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Abstract. Heterogeneous flows and immiscible fluid displacement in
porous media are key topics in oil reservoir filtration studies. These
processes are critical for reducing hard-to-recover oil and optimiz-
ing tertiary oil recovery methods. The complex pore structure signifi-
cantly influences hydrodynamics and fluid distribution. Reservoir stimu-
lation using physico-chemical and hydrodynamic methods significantly
enhances oil recovery. Managing hydrodynamic conditions at the dis-
placement front is crucial for mobilizing trapped oil, overcoming capil-
lary pressure, and optimizing reservoir performance. Laboratory stud-
ies highlight capillary processes and displacement front instability as
key factors influencing residual oil saturation. Optimizing reservoir im-
pact through periodically increasing hydrodynamic pressure can im-
prove oil recovery outcomes.
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1 Introduction

Heterogeneous flows, processes of immiscible fluid displacement in porous media, and
the mechanisms of observed effects are the subject of numerous studies on filtration in oil-
saturated reservoirs. The keen interest in such processes is driven by the search for ways
to reduce the share of hard-to-recover oil in the total balance of produced hydrocarbons.
Methods and technologies for extracting residual reserves are the primary objective of ter-
tiary oil recovery methods. In all the aforementioned processes, the research object is the
complex structure of the pore space, which significantly influences the hydrodynamics and
distribution of saturating fluids.

Researchers in their studies [28, 21, 32] have noted that the key parameters affecting
the displacement front structure are the viscosity ratio of the displaced and displacing fluids
M = µ1/µ2 and the capillary number N (a dimensionless similarity parameter characteriz-
ing the ratio of viscous and capillary forces) [14].

Displacement of high-viscosity oil from a reservoir by water is accompanied by insta-
bility and the formation of ”fingering” effects, leading to early water breakthrough and
premature water production in wells [47]. In general, considering the full range of hydro-
dynamic, thermal, and physical-chemical effects occurring during displacement confirms
that the flow of almost any displacement agent in the reservoir can become unstable under
certain conditions. For example, the displacement of high-viscosity oil in a homogeneous
reservoir by a polymer solution, which is typically assumed to be a piston-like process, be-
comes unstable at a certain stage when polymer adsorption on the rock surfaces and several
other physical-chemical processes are taken into account [19, 34, 39].

Unsteady effects may also manifest in relatively macrohomogeneous oil-saturated reser-
voirs. Due to high viscosity instability values (the ratio of oil to water viscosity), local
breakthroughs of injected water occur, affecting the indicators of water-free and current
oil recovery. In reservoirs with high residual oil saturation, significant interfaces between
the oil and water phases form. This hydrodynamic situation can be utilized to implement
unsteady methods of reservoir stimulation during water flooding.

For fields producing high-viscosity oil (more than 100 mPa·s), unsteady processes in the
reservoir have several distinctive features. These features are determined by:

1 The significantly different response times to hydrodynamic disturbances in zones with
varying permeability and fluid saturation;

2 The potential for gas evolution and degassing of oil due to pressure redistribution within
the reservoir.

Alongside the positive effect of inter-reservoir flows for redirecting filtration streams
toward zones with residual reserves, improper selection of well operation mode dynamics
can lead to complications in field development [17, 20]. Such complications include:

1 Possible changes in the filtration-capacity properties of the near-wellbore zone;
2 The formation of an unstable displacement front in the reservoir, increasing reservoir

compartmentalization with zones of high and low fluid mobility;
3 Rapid degassing of oil in interbedded layers.

One of the most effective methods for extracting high-viscosity oils is reservoir stimu-
lation using various physico-chemical and hydrodynamic methods. These methods enable
a significant increase in oil recovery factor [15, 27, 29, 31].

The challenge arises of managing the hydrodynamic situation at the displacement front
by creating conditions that enhance the effect of mobilizing oil trapped in pores into the
main flow, overcoming capillary pressure at a distance from the pressure source.



Panahov G.M. and Abbasov E.M. and Agayeva G.R. and Mamedov I.J. 39

The manifestation of unsteady effects is possible even in relatively macrohomogeneous
oil-saturated reservoirs [33]. Due to high viscosity instability values (the ratio of oil to
water viscosity), local breakthroughs of injected water occur, which affect the indicators of
water-free and current oil recovery. In reservoirs with high residual oil saturation, significant
interfaces between the oil and water phases are formed. This hydrodynamic situation can
be utilized to implement unsteady methods of reservoir stimulation during water flooding
[1, 12].

For fields producing high-viscosity oil (more than 100 mPa·s), unsteady processes in the
reservoir exhibit several distinctive features. These features are determined by:

1 significantly different response time to hydrodynamic disturbances in zones with varying
permeability and fluid saturation;

2 potential for gas evolution and oil degassing due to pressure redistribution within the
reservoir.

Alongside the positive effect of inter-reservoir flows for redirecting filtration streams
toward zones with residual reserves, improper selection of the dynamics of well operation
mode changes can lead to complications in field development. Such complications include:

1 possible changes in the filtration-capacity properties of the near-wellbore zone;
2 formation of an unstable displacement front in the reservoir, increasing reservoir com-

partmentalization with zones of high and low fluid mobility;
3 rapid degassing of oil in interbedded layers.

One of the most effective methods for extracting high-viscosity oil is reservoir stimula-
tion using various physico-chemical and hydrodynamic methods. These methods enable a
significant increase in the oil recovery factor.

The challenge arises in managing the hydrodynamic conditions at the displacement
front by creating conditions that enhance the effect of mobilizing oil trapped in pores into
the main flow, primarily by overcoming capillary pressure at a distance from the pressure
source.

2 Capillary Effects in Porous Media

The process of oil displacement by water, especially in the case of high-viscosity oil, is in-
herently unstable and leads to the fragmentation of the reservoir into separate oil-saturated
zones. Traditionally, the displacement process in a heterogeneous porous medium is as-
sumed to be governed by capillary forces and the structure of the pore space. In a heteroge-
neous medium with a complex filtration-capacity structure, these parameters and the corre-
sponding capillary pressure Pk′P k′ differ for both phases. Depending on their sizes and
pressure gradient values, numerous isolated zones with residual oil saturation are formed,
where fluids may remain in an immobile, capillary-trapped state, being in dynamic equilib-
rium with the surrounding water filtration flow.

Studies [11, 7, 35] have shown that under capillary pressure, the displacing phase selec-
tively occupies only capillaries and hydrophilic pores with radii greater than a critical value.
At low flow velocities, pore channels saturated with oil remain immobile due to capillary
forces.

This phenomenon can be described as follows: pore channels containing an immobile
oil phase have sizes within the range: rk1 ≤ r ≤ rk2 = σ cos θ

∆P = |σ cos θkf2/µv0| where
rk1 and rk2 are the minimum and maximum radii of pores containing immobile oil, and
(σ cos θkf2/µ is a constant value.

From the given expression, it is evident that as the filtration velocity decreases, the size
of pore channels containing immobile oil increases.
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At the displacement front, breakthrough fingers emerge, forming structures of increasing
complexity, similar to viscous fractals or dominant instabilities [7, 48, 46]. The degree of
hydrodynamic instability of these structures is assessed using Lyapunov’s method and the
Hausdorff-Besicovitch dimension.

On the other hand, as the applied pressure and filtration velocity increase, a greater
number of pore channels become involved in the displacement process [7, 48]. It has been
established that with increasing filtration velocity, the wavelength of instability decreases
[11, 7].

It should be noted that during displacement under a hydrodynamic pressure gradient,
the phase distribution pattern depends on the capillary number Nc, which is evaluated as
the ratio of viscous forces to capillary forces:
Nc = µ2v2

σ , where µw is the viscosity of the displacing fluid, vw is the filtration velocity,
and σ is the interfacial tension [13, 10].

The capillary number can also be expressed as N2 =
k0∆P
σl where k0 is the permeability,

∆P is the pressure gradient, and l is the filtration length. These forms of the capillary
number are not equivalent. From Darcy’s law, it follows that:
vB = k0

µ2
f2

∆P
l , v2µ2 = k0µ2

∆P
l or N1 = v2µ2

σ = kf2∆P
σl = f2N2, where f2 is the

relative phase permeability for water, f2 considered as a function of mobile oil saturation.
Taking into account the pore space, this dimensionless complex serves as an analogue of
the capillary number Nc and is defined as [13, 10]:

N
′
1 =

v2µ2lk

σ cos θ
√
mk0

To overcome capillary pressure at a certain distance from the well, it is necessary to
generate additional ”local” pressure. It is known that at a constant injection well flow rate,
the filtration velocity in the reservoir will decrease with the distance RR from the well
according to the law v = Q/2πRm′, where m’ is the effective porosity of the reservoir. As
a consequence, the “local” pressure at the displacement front will also decrease.

In heterogeneous reservoirs, the efficiency of cyclic waterflooding is higher than that
of conventional waterflooding. This is due to the fact that, under waterflooding conditions,
the residual oil saturation in reservoir zones with poorer reservoir properties is significantly
higher than the oil saturation in the main waterflooded part of the reservoir.

As pressure increases, the elastic forces of the reservoir and fluids promote the penetra-
tion of water into zones with poorer reservoir properties, while capillary forces retain the
infiltrated water during subsequent decreases in reservoir pressure. Under the influence of
alternating pressure differentials, fluid redistribution occurs within the unevenly saturated
reservoir, aiming to equalize saturation and eliminate capillary imbalance at the interface
between oil-saturated and waterflooded zones, layers, and sections.

The emergence of alternating pressure values between layers with different saturation
levels accelerates capillary countercurrent imbibition of water into oil-saturated zones (lay-
ers), facilitating water penetration from waterflooded zones into oil-saturated ones through
fine pores and the migration of oil from oil-saturated zones into waterflooded ones through
larger pore channels.

At low hydrodynamic pressure gradients, the advancement speed of menisci in certain
pore regions is lower than the movement speed of menisci driven by capillary pressure dif-
ferentials. In some of the largest pores, the hydrodynamic pressure differential is sufficient
to push the trapped phase and incorporate it into the overall filtration flow. As the hydrody-
namic pressure gradient increases, a growing proportion of the pores is subjected to purely
hydrodynamic displacement, leading to a reduction in trapped saturation volumes.

In highly heterogeneous reservoirs, the development process ensures sufficient volu-
metric and areal coverage of individual sections, which enhances overall oil recovery. To
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improve the coverage of zones with poor reservoir properties (immobile zones), the method
of cyclic (pulsed) reservoir stimulation is widely used [6, 8, 16, 47].

However, it should be noted that the practical implementation of this method does not
always yield positive results. A drawback of this type of reservoir stimulation is that during
the pressure reduction phase of the injection cycle, water may not be retained in micro-
heterogeneities by capillary forces [40 – 45]. As a result, the trapped oil remains in the
pores and does not infiltrate into the liquid flow [49]. This has led to research aimed at
developing new, more effective methods of reservoir stimulation.

This study proposes a technological solution to enhance the efficiency of oil displace-
ment by water by creating periodically increasing hydrodynamic pressure, which allows
overcoming the resistance of capillary forces throughout the injection zone. The variation
in water injection pressure can be schematically represented by the following pressure vari-
ation algorithm (Fig. 1).

Fig. 1. Algorithm for regulating water injection pressure

When the injection rate changes, the pressure distribution rate in heterogeneous zones will
vary due to differences in their reservoir properties. Consequently, oil may flow from less
permeable zones to more permeable water-flooded layers, or conversely, water may flow
from more permeable zones to less permeable ones. This reduces the phase permeability of
the reservoir for water while increasing it for oil.

During the pressure increase phase, oil trapped in the immobile pores of the reservoir is
displaced by water. Accordingly, at a distance from the well, the pore volume expands due
to pressure reduction in heterogeneities where water is retained by capillary forces in the
pores it has infiltrated. This process creates conditions for the release of the oil phase into
the mobile zone of the reservoir.

Laboratory Studies. To confirm the proposed assumptions, laboratory experiments were
conducted to simulate oil displacement conditions in a permeability-heterogeneous porous
medium. Filtration experiments were carried out using the CoreTest Systems FFES 655
filtration unit for physical modeling of an oil reservoir (Fig. 2).
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Fig. 2. Schematic diagram of the experimental setup

In the absence of water in the outgoing production, the residual water saturation was deter-
mined to be within 20%, and the oil saturation of the model was assumed to be 80%.

The displacement experiments were conducted in three stages. In the first stage, as part
of the background studies, oil was displaced by water from the Bohai Bay reservoir of the
CNOOC oil company (China) under a constant pressure gradient of 1.5 MPa, with an input
pressure of 8.0 MPa and an output pressure of 6.5 MPa. Once the maximum displacement
efficiency was achieved and the filtration process stabilized, the phase permeability of the
filtration model to water was determined (Table 1).

Table 1. Physicochemical properties of the reservoir model and barodynamic
parameters of oil displacement.

Temperature, ◦C 67 Oil phase permeability at
K, mD

54,3

Reservoir pressure, MPa 7 Water phase permeability
at K, mD

2,2

Rock pressure, MPa 30 Water phase permeability
at K after treatment, mD

1,6

Viscosity of the oil model,
cP

1,68 Displacement regime,
cm3/min

0,10

Displacing agent is water,
g/l

22,0 Observed GradP on the
model during displace-
ment, MPa/m

0,47

Observed GradP on the
model during displace-
ment after treatment,
MPa/m

0,62

At the second stage, under similar conditions, oil was displaced by water, causing a
change in the hydrodynamic regime through a stepwise increase in injection pressure at
the model’s entrance. The displacement regime was determined based on the condition of
displacing residual oil at increased water injection pressures. To achieve this, the pressure
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at the model’s entrance was stepwise increased to values Pi = 7.06, 7.12, and 7.18 MPa, and
the pressure drop between the entrance and exit of the filtration model was recorded.

The results of the laboratory experiments are shown in Fig. 3. The dependence described
shows the pressure drop dynamics during regime change: during the stage of water-free dis-
placement, the pressure drop increases to a certain value, and with increased water cut, it
decreases to 0.02 MPa. After changing the hydrodynamic regime, returning to the original
displacement regime is accompanied by relatively higher values of pressure drop during the
stabilization section, along with significant fluctuations in ∆P, which may indirectly indi-
cate a change in the local hydrodynamic situation in the porous medium and the involvement
of unswept pore channels and capillaries.

Fig. 3. Dynamics of oil displacement by a sodium carbonate solution under different
hydrodynamic pressure regimes (sample permeability kg=150 mD): 1 - displacement

regime with constant injection pressure; 2 - displacement regime with increasing injection
pressure

In all cases, displacement was carried out by continuous injection of solutions in the
amount of 3 times the pore volume. The results of the studies presented in Figure 4 represent
the dependence of oil saturation on the volume of liquid extracted from the porous medium.
As seen from the figure, during oil displacement by formation water, and displacement
with sequential stepped increase in injection pressure at the model entrance, the character
of oil saturation change is different. The change is characterized by the fact that when
oil is displaced by an aqueous solution, an additional contribution to this process is the
management of the hydrodynamic situation at the displacement front by creating conditions
to enhance the effect of involving the trapped oil in the pores into the overall flow, achieved
by overcoming capillary pressure at a distance from the pressure source (Fig. 4, curve 3).
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Fig. 4. Change in oil saturation of the porous medium during displacement

2. Theoretical Studies. To assess the effect of accelerating the water injection into hetero-
geneities using the example of a heterogeneous reservoir, let’s consider the linear equation
with constant coefficients:

du

dt
= au+ f, u (0) = e. (2.1)

Let’s perform the Laplace transform:

∞∫
0

e−stdu

dt
= a

∞∫
0

e−studt+

∞∫
0

e−stfdt. (2.2)

By integrating by parts, we get:

e−stu

∣∣∣∣∣∣∞0 + s

∞∫
0

e−studt = a

∞∫
0

e−studt+

∞∫
0

e−stfdt . (2.3)

Let’s introduce a notation:

L (u) =

∞∫
0

e−studt, L (f) =

∞∫
0

e−stfdt ,

let’s find:

L (u) =
c

s− a
+
L (f)

s− a
.

Applying the Laplace transform and the convolution theorem, we have the equation:

u (t) = f (t) +

t∫
0

u (t− s) dG (s) , (2.4)



Panahov G.M. and Abbasov E.M. and Agayeva G.R. and Mamedov I.J. 45

where the integral is a Stieltjes integral. If G (s) is a step function with discontinuities at a
finite number of points 0 < t1 < t2 < . . . < tk?, then equation (??) can be written as

u (t) = f (t) +
k∑

i=1

giu (t− ti) , (2.5)

where u (t) = 0 for t < 0.
The solution obtained by the Laplace transform:

u (t) = ∫ (G)

L (f) estds

1− L (dG)

can be written as

u (t) = ∫ (G)

L (f) estds

1−
∑N

i=1 gie−sti

where gi are the jumps.
If there exists a constant ∃c1 = const > 0 such that |f (t)| ≤ c1 on the interval 0 ≤

t ≤ t0, then there exists a unique solution to the equation. To prove this, one can use the
method of successive approximations:

u0 (t) = f (t) ,

un+1 (t) = f (t) +

t∫
0

u0 (t− s)φ (s) ds.

Here, the condition
t0∫
0

|φ (s)| ds <∞ is also needed.

There are two sub-cases. Either the numbers ti is commensurable, or they are not. If
the numbers ti is commensurable, then for the root S = r, the set of roots located at equal
distances from each other corresponds to S = r ± iktT0, k = 1, 2. . . Therefore, if we
assume that there is a single simple real root r, then u (t) has the form:

u (t) =
∞∑

k=−∞

{∞∫
0

f(t1)exp1− (r + ikT0) tidti

}
exp {(r + ikT0) i}

N∑
i=1

gitie−rti

.

To justify the contour shift, we use the theorem of N. Wiener. If the numbers ti are
incommensurable, we apply the results of Bochner and Pitt.

Let us consider equation (2.1) by taking the function P (t) as follows. Let it be P (t)a
simple discontinuous function, for example, a step function. Consider the derivative of
a piecewise absolutely continuous function P (t) with a piecewise continuous derivative
P ′ (t) , with discontinuity points t1, t2, . . . and corresponding jumps h1, h2, . . .
Let’s define the function.

P1 (t) = P (t)−
∑
k

hk · θ (t− tk) ,

where θ (t) =
{
1, t > 0
0, t < 0

.
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It is known that θ′ (t) = δ, i.e., θ (t) is zero in the usual sense for t ̸= 0, but does not
exist at t = 0. The function P1 (t) is absolutely continuous and can be reconstructed from
its derivative P

′
1 (t). It coincides with P ′ (t) everywhere except at the discontinuity points

of P(t), where P
′
(t) does not exist. Therefore, P

′
1 (t) is the derivative of the generalized

function P1 in the space of generalized functions.
On the other hand,

P
′
1 (t) = P ′ (t)−

∑
k

hk · δ (t− tk) ,

where f ′ is the derivative of the generalized function P(t). As a result, we obtain:

P ′ (t) = P
′
1 (t) +

∑
k

hk · δ (t− tk) , (2.6)

that is, the derivative of the generalized function P(t) is reconstructed from its regular deriva-
tive and the sum of delta functions at the discontinuity points with the corresponding jumps.

Next, the general solution of equation (2.1) will be in the form of:

ν =
1

exp
(

αt
µβ2

) [
α

µ

∫ [
P

′
1 (t) +

∑
k

hk · δ (t− tk)

]
dt+ c

]
(2.7)

An important aspect of this process is the control of pressure distribution across the
formation. The pressure redistribution after injection with a constant flow rate until the next
cycle takes the form of planar radial filtration [26]:

∂P

∂t
= χ

(
∂2P

∂r2
+

1

r

∂P

∂r

)
(2.8)

with initial and boundary conditions:

P (r, t) = Pki = Const ; at t = 0

Q1 =
2πkh

µ

(
r1
∂P

∂r

)
r=r1

Q1 = 0 at r = 0; (2.9)

P (r, t) =

(
Pki −

Qµr

ωk

)
r=r1

where Q1 is the fluid flow rate, tt is time, and χ is the piezoconductivity.
The exact solution has the following form [49, 26]:

Pki − P (r, t) =
Qµ

4πkh
Ei

(
− r2

4χt

)
, (2.10)

where Pki is the injection pressure. As shown in [26, 24], for small values of

Ei

(
− r2

4χt

)
=

∞∫
r2

4χt

l4

u
du = ln

4χt

r2
− 0, 5772,

from (2.10), we will obtain:

Pki − P (r, t) =
Qµ

4πkh

(
ln

4χt

r2
− 0, 5772

)
(2.11)
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The pressure at any point in the formation at any time during the injection process of
elastic fluid parallel to the X-axis at constant pressure (P ki − Pk(i−1)) and filtering under
unsteady conditions can be obtained by integrating the equation:

∂P

∂t
= χ

∂2P

∂x2
(2.12)

with the initial and boundary conditions:

P (x, 0) = 0 for t = 0 P (0, t) = Pki for x = 0 (2.13)

v (0, t) = Const; P (x, t) = (Pki −
√

3
2
µ
√
χt

k v), for x = ∞.
Due to the complexity of obtaining exact solutions and to ensure the accessibility of

parameter estimation for the equation, various methods for solving unsteady-state filtration
problems for elastic fluid are proposed. One of the most common approximate methods is
the method of sequential change of stationary states [24]. If the fluid flow rate does not
change over time at each stage of the injection, i.e.,

Q (0, t) = Const,

P (x, t) = Pki − (Pki − P)
x

l (ti)

where:
Pk1 – injection pressure; P – pressure at the contour of movement.
As is known [24], the distribution of the front is:

∆P = (Pki − P) =

√
3

2

µ

k
v
√
χt (2.14)

Under the condition P > P
′
k, there is possible fluid exchange between the immobile and

mobile parts of the formation, where P
′
k = 2σ cos θ

r .
Conditions provided at the radius of the contour P ≤ P

′
k imply that the injection

pressure must be increased again.
The time for pressure propagation is estimated as:

t =

(Pki−P)k

µχ
√

3
2

2

. (2.15)

Given the known formation parameters, the influence radius can be determined. De-
scribed influence radius is derived from the material balance equation and known from t
(2.10) [24]:

l (t) =
√

6χt =
√
6χ

(
Pki − Pk(i−1)

)
k

µχ
√

3/2
(2.16)

where χ = kK
µm ; K = m

β∗ , where β∗ = mβ6 + β is the compressibility coefficient of the
fluid and porous medium. Using equations (2.8), (2.9), (2.10), and (2.7), the value of P(x, t)
can be estimated.

The fluid exchange between the mobile and immobile zones occurs due to the increased
average pressure differential between them.

The task described is technologically implemented through the following stages:
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1 at time t = 0, the pressure in the injection gallery is instantly increased from P0 to P1

and maintained constant for some period t1. The operating gallery continues to function
at its previous mode;

2 at time t=t1, the injection of water into the injection well continues, thereby instantly
raising the pressure at its bottomhole to P=P2;

3 second stage continues for some time t2, after which the 1st and 2nd stages, etc., repeat
for each (ki), i=1, 2,. . . , n(ki), i = 1, 2, ... n;

4 at the last stage of influence (kn), at the end of the time interval ti, the pressure drops
back to its initial (formation) level P0;

5 above stages are repeated.

It is also necessary to define the operational parameters required for field implementation
of the technological solution:
a) The distribution of increased pressure at any point in the immobile and mobile zones of
the formation at any time during all stages of pressure regulation; b) the duration of the
injection stage; c) the average capillary pressure Pk’.

With known formation parameters, the conditions (a), (b), and (c) can be estimated as
follows. The “replacement” pressure or the radius of the next stage of influence on the
formation pressure due to countercurrent capillary imbibition is determined by the following
geological-physical characteristics of the formation [24]:
k = 400 mD, m = 0,15; σ = 35.10−6 kg/cm2 = 34,4.10−3 N/m; cos θ = 0, 6;
µ = 1, 2 · 10−3 Pa.s; βA = 0, 306 · 10−10 m2/N; β6 = 4, 59 · 10−10 m2/N;
Pi – 20 ÌPà; t = 3 day.
Q = 100 m3/day;
B = 250 m;
h = 10 m.

l (t) =
√

6χt;

t = 3 day = 3 .0,864 .105=2,6 .105 s;

χ =
k

µ (mβ6 + βA)
=

0, 4 · 1, 02 · 10−12

1, 2 · 10−3 (0, 15 · 4, 59 · 10−10 + 0, 306 · 10−10)
= 3, 42 m2/s;

l (t) = 2, 3 · 103 m.

P (x, t) = 20− (20− P)

(
x

l (t)

)
(20− P) =

√
3

2

1, 2 · 10−3

0, 4 · 1, 02 · 10−12
· 9, 4 · 102 · v

v =
100

250 · 10
= 0, 04

m

day
= 4, 6 · 10−7m

s
;

(20− P) 1, 225 · 1,2·10−3·9,4·102·4,6·10−7

0,4·1,02·10−12 = 1,2·102·9,4·102·4,6
0,4·1,02 · 1, 225 =

= 156 · 104 = 1, 6

P (x, t) = 20− (20− P)
x

l (t)

P (x, t) = 20− 1, 6 · x

2, 3 · 103
= 19, 99

x = 1 P (x, t) = 19, 99
x = 10 P (x, t) = 19, 98
x = 100 P (x, t) = 19, 9
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x = 1000 P (x, t) = 19, 3
For v = 100

100·10 = 0, 1 <
ACB = 0, 12 · 10−5 < /A

(20− P) = 1, 225 · 1, 2 · 10
−39, 4 · 102 · 0, 12 · 10−5

0, 4 · 1, 02 · 10−12
= 4, 06 · 106 = 4, 06 0

P (x, t) = 20− 4, 06
x

l (t)

x1 = 1P (x, t) = 19, 99

x1 = 10P (x, t) = 19, 98

x1 = 100P (x, t) = 19, 8

x1 = 1000P (x, t) = 18, 2.

Thus, the computational example allows for the assessment of the pressure distribution
across the formation in discrete sections of the reservoir as the displacement front pro-
gresses. This, in turn, provides a timeline for the changes in the hydrodynamic pressure
differential. It enables the determination of the duration and stages of pressure regulation
during injection to achieve the expected hydrodynamic effect and, as a result, increase the oil
influx to the production well gallery. This ensures a coordinated consideration of both the
displacement conditions and the capacity-filtering characteristics of fluid-saturated reser-
voirs.

3 Pressure propagation in porous media

Here, particular interest lies in pressure waves in heterogeneous porous reservoirs, the main
characteristics of which change significantly and non-linearly during the development pro-
cess [25, 9]. Therefore, the process of mobilizing immobile zones is determined by the
dynamics of pressure changes in the injected fluid.

The article further discusses the so-called ”sharp regimes” [2], where one or more pro-
cess characteristics grow unbounded over a finite time. For the process of hydrodynamically
increasing pressure in the formation, sharp regimes should be introduced under the assump-
tion of growth in pressure or injected fluid volume. In practice, these boundary characteris-
tics are finite; however, as numerical calculations [2] have shown, the actual process of fluid
entering the immobile pores under hydrodynamically increasing pressure can be considered
as a sharp regime if the flow (or pressure) at the well increases several times compared to
its initial value. Such an injection regime can be realized, for example, by a source with
power that increases in steps. The work shows that under certain conditions, sharp regimes
are more effective than conventional injection regimes.

A heterogeneous porous medium is considered as a system of two existing fictive con-
tinua, modeling systems of fractures and the porous blocks separated by them. The exchange
of fluid between the fractures and blocks is caused by the difference in average pressures
within them [4], with its modification [30], leading to the following filtration equations for
weakly compressible droplet liquid:

s∂w1
∂t = γ1∇

(
w3
1∇w1

)
+ α (w2 − w1)

∂w2
∂t = γ2∇w2 + α (w1 − w2) , wi = pi − σ

, (3.1)

In equation (3.1), p1 and p2 represent the average pressures of the fluid in the fractures
and blocks, respectively, γ1w3

1 and γ2 are the piezoconductivity coefficients, γ2 is the pres-
sure relaxation time, and ss is a coefficient defined in [30], which characterizes the physical
properties of the medium.
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Equations (3.1) are valid in the region where p1 > σ; in the region where p1 < σ,
where filtration does not occur in the porous blocks, the usual equation for elastic filtration
in blocks with a piezoconductivity coefficient γ2 holds, which determines p2 (or w2). At the
unknown boundary of the regions, the necessary conjugation conditions are satisfied [30].

In contrast to the equations proposed in [4], equation (2.1) accounts for the fact that
the coefficient ss may be comparable to unity even in situations where the porosity in the
immobile pores is much lower than the porosity in the mobile zones. Moreover, equation
(2.1) takes into account the expansion (or contraction) of the immobile pores, leading to the
dependence of the mobile fracture permeability on pressure. Both of these considerations
are consistent with the experimental facts mentioned earlier (see also [23]).

In the case of gas filtration, instead of equation (3.1), the following equations can be
obtained:

s∂w2
1

∂t = γ1∇
(
w4
1∇w1

)
+ α

(
w2
2 − w2

1

)
∂w2
∂t = γ2∇ (w2∇w2) + α

(
w2
1 − w2

2

) , (3.2)

In processes of hydrodynamically increasing pressure in the formation, it is advisable to
inject fluid at sufficiently high pressure (p1 ≫ w1). In such conditions, the permeability of
the mobile pores is typically much greater than the block permeability, and the capacity of
the blocks is much smaller than the capacity of the mobile system (in both cases, the differ-
ence can reach several orders of magnitude). Therefore, at the initial stage of the process, it
is acceptable to assume w1−w2 ≈ w1. As a result, the first equations in (3.1) and (3.2) can
be rewritten as follows:

∂w

∂t
= D∇

(
wn−1∇w

)
− χw, χ =

α

s
. (3.3)

For the droplet liquid, w1 = p1 − σ, n = 4, D = γ1/s, and for gas, w = (p1 − σ)2,
n = 5/2, D = γ1/ (2s).

In the future, for equation (3.3), we consider a one-dimensional problem with zero initial
conditions in the region x>0x > 0, which corresponds to initially closed mobile pores.
Using the variable substitution [3].

w = u exp (−χt) , w = −γβ (χt)
γ = D/ [n (n− 1)χ] , β (t) = exp [− (n− 1)χt]− 1

. (3.4)

Instead of equation (3.3), we obtain

∂u/∂ω = ∂
(
nun−1 ∂u/∂x

)
/∂x, u (−∞, x) = 0 . (3.5)

In accordance with the problem statement, let us consider the boundary condition (at
x = 0, the flow q → ∞ at ω → −0:

q (ω, 0) = q0 (−ω)m , −∞ < ω < 0, m ⟨0, q0⟩ 0 (3.6)

(negative time is introduced for the self-similarity of the problem [8]).
The corresponding boundary condition (3.6) for the original problem also exhibits blow-

up behavior:
(t, 0) = q0γ

mβm (t) exp (−nxt) (3.7)

By resolving the indeterminacy in (3.7) t→ −∞, it can be shown that:

1 if m < −n (n− 1)−1, the boundary and initial conditions are consistent (the injected
fluid volume grows from zero).

2 if m = −n (n− 1)−1, the injected volume instantaneously jumps from zero to q0γm at
the initial moment.

3 if 0 > m > −n(n− 1)−1, the injected volume reaches maximum values.
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The solution to the first boundary value problem can be obtained from the solution given
below by substituting the coefficients [2].

Equation (3.5) with condition (3.6) has a self-similar solution [2, 18], from which, con-
sidering the transformation (3.4), we obtain the solution to the original problem (3.3).

w (t, x) = cµ (t)φ (ξ) , x ≤ x∗ = ν (t) ξ∗,

µ (t) = β
2m+1
n+1 (t) exp (−χt) , ν (t) = bβ

l
n+1 (t) , (3.8)

c =
(
n−1 q20γ

2m+1
) 1

n+1 , b = (nqn−1
0 γl)

1
n+1 , l = m (n− 1) + n,

where x∗ is the front of the wave opening immobile pores. The self-similar variable ξ is
defined in terms of x and t similarly to (3.8).

The function φ (ξ) in (3.8) is determined numerically (examples of calculations are
shown in Fig. 1a) from an ordinary differential equation with boundary conditions:

ξ = 0, φn−1dφ/dξ = −1; ξ ≥ ξ∗, φ = φn−1dφ/dξ = 0

simultaneously with the coordinate ξ∗ = ξ∗ (m,n) (Fig. 1b). All figures in the paper use
dimensionless parameters.

Depending on the sign of the exponent l in (2.8), different regimes are possible [2]:

1 in the case l < 0 w → ∞, x∗ → ∞ at t→ −0 (the fluid inflow exceeds its absorption
by the blocks, and the zone of opened immobile pores increases indefinitely over time);

2 in the case l = 0, the zone of opened immobile pores is localized (fluid inflow and
absorption are balanced), and the solution takes the form:

w = dµ̂ (t) (1− x/xα)
2

n−1 , (3.9)

xα =
[
2n (n+ 1)n qn−1

0 / (n− 1)
] 1
n+1 , d = γ−

1
n−1

[
q20

(
n2 − 1

)
/ (2n)

] 1
n+1 ,

where the symbol µ̂ (t) denotes the function µ (t) for m = −n (n− 1)−1.
In the case of l > 0, the second expression in (3.8) defines the effective half-width of the

zone of opened fractures, which decreases over time (fluid absorption by the blocks exceeds
its inflow).

Further, we will need the solution of (3.3) for the case of an instantaneous power source
Q at the well, obtained in [3]:

w =
[
Q2/ (−γβ (t))

] 1
n+1 ψ (ξ) exp (−χt) , ξ = x

[
−Qn−1γβ (t)

]− 1
n+1 ,

ψ (ξ) =

{
C
[
1− (ξ/ξ0)

2
] 1

n−1
, 0 ≤ ξ ≤ ξ0,

0 , ξ ≥ ξ0,

(3.10)

where the constants ξ0 and C are determined by the parameter n (for n=3.5n = 3.5, ξ0 ≈
1, 87, C ≈ 1, 26).

The effect of fluid absorption by the blocks results in the front of the opening of immo-
bile pores tending, as follows from (3.10) and (3.4), to the limiting position x0 as t→ ∞:

xn+1
0 = ξn+1

0 Qn−1D/ [n (n− 1)χ] (3.11)

In the absence of absorption, the front moves indefinitely away from the well over time.
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Let us determine the efficiency of applying blow-up regimes in hydraulic fracturing
compared to impulse fluid injection (solution (3.10)). For blow-up regimes, the total fluid
flow at the well is given by

Q = q0

ω∫
−∞

(−ω)m dω = − q0
m+ 1

(−ω)m+1 (3.12)

Eliminating time ω from (3.12) and the expression for the self-similar variable ξ in (3.8),
we obtain the front of fracture opening as a function of the parameters Q, m :

xn+1
∗ = nξn+1

∗

[
(−m− 1)lQl/q0

] 1
m+1 (3.13)

Using (3.11) and (3.13), we form the ratio

x∗/x0 = A (m) η, (3.14)

where

A (m) = (ξ∗/ξ0)
[
n (−m− 1)

l
m+1

] 1
n+1

, η =
[
γ−1 (Q/q0)

1
m+1

] 1
n+1

.

Let l < 0. The coefficient l < 0 in (3.14) monotonically increases with increasing m.For
n = 3, 5, the calculated dependence A = A (m) turned out to be quite close to the depen-
dence ξ∗ = ξ∗ (m). The parameter η in (3.14) also depends onm; however, this dependence
can be compensated by an appropriate selection of q0 = q0 (m) since, for l < 0, the flow at
the well increases from zero at the initial moment, and the coefficient q0 in (3.6) is arbitrary.

With such a selection, the dependence (3.14) is linear. The lines located above the bisec-
tor (−1, 4 = −n/ (n− 1) > m≳− 1, 72) correspond to a larger fracture zone obtained in
the blow-up regime for l < 0 compared to the impulse action of the source [9].

Let us clarify the obtained results. For l > 0, the initial flow rate at the boundary is
sufficiently high, and the subsequent increase in flow is weak (small values of |m| in (3.7),
0 > m > −n/ (n− 1), 0 > m > −n/ (n− 1). When the total volume of fluid for
hydraulic fracturing, Q, is specified, this volume will be used up fairly quickly in this case
(in the limit, at the initial moment in time), and the further advancement of the immobile
pore opening front will not be ”supported” (in contrast to fluid absorption by the blocks) by
an increase in the boundary flow rate. Absorption leads to a reduction in the effective zone
of immobile pore opening fractures, which was initially created by the impulse injection.

For l < 0, the boundary flow rate grows from zero at a fast pace (large values of
|m| ,m < −n/ (n− 1)), and the advancement of the immobile pore opening front is ”sup-
ported” by the increasing flow at x = 0. However, the increase in boundary flow rate should
be moderato |m| is too large, the given fluid flow will be quickly consumed, and the ad-
vancement of the immobile pore opening front will cease. The largest fractured zone is
obtained at the optimal balance between fluid injection and absorption processes, which
occurs, when l = 0 m = −n/ (n− 1). In this case, the front moves more slowly than for
l < 0.The size of the fractured zone (3.9) depends on the system’s nonlinearity parameter
n and q0 [22, 25].

Now, let us examine the effect of absorption on the process of hydrodynamic pressure
increase during hydraulic fracturing for l = 0. Assume that the parameters D and n in (3.3)
are fixed. Consider two types of blocks with absorption coefficients χ1 < χ2, and therefore,
according to (3.4), γ1 > γ2.

For l = 0, the injected fluid flow increases abruptly at the initial moment from zero
to the value q̂0 = q0/γ

|m|, m = −n/ (n− 1). For given values of q̂0, Q, we find q02 =
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q01 (γ2/γ1)
|m|, and using (3.9), we obtain the relationship between the sizes of the immobile

pore fractured zones:

(xα2/xα1)
n+1 = (χ1/χ2)

|m| < 1.

Thus, for a given total fluid flow, a smaller fractured zone will be created in a medium
with higher absorption. For example, if (χ2/χ1) = 2 and n = 3, 5, we find (χα2/χα1 ≈ 0, 12).

Now, let us assume that the size of the created immobile pore fractured zone is specified.
Using (3.11) and (3.13), we form the ratio of the fluid flow Q under impulse source action
to the flow Q∗ in the blow-up regime for l < 0:

Q/Q∗ = B (m) η, (3.15)

where

B =
[
n (−m− 1)

l
m+1 (ξ∗/ξ0)

n+1
] 1

n−1
, η =

[
γ−1 (Q∗/q0)

1
m+1

] 1
n−1

.

Field Studies
Laboratory studies served as the basis for the field implementation of a technological

solution aimed at influencing a heterogeneous reservoir with residual, stagnant oil-saturated
zones [36 – 38]. The method was applied during a technological operation on a group of
wells at the offshore Bohai Bay field, operated by the CNOOC oil company (China).

Operation was conducted in a section of the reservoir that included 14 production wells
responding to water injection. The technology was implemented with the support of New
Horizon Company at the injection well C12. Field operation, carried out through displace-
ment, consisted of several sequential stages of hydrodynamic impact by implementing cy-
cles of increasing and decreasing injection pressure (Fig. 5).

Fig. 5. Dynamics of pressure changes during the hydrodynamic impact on injection well
C12 (Penglai field, CNOOC)

At the end of the field operation, monitoring of injection pressure indicators and water
injection volume at the injection well was carried out (Figure 6).
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Fig. 6. Changes in the current performance indicators of injection well C12

As the monitoring of the main operational indicators of the surrounding (reacting) wells
in the area of technology implementation showed, in general, all wells have a positive reac-
tion to the hydrodynamic impact - the majority of production facilities have an increase or
stabilization of the values of average daily oil flow rate. Fig. 7 shows the actual dynamics
of oil flow rate and water cut after the implementation of technological operation at well
C54ST2 of Penglai field.

Fig. 7. Trends of average daily oil flow rate and water cut at the reacting well of the
technology implementation site

4 Conclusions

Laboratory studies have shown that capillary processes and instability of the front of oil dis-
placement by water are important elements of the dependence of residual oil saturation on
hydrodynamic pressure in the reservoir. It should be taken into account that the intensity and
direction of capillary forces depend on numerous physical and physical-chemical properties
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of reservoir systems, rocks, reservoir fluids, including displacement conditions. One of the
ways to optimize the impact on the deposit taking into account capillary processes occur-
ring in the reservoir system is to create a consistent periodically increasing hydrodynamic
pressure.
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inch, F. (eds) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series,
vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3220-6.

31. Richardson, et al. Chemically assisted thermal flood process United States Patent
6,305,472. October 23, 2001.

32. Roland Lenormand, Eric Touboul and Cesar Zarcone Numerical models and experi-
ments on immiscible displacements in porous media // Journal of Fluid Mechanics /
Volume 189 / April 1988, pp 165 no 187.

33. Rybak B.M. Analiz nefti i nefteproduktov. Izd. 5-e pererab. i dop. -M.: Gostoptekhizdat,
1962. - 888 p.

34. Saffman P.G., Taylor G.I. Proc.Roy.Soc. London A 245, 312 (1958).
35. Schulz H. E. Hydrodynamics – Optimizing Methods and Tools. – M.: InTech, 2011. –

420 p.
36. Sergiyenko S.R. Vysokomolekulyarnye soedineniya nefti. M.: Himiya, 1964, 542 s.
37. Shahverdiev A.H., Panahov G.M., Abbasov E.M. Sinergeticheskie effekty pri sistem-

nom vozdejstvii na zalezh’ termo-reohimicheskimi tekhnologiyami // Neftyanoe hozya-
jstvo, M.: no. 11. – 2002. p. 61-65.

38. Shelkachev V.H. Obobshchenie formy reshenij prostejshih osnovnyh zadach teorii
nestacionarnogo polya filtracionnyh potokov – Trudy INGP im. I.M. Gubkina. Teoriya
i praktika razrabotki neftyanyh mestorozhdenij. - M.: Nedra. – 1967. – p. 96 – 106.

39. Snow N., Tippee B. Journal Optimizing Methods of Exploitation Oil Field // Oil&Gas.
– 2013. – no. 21. – P. 18–21.



Panahov G.M. and Abbasov E.M. and Agayeva G.R. and Mamedov I.J. 57

40. Snow N., Tippee B. Journal Optimizing Methods of Exploitation Oil Field // Oil& Gas.
– 2013. – no 21. – P. 18–21.

41. Surguchev M.L. Vtorichnye i tretichnye metody uvelicheniya nefteotdachi. – M.: Ne-
dra, 1985. – 308 p.

42. Surguchev M.L., ZHeltov YU.V., Simkin E.M. Fiziko-himicheskie mikroprocessy v
neftegazonosnyh plastah: Nedra, 1984. – 215 p.

43. Tayfun Babadagli Evaluation of EOR methods for heavy-oil recovery in naturally frac-
tured reservoirs // Journal of Petroleum Science and Engineering, 37 (2003) 25-37.

44. Taylor, K.C., Hawkins, B.F. and Islam, M.R., 1990, Dynamic Interfacial Tension in
Surfactant-Enhanced Alkaline Flooding, J. Canadian Petroleum Technology, vol. 29
(1), 50-55.

45. Xing, Cuiqiao & Yin, Hongjun & Liu, Kexin & Li, Xingke & Fu, Jing. (2018). Well
Test Analysis for Fractured and Vuggy Carbonate Reservoirs of Well Drilling in Large
Scale Cave. Energies. 11. 80. 10.3390/en11010080.

46. Yemaletdinov A.K., Bajkov I.V. Modelirovanie optimal’noj skorosti vytesneniya nefti
i minimal’noj neftenasyshchennosti vokrug nagnetatel’nyh skvazhin // Vestnik Oren-
burgskogo Gosudarstvennogo Universiteta, no2. – 2005. – p. 159 – 162.

47. Yershov A.P., Dammer A.YA., Kupershtoh A.L. Neustojchivost ”nevyazkogo palca” v
regulyarnyh modelyah poristoj sredy // Prikladnaya Mekhanikai Tekhnicheskaya fizika,
2001, t. 42, no 2. – p. 129-140.

48. Yevdokimova V.A., Kochina I.N. Sbornik zadach po podzemnoj gidravlike. - M.: Nedra,
1979. - 168 p.

49. Zheltov YU.N. Mekhanika neftegazonosnogo plasta. M.: Nedra, 1975. – 216 p.


