
Tran. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mechanics, 44 (8), 7–10 (2024);
https://doi.org/10.30546/2706-7734.44.8.2024.011

Some analytical solutions of thixotropic fluid flow equations

Ramil N. Bakhtizin

Received: 11.06.2024 / Revised:15.10.2024 / Accepted: 05.11.2024

Abstract. The flow of thixotropic fluids is governed by complex non-
linear differential equations, making analytical solutions challenging
to obtain. This study employs group analysis to construct particular in-
variant solutions for the one-dimensional flow equations of a thixotropic
fluid. A comprehensive group classification is conducted, leading to the
identification of optimal subalgebra systems and their associated in-
variant solutions. The study demonstrates that, under specific condi-
tions, the governing equations allow for an expanded algebra of in-
finitesimal operators, enabling the derivation of exact solutions. The
results include analytical expressions for velocity and structural param-
eter distributions, along with conditions for their applicability. Special
cases where the system reduces to solvable quadratures are also exam-
ined. The findings provide insights into the mathematical properties of
thixotropic fluid models and contribute to the broader understanding of
structured fluid dynamics.
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1 Introduction

As is known, the flow of a thixotropic fluid is described by complex nonlinear equations.
In this work, it is shown that group analysis of differential equations can be used to construct
certain particular solutions. A group classification of the system of equations describing
the one-dimensional flow of a thixotropic fluid is carried out. Some invariant solutions are
analyzed.

1. A thixotropic fluid is understood as a medium in which an increase in shear stresses
leads to a decrease in viscosity due to the destruction of the internal structure of the medium
[5]. Such fluids include asphalt- and paraffin-containing oils, certain polymer solutions, clay
suspensions, etc.
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To describe the flow of a thixotropic fluid with viscosity , which depends on a single
dimensionless structural parameter λ, models [2, 6] have been proposed that, in the one-
dimensional case, can be written as:

ut = (µ (λ)ux)x, λt = Φ (λ, ux) (1.1)

Models of this type are also used to describe the filtration of viscoelastic fluids [1].
We study the group properties [3, 4] of system (1.1).
For arbitrary functions µ (λ) and Φ (λ, ux), system (1.1) admits a three-dimensional al-

gebra L3 of infinitesimal operators with a basis X1 = ∂/∂t, X2 = ∂/∂x, X3 = ∂/∂u,
corresponding to shifts in t, x, u.

We consider under what specializations of and Φ the algebra can be expanded. An
analysis of the determining equations [4] for (1.1) shows that the following statement holds.

If µ
′ ̸≡ 0, ∂Φ/∂ux ̸≡ 0, ∂Φ/∂λ ̸≡ 0, then the algebra expands only for one of the

following sets of µ and Φ:

1 . µ is an arbitrary function, Φ = uαxf (λ) where f are arbitrary functions, and α ̸= 0;
the additional basis operator has the form:

X4 = αx
∂

∂x
+ 2αt

∂

∂t
+ (α− 2)u

∂

∂u

2 . µ is an arbitrary function, Φ =
(
µ1+γ/µ

′
)
F
(
uxµ

β
)
, where ∂F/∂ux ̸≡ 0 is a con-

stant; the additional operator:

X5 =
1− γ

2
x
∂

∂x
− γt

∂

∂t
+

(
1− γ

2
− β

)
u
∂

∂u
+
µ

µ′
∂

∂λ

3 . µ is an arbitrary function, Φ =
(
µ/µ

′
)
(1 + µuεx), where Φ =

(
µ/µ

′
)
(1 + µuεx) is a

constant; the additional operators:

X6 = εx
∂

∂x
+ (ε− 2)u

∂

∂u
+ 2ε

µ

µ′
∂

∂λ′
, X7 = e−t ∂

∂t
+ e−t µ

µ′
∂

∂λ

2. We consider the invariant solutions arising from the additional basis operators spec-
ified in Case 1. For each of these cases, we derive invariant solutions corresponding to the
operators included in the optimal system of subalgebras [4] that contain additional opera-
tors.

1) The optimal system of subalgebras includes the operator X4+ cX3, c ∈ R, if α ̸= 2,
then c = 0 satisfies. The corresponding invariant solution takes the form:

u = cln t+ t−νφ (ξ) , λ = ψ (ξ) , ξ = xt−1/2

where ν = (2− α)/(2α), φ and ψ satisfy the system of ordinary differential equations:

νφ+ 1/2ξφ′ +
(
µ (ψ)φ′)′ = 1/4 c, 1/2ξψ′ + φ (ψ)ψ

′α = 0

2) If γ ̸= 0 or γ ̸= 1 , the operator entering the optimal system has the form X5 +
cX3, c ∈ R, where c = 0 for σ = β − 1

2 (1− γ) ̸= 0. The invariant solution is: u =

(c/γ) ln t+ φ (ξ) , µ (λ) = t−1/γψ (ξ) , ξ = xt(1−γ)/(2γ), and φ and ψ satisfy the system:

c

γ
+
σ

γ
φ+

1− γ

2γ
ξφ′ = (ψφ; )′, (1− γ) ξψ′ = 1 + γψ1+γF

(
φ′ψβ

)
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When γ = 0, the optimal system includes X5+ aX1+ cX3, a, c ∈ R, where β ̸= 1/2,
then c = 0. The invariant solution is:

u = x1−2βφ (ξ) + 2clnx , µ (λ) = x2φ (ξ) , ξ = t− 2α lnx

When γ = 1, the required operator has the form X5 + bX2 + cX3 (with β ̸= 0 when
c = 0), and the corresponding solution is:

u = tβφ (ξ)− c ln t , µ (λ) = t−1ψ (ξ) , ξ = x+ b ln t

The functions φ and ψ satisfy the corresponding system of differential equations in each
case.

3) The operators entering the optimal system can be conveniently represented as:
a) aX1 + cX3 +X6,
b) bX2 + dX3 +X7,
c) cX3 +X6 +X7,
where a, b, c, d ∈ R, and c = 0c = 0 when c = 0 at ε ̸= 2. For each of these operators,

the invariant solutions are written as:
a ) u = x(ε−2)/εφ (ξ) + 2clnx , µ (λ) = x2ψ (ξ) , ξ = x−2aet

b) u = det + φ (ξ) , µ (λ) = etψ (ξ) , ξ = x− bet

c) u = e(ε−2)tφ (ξ) , µ (λ) = e2εtτψ (ξ) , ξ = lnx − ετ, t = et

Here, as before, the functions φ and ψ satisfy the corresponding system of differential
equations.

Let us analyze some of the invariant solutions obtained in section 2. In applications, a
linear kinetic equation in λ and some power of ux is often used, i.e., an equation of the form
λt+λ = umx . In equations (1.1), a power dependence µ = λn is assumed. For this case, the
invariant solution can be written as:

µ = λn

u = (x0 − x)pφ (t) , λ = (x0 − x)2/nψ (t) , p = (2/(mn)) + 1, x0 > 0

In the case n = −1, the system of differential equations for φ and ψ is integrated in
quadratures, and its solution is written as:

t = t0 + ln

(
1 + l

∫ φ

φ0

exp [q (φm − φm
0 )] dφ

)
(1.2)

ψ = ψ0exp [q (φ
m − φm

0 )]

(
1 + l

∫ φ

φ0

exp (qφm)

φ
dφ

)−1

where

q =
(m− 2)m−1

2 (m− 1)mm−1
, l =

ψ0m
2

(m− 1) (m− 2)
.

For a thixotropic medium, m must be positive. Then, from equation (1.2), it can be seen
that if at the initial moment there was a zone with a destroyed structure (0 ≤ x ≤ x0), then
at later times the disturbance, under a given boundary condition at x = 0, will not spread
beyond x = x0.

The solvability of the system of equations for φ and ψ in quadratures for the operator
bX2 + dX3 +X7 allows us to explicitly write the corresponding invariant solution:

u = det + bψ−1 (ξ) + c3, µ (λ) = etψ (ξ)

ψ = exp
[
−1/2db−1(ξ + c1)

2
](

b

∫
exp

[
−1/2 db−1(ξ + c1)

2
]
dξ + c2

)
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ξ = x− bet

where c1, c2, c3 are arbitrary constants.
In cases where the system of differential equations for φ and ψ cannot be solved in

quadratures, numerical methods and methods from the qualitative theory of ordinary differ-
ential equations may be used to analyze the corresponding invariant solutions.

The author thanks N.Kh. Ibragimov for discussing the work and providing valuable
comments.
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