∂Ω

)
, τ ≥ Rpmax

{
osch
QT

, SR

}2−p
.
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As so ψ(1) = 1, we see that these conditions are satisfied if we take

R = min

{
dist

(
Ω′, ∂Ω

)
,max

{
τ1/pc

(
Ω, osch

Γ (QT )
, T

) p−2
2

, τ
1
p , S

p−2
R

}}
.

Taking corresponding λ it follows that Qλψ(R)
R (z) ⊂ QT , whenever z ∈ Q′T,τ .

Now we prove that the following holds whenever z0 ∈ Q′T,τ

oscu
Q
λψ(R)
T,r ∩QT

≤ oscu
QT

=

oscu
QT

ψ(r)
ψ(r) ≤

oscu
QT

ψ(R/2)
ψ(r) ≤ 2λψ(r).

This completes the proof of Theorem 2.1.
Proof of Theorem 2.2. We extend u(x, t) and choose R = dist (Ω′, ∂Ω). We define

λ =

= max
{
c/ψ(R), |h|Cα

ω(x)
, SR
ψ(R)

}
, where c = c

(
Ω, T, osch

QT

)
. Let Z = Ω

′ × {0}. Then

osch
Q
λψ(r)
τ (z)∩Q′T

≤ 2λψ(r) for every r ∈ (0, R), whenever z ∈ Z. We consider z1 ∈ F =

Q
′
T ∩ {t > 0} and define

r = r(z1)± sup
{
r ≤ R;Qλψ(r)r (z1) ∩ Z = � /∈

}
If r > R/2, then

oscu
Q

2λψ(r)
r (z1)

≤ 2λψ(r) for every z ∈ (0, R).

In the final

λ = max {ϕλψ(r), sr/ψ(r)} ≤ ϕmax {λ, SR/ψ(R)} = cλ

implies that

oscu
Q
cλψ(r)
r (z1)

≤ cλψ(r) for every z ∈ [0, r],

whenever z1 ∈
{
Q′T ∩

(
Ω
′ × {0}

)}
.

This completes the proof of Theorem 2.2.
Proof of Theorem 2.3. Let u(x, t) weakly solution of problem (1.1), (1.2) in QT \E

and assume that u(x, t) ∈ Cαω(x),loc(QT ) and Hω(x)(E) = 0. By the assumption u ∈
Cαω(x),loc(QT ). There exist M > 0 such that

oscu
Q
ψ(r)
r ∩QT

(x, t) ≤Mψ(r).

Later we doing some calculations get of proof theorem.
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