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Abstract. In this paper nondivergence second order degenerated lin-
ear elliptic equations are considered. The weight function from the
classes of Mackenhaupt. An infinite domain which have conic points
at boundary the behavior of solutions problem of Dirichlet are studied.
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1 Introduction

Let Ω ⊂ Rn, n = 2 be an infinite domain with the boundary ∂Ω have conic points. We are
considering the following Dirichlet problem

n∑
i,j=1

aij(x)uxixj +
n∑

i=1

bi(x)uxi + c(x)u(x) = 0 (1.1)

u|∂Ω = 0. (1.2)

We suppose for x ∈ Ω, aij(x) coefficients for x ∈ Ω, ξ ∈ Rn coefficients aij(x) - is a
real symmetric matrix and satisfying following conditions: aij(x) = aij(x), i, j = 1, n
and condition is fulfilled

c
n∑

i=1

ω(x)ξ2 ≤
n∑

i=1

aij(x)ξiξj ≤ c−1
n∑

i=1

ω(x)ξ2i , (1.3)
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where, c ∈ (0, 1] is a constant and ω(x) ∈ Ap - weight function from classes of Macken-
haupt, 1 < p < ∞. The conditions for coefficients bi(x), i = 1, n and c(x) we give later.
Before we suppose this coefficient are bounded, and c(x) ≤ 0.

Uniformly elliptic equations of second order in non-divergent form are investigated in
papers [1], [4]. Elliptic equations in divergent form are studied in [5]. In [2], solutions
to elliptic equations in unbounded domains are analyzed, and certain estimates for these
solutions are obtained. Krylov and Safonov, in their works [3], [6], study solutions of such
problems using probabilistic methods.

In this paper we degenerated non-divergence elliptic equations in infinity domains are
investigated.

Let’s the coefficients bi(x) i = 1, n satisfies condition (where b(x) = (bi(x), ..., bn(x))

(b(x), x− x0) = 0 (1.4)

for all x ∈ Ω, x0 ̸= 0 and situated outside of domain. We introduce some ellipsoid

Ex0
R (p) =

{
x :

n∑
i=1

(xi − xi0)
2

Rαω(x)
< pR2

}
, (1.5)

where R > 0, p > 0, α ∈ (−2, 0]. Later we take R ≥ 1.
The operator corresponding to equation (1.1) we define the operator L and also is con-

sider narrow operator L
′
= L ∗ c(x). Now we give some auxiliary results

Lemma 1. Let z ∈ ∂E0
R(α) ∩Ω, x0(z) ∈ ∂Ez

R(α) ∩ ∂E0
R(β), where β > α. Then x0

situated is outside of Ω.
Let satisfy the following conditions

(bR(x), x− x0) ≤ 0,
−C0 ≤ C(x) ≤ 0

where bR(x) = Rα (b1(x) , ... , bn(x)), C0 - is a positive constant.
We define

G
(R)
S (x) =

(
n∑

i=1

(xi − xi0)

Rαω(x)

)−S/2

.

Lemma 2. Let satisfy conditions (1.3), (1.5).
Then x0 ∈

⋃
Ω∩∂E0

R(β)

x0 (z) for there exists such S that for any

L
′
G

(R)
S (x) = 0.

Proof.

L
′
GR

S (x) = Sρ−(S+2)

(
(S + 2)C

ρ2

n∑
i=1

ω(x)

Ra

(xi − xi0)
2

Ra
− C−1ω(x)

Ra

)
,

where S =

(
n∑

i=1
R−2ω−1(x) (xi − xi0)

2

)1/2

.

Consequently
L

′
GR

S (x) ≥ Sρ−(S+2)
[
(S + 2)C − nC−1

]
.

Lemma is proved.
If we take

z ∈ Ω ∩ ∂E0
R(β);x0 = x0(r), x ∈ Ω ∩ E0

R(2β)
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g
(R)
S (x) = βRSG

(R)
S (x),

then

g
(R)
S (x) ≤ 1.

Let Ω
′
= Ω ∩ E0

R(β).
Theorem 1. Let z ∈ Ω ∩ ∂E0

R(β), and u(x) the positive solution of equation (1.1) –
(1.2) in Ω′,

And conditions (1.3) – (1.5) are fulfilled. Then there exists a constant µ > 0 such that

sup
Ω′

ω(x)u ≥ (1 + µ) supω
Ω′∩E0

R(β)

(x)u. (1.6)

Proof. Let sup
Ω′

u2 = M . We introduce function U(x) = M

[
1− g

(R)
S (x) + sup

Ω′
g
(R)
S (x)

]
.

We easy can show L′u2(x) ≥ 0. Also L′(V (x)− u2(x)) ≤ 0 in Ω′,
(
U(x)− u2(x)

)
≥ 0.

By maximum principle at ∂Ω′\∂Ω

V (x) ≥ u2(x) in Ω′

and

sup
Ω′

u2 ≤ M

[
1−

(
inf
Ω′

g
R(x)
S − sup

Ω′
g
R(x)
S

)]
.

Let x ∈ Ω̄′ ∩ ∂E0
R(β). Then sup

Ω′
g
(R)
S ≤ ξ−SβS .

Therefore we get

sup
Ω′

u2 ≤ M
[
1− βS

]
.

Lemma is proved from this inequality.
Theorem 2. Let in Ω coefficients of the operator L satisfying the conditions (1.3) – (1.5).
Then, solution of problem u(x) either equal to zero in Ω, or lim

r→∞
r−2M(r) > 0, where

M(r) = sup
Ω∆∂E0

R(β)

(ω(x)u(x)), α > 0.

Proof. We note, that α depends only of parameters of problem. From Theorem 1 we
have

sup
Ω∩E0

R(β)

ω(x)u ≥ (1 + η) sup
Ω∩E0

R(β)

ω(x)u.

With some calculations for M(r) we have

M(r) ≥ (1 + η) sup
Ω∩E0

R(β−m0 )

(ω(x)u(x)) ≥ (1 + η)m−m0 u(x)ω(x),

for sufficient big r.
Then we get

r−αM(r) ≥ c.

From applying the maximum principle, we obtain that require.
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