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Abstract. This work focuses on the thermohydrodynamic processes oc-
curring during fluid flow within a well which are intrinsically linked
to similar processes in the surrounding reservoir caused by filtration
and the temperature field of the surrounding rocks. This phenomenon
must be carefully considered when determining optimal well operation
modes.
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1 Introduction

Recently, interest in quantitative interpretation of temperature measurements in a well has
increased. The work [1] is devoted to studying the patterns of spatio-temporal distribution
of the temperature field in a formation based on numerical modeling of single-phase fluid
filtration in a porous medium, taking into account convective and conductive heat transfer,
barothermal effect, and heat exchange with impermeable rocks surrounding the formation.
A numerical model has been developed and studied, discretization has been carried out
by the control volume method, and the alternating direction method has been used. The
correctness of the numerical solution was verified by comparison with known analytical
solutions, as well as by comparison with the results of modeling in a specialized software
package. Using numerical modeling of non-isothermal movement of gasified oil in a well
with a multi-layer system, taking into account the Joule-Thomson effect, the adiabatic ef-
fect and the heat of degassing, the temperature distribution in the well and the layer is
investigated in [2]. It is shown that the temperature distribution can be used to estimate the
position of the boundary of the oil degassing region in the wellbore. The paper [3] studies
the distribution of temperature and pressure in a formation with a positive and negative skin
factor. This problem is of practical interest, since the assessment of the state of the bottom-
hole formation zone is an integral factor in conducting geological and technical measures
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on wells. A comparative analysis of the dynamics of temperature and pressure in a homo-
geneous formation, with contamination of the bottomhole formation zone and a zone of
increased permeability is carried out. A multiporosity extension of classical double- and
triple-porosity flow models for slightly compressible fluids in fractured rock is presented in
[4]. This multiporosity model adapts the multirate solute transport framework developed by
Haggerty and Gorelick (1995) to describe viscous fluid flow in fractured reservoirs. It gener-
alizes both pseudo–steady-state and transient interporosity flow models by incorporating a
fracture continuum and an overlapping set of multiple matrix continua. The fracture–matrix
exchange coefficients are characterized by a discrete probability mass function, allowing
for greater flexibility in representing heterogeneity. Semianalytical, cylindrically symmetric
solutions to the multiporosity model are developed using the Laplace transform to demon-
strate the system’s flow behavior. Thermobaric conditions leading to retrograde phenomena
in reservoir mixtures of gas condensate and oil fields often correspond to pressures and
temperatures observed in the practice of their development. This causes the precipitation of
liquid components in gas-saturated formations, changes in the composition of the extracted
product, as well as well productivity [5]. In [6] the problem of non-stationary temperature
field in two-dimensional fluid filtration in a layered formation is investigated taking into ac-
count the barothermal effect, radial and vertical heterogeneity in permeability. The results of
comparison of analytical and numerical solutions for the temperature of fluid flowing from
the formation for two different models of formation heterogeneity are presented. It follows
from the obtained results that to calculate non-stationary temperature in a layered formation
with radial heterogeneity in the near-wellbore zone it is necessary to use a two-dimensional
filtration model for correct consideration of fluid flows between layers. The formation of a
viscous slug (or thickener) in the reservoir as a result of a chemical reaction between two se-
quentially injected reagents can be described using a two-phase, five-component flow model
[7]. This study presents a comprehensive mathematical model comprising two main blocks:
a hydrodynamic block, represented by governing flow equations, and a physicochemical
block, which includes equations describing chemical reactions between the injected agents,
as well as mass transfer of reactants and thickener. The proposed model enables the opti-
mization of both the composition and the injection volume of the blocking agent for each
specific well, facilitating more effective water shut-off and improved reservoir management.

2 Mathematical problem statement

A mathematical model of single-phase fluid movement in a formation and a well under
conditions of heat transfer with rocks is assumed. A radial three-layer reservoir is consid-
ered, with a centrally located well that functions simultaneously as both an injection and
production well. The upper layer is gas-saturated, the lower layer is oil-saturated, and an
impermeable interlayer separates them. Hot water is injected into the gas-saturated forma-
tion through the annulus. Oil is extracted from the underlying formation through lift pipes.
It is assumed that gas is uniformly withdrawn along the outer boundary of the reservoir.
Real thermophysical properties of fluids are taken into account. The following assumptions
are made in order to simplify the model: the vertical heat conduction in the well due to
thermal conductivity and the heat generated due to dissipation of mechanical energy are
small compared to convective ones; the temperature and pressure of fluids across the well
cross-section do not change; vertical heat conduction within the tubing is negligible rela-
tive to radial conduction; the rock matrix is homogeneous and isotropic; the thermophysical
properties of the layers and surrounding rocks are assumed identical.

A mathematical model of single-phase fluid flow in a formation and a well under condi-
tions of heat transfer with rocks is assumed. In each element of the formation volume, the
average temperature of the particles constituting the solid skeleton coincides with the aver-
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age temperature of the fluids filling the pore space; heat transfer is taken into account due to
thermal conductivity in formations and pipe walls (horizontal direction), rocks (vertical and
horizontal), impermeable interlayer (vertical); gas displacement by water is piston; all ther-
mohydrodynamic processes are considered quasi-stationary. It is assumed that the thermal
field of wells extracting gas does not affect the temperature fields of rocks and productive
formations.

3 Formulation of a problem

Fluid flow in the considered system is described by differential equations of continuity,
momentum, energy and heat conduction. The governing system of equations is formulated
as follows:
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The system of equations (3.1) – (3.15) is closed using the Peng-Robinson equation of state
[8].

The origin of coordinates corresponds to the well bottom. Subscripts “1”, “2”, “3” re
used throughout the model to denote oil, water, and gas, respectively; T , P , G, ρ, υ, i, µ -
temperature, pressure, mass flow, density, velocity, enthalpy, viscosity of fluids; g - gravita-
tional acceleration; β - well inclination angle from the horizontal; d 1, d 2, d 3, F 1 - internal
and external diameter of the lift pipe, internal diameter of the casing, cross-sectional area
of the lift pipe; d e = d 3 − d 2 - equivalent diameter; F 2 = π

4

(
d 2
3 − d 2

2

)
- cross-sectional

area of the annulus; dQ 1 = 2π a 1 (T 2 − T 1) d z - heat transfer through the wall of the
production tubing;a 1 - interfacial convective heat transfer coefficient from the annular fluid
to the fluid within the production tubing; dQ 2 = dQ 1+dQ′

1 - heat transfer from the annu-
lar fluid to both the fluid inside the production tubing and the surrounding rock formation;
dQ′

1 = b gf
d T gf

d r d z - heat flow from the annular fluid to the surrounding rock forma-
tion; b gf - thermal conductivity of the rock formation (thermal conductivity coefficient of
geological formations); d 5 - outer diameter of the cement sheath; K 1, K 2 - permeability
coefficients of rocks of oil-saturated and gas-saturated formations; C p - isobaric heat capac-
ity of fluids; H 1, H 2, h - thicknesses of productive formations and impermeable interlayer;
ε - Joule-Thomson coefficient; λ - hydraulic resistance coefficient.

The boundary conditions for equations (3.1) - (3.15) are formulated as follows:

T 1 = T 1 bw, P 1 = P 1 bw, υ 1 = υ 1 bw when z = 0; (3.16)

T 2 = T 2wh, P 2 = P 2wh, υ 2 = υ 2wh when z = 0 (3.17)

∂ T tube

∂ r
=

2β i 1

d 1
(T 1 − T tube) when r =

d 1

2
(3.18)

∂ T gf

∂ r
=

2β i 3

d 1
(T gf − T 2) when r =

d 3

2
(3.19)

T gf = T pr − Γ z when r → ∞; (3.20)

T gf = T 2, when r ≤ d 6

2
, z = H 1 +H 2 + h (3.21)

T gf = T 3, when r ≤ d 6

2
, z = H 1 +H 2 + h (3.22)

T 1 = T pr, P 1 = P pr, when r = R c; (3.23)

dP 1

d r
=

G 1 µ 1

2πK 1 ρ 1H 1
, when r =

d 5

2
(3.24)

P 2 = P 2, 3, when r =
d 6

2
(3.25)

T 2 = T 3, when r =
d 6

2
(3.26)

T 2 = T 2 bw, when r =
d 5

2
(3.27)

dP 2

d r
=

G 2 µ 2

2πK 2 ρ 2H 2
, when r =

d 5

2
(3.28)



18 Hydrodynamic behavior of fluids in the “porous reservoir–well” system ...
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T 1 bw, P 1 bw, υ 1 bw - temperature, pressure, and flow velocity of the fluid within the lift
pipe at the bottom of the well, T 2wh, P 2wh, υ 2wh - temperature, pressure and fluid velocity
in the annulus at the wellhead; T in, T pr - temperatures of the impermeable interlayer and
the productive formation; Tnl - temperature of the thermally neutral layer; Γ - geometric
gradient; H - well depth; T tube, T gf , b tube - temperature of the pipe wall, temperature of the
surrounding rock formation, thermal conductivity coefficient of the pipe material; α 1, α 2

- convective heat transfer coefficients of the fluids in the production tubing and the annular
space.

The system of differential equations (3.1) – (3.15) is simplified as follows. By integrating
equations (3.1), (3.2), we obtain:
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As a result, differential equations (3.1) and (3.2) are eliminated, and equations (3.3) -
(3.6) assume the following form:
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In equations (3.10) – (3.12), the following substitution is applied:
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Equation (3.14) is solved analytically, and the results of the solution are used to determine
heat flows:
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It is assumed that K 1 = const, K 2 = const, ρ 2 = const. Taking into account the above
transformations, equations (3.7) – (3.12) can be expressed as follows:
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Thermophysical properties of hydrocarbon substances and their derivatives are determined
according to [8], and for water – according to [9].
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The gas-water interface under conditions of constant well flow rates (G 2 = const,
G 3 = const) is calculated as follows:

d 6 =

√
16G 2 t

mπ ρ 2H 2
+ d 2

5 (3.53)

where t - duration of water injection into the reservoir; m - porosity coefficient.
In order to determine the pressure P 2, 3 on the aquifer contour, we assume that it is

assumed to vary over time according to the laws of the gas regime [10].

P 2, 3 =

(
P pr αΩ0

z pr
− P atmQ ex (t)

T pr

T st

)
z (P bw (t))

αΩ 0 −Qwater (t)
(3.54)

Where α - gas saturation coefficient; z pr- compressibility factor of gas at reservoir condi-
tions; P atm - atmospheric pressure; T st - standard temperature; Qwater (t) - the volume of
water injected into the reservoir over time t; Q ex (t) - volume of gas produced over time t;
Ω 0 initial gas-filled volume of the reservoir.

Under conditions of constant hot water injection and gas production rates, Q ex (t) and
Qwater (t) are determined as follows:

Q ex (t) =
G 3 t

ρ 3
(3.55)

Qwater (t) =
G 2 t

ρ 2
(3.56)

The initial gas-saturated volume of the formation is calculated using the formula:

Ω 0 = 2πm R cH 2 (3.57)

4 Conclusions

The solution of the differential equations written above cannot be obtained by analytical
methods due to the complexity and heterogeneity of the system. Therefore, a combination of
numerical methods — including predictor-corrector techniques, time stepping, and iterative
procedures — is used. The following algorithm for solving the problem is proposed:

1. The temperature distribution of the injected water in the well and formation T 2 is
specified, as well as the temperature distribution of the gas T 3 within the formation

2. Equation (3.47) with boundary conditions (3.23) and (3.24) is solved using the Runge-
Kutta method. The oil temperature is considered equal to the initial formation temperature.

3. Taking into account the obtained distribution P 1, equation (3.50) with boundary con-
dition (3.23) is solved by the the predictor–corrector method. The temperature distribution
T 1 is determined.

4. Steps 2 and 3 are repeated until the consecutive values of distributions P 1 andT 1converge
within the specified accuracy.

5. Similarly (taking T 1 into account), the pressure distributions P 2, P 3 and temperature
distributions T 2, T 3 in the overlying gas-saturated formation are determined.

Equation (3.48) with boundary conditions (3.25) and (3.28) is solved by the sweep
method. Equation (3.51) with boundary conditions (3.27) – by the predictor–corrector method.
The iteration procedure is terminated upon reaching the specified accuracy. Then equation
(3.49) with boundary conditions (3.25) and (3.29) is solved by the sweep method. Equation
(3.52) with boundary condition (3.25) – by the predictor–corrector method. The iteration
procedure is also terminated upon reaching the specified accuracy.
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6. Steps 2–5 are repeated until the previous and subsequent values P 1,P 2, P 3, T 1, T 2,
T 3 converge with the specified accuracy.

7. The distribution of temperature and pressure of fluids in the well is determined by
solving equations (3.38), (3.39) subjected to boundary conditions (3.16), (3.17) using the
predictor–corrector method.

8. The obtained values of water temperature T 2 in the well and formation were used to
solve the equation of heat conduction in the surrounding rocks. The calculated temperature
field in the environment allows to specify the values of heat flows dQ j

d z (j = 1, 2) and dQ j

d r
(j = 3, 6)

9. Steps 2–8 are repeated until the iterative procedure converges with the specified ac-
curacy.

The proposed method allows determining the temperature and pressure distributions
within productive formations, wells, and the thermal field in the surrounding rock matrix.

As an example, the temperatures and pressures of hot water injected through the annular
space into a gas-saturated formation and high-viscosity oil extracted through lift pipes from
the underlying formation were calculated. The following parameter values were used in the
calculations:

G 1 = 0.139 kg/s;G 2 = 1.157 kg/s;P 2wh = 17MPa;T 2wh = 383K;P pr = 15MPa;

T pr = 294K;Tnl = 273K;Γ = 0.03 ◦C/day;λ tube = 46.44W/mK;

λ gf = 2.19W/mK; d 1 = 0.063m; d 2 = 0.0755m; d 3 = 0.13m; d 4 = 0.146m;

d 5 = 0.19m;H = 700m;R c = 300m;K 1 = 1.12 · 10−12m 2;

K 2 = 1.19 · 10−14m 2; t = 60 days.

The values T 1, T 2, P 1, P 2 calculated using the proposed method for the “layer” and
“well,” are presented in Fig. 1 and 2.

Fig. 1. Distribution of fluid temperature and pressure in formation:
1 – temperature in the gas-saturated formation;

2 – pressure in the oil-saturated formation;
3 – pressure in the gas-saturated formation;

4 – temperature in the oil-saturated formation
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Fig. 2. Distribution of fluid temperature and pressure profiles in the well:
1 – oil pressure; 2 – water pressure; 3 – oil temperature; 4 – water temperature.
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