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Abstract. The paper deals with an inverse problem of determining the
right-hand side of the linear equation of oscillations of thin plates. The
problem is reduced to the optimal control problem. Existence of the op-
timal control proved. Differentiability of the functional is studied. Nec-
essary condition of optimality is derived.

Keywords. thin plate · inverse problem · optimal control · adjoint
problem · optimality conditions.

Mathematics Subject Classification (2010): 49N45

1 Introduction

Systems described by fourth other differential equations are often arise in mechanics, physics
and applied problems. Therefore, studying of optimal control problems related to fourth or-
der partial differential equations is of great importance in different fields. These equations
are often used in creating dynamic and high accuracy models. These equations can describe
the properties (for example, free vibrations in mechanical systems, elastic motions, etc.) of
various physical systems very accurately. The control of prosses described by these equa-
tions enables to control real systems very accurately and to optimization them.

The study of optimal control problems for fourth order partial differential equations
is very important in terms of development of modern technologies, control of complex
systems and ensuing efficient safe utilization. Such studies have wide applications in various
fields including aerospace, robotics, transport, biomedical engineering and energy fields.
The studies lead to the development of the best control systems and technologies and in
future this will enable to create efficient and safe systems. It is known that vibrations of
thin plates are also described by fourth order partial differential equations. Therefore, the
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study of optimal control problems for the equation of vibrations of thin plates is of great
theoretical and practical interest [3].

There are various methods for finding the coefficients and the right hand sides of fourth
order equation. One of these methods is to approach these problems as an inverse problem,
to reduce them to optimal control problems and solve them by means of the methods of this
theory. This method is called the variational or optimization method. Such problems began
to be studied since the end of the XX century and are currently being intensively studied
[3-10].

2 Statement of the problem

Our needs to find the pair of functions (u, υ) ∈ U × Uad from the relations

ρ
∂2u

∂t2
+∆ (D∆u) + (1− ν)

(
2
∂2D

∂x∂y

∂2u

∂x∂y
− ∂2D

∂x2
∂2u

∂y2
− ∂2D

∂y2
∂2u

∂x2

)
+

+u3 = υ (x, y) f (t) , (x, y, t) ∈ Q, (2.1)

u(x, y, 0) = f0(x, y),
∂u(x, y, 0)

∂t
= f1(x, y), (x, y) ∈ O, (2.2)

u(0, y, t) = 0,
∂u(0, y, t)

∂x
= 0, 0 ≤ y ≤ b, 0 ≤ t ≤ T,

u(a, y, t) = 0,
∂u(a, y, t)

∂x
= 0, 0 ≤ y ≤ b, 0 ≤ t ≤ T,

u(x, 0, t) = 0,
∂u(x, 0, t)

∂y
= 0, 0 ≤ x ≤ a, 0 ≤ t ≤ T,

u(x, b, t) = 0,
∂u(x, b, t)

∂y
= 0, 0 ≤ x ≤ a, 0 ≤ t ≤ T, (2.3)

∫ T

0
K(x, y, t)u(x, y, t)dt = g(x, y), (2.4)

where (x, y) ∈ Ω = {(x, y) : 0 < x < a, 0 < y < b}, t ∈ (0, T ), Q = Ω× (0, T ), ρ(x, y)
is a density of the mass at the point (x, y), h(x, y) is the heath thickness of the plate in the
point (x, y), u(x, y, t) - is deflection of the plate in the point (x, y) at the moment t, ∆ is
Laplace operator with respect to x, y, D = Eh3

12(1−ν2)
- cylindrical rigidity, ν

(
0 < ν < 1

2

)
-

Poisson’s coefficient, E > 0-Young’s modulus,

U =

{
u|u(x, y, t) ∈ C([0, T ] ;

◦
W

2

2(Ω)),
∂u

∂t
∈ C([0, T ] ;L2 (Ω))

}
,

Uad = {ν| υ(x, y) ∈ L2(Ω) : µ0 ≤ υ(x, y) ≤ µ1a.e.on Ω}, f (t) ∈ L2 (0, T ), f0(x, y) ∈
◦
W

2

2(Ω), f1(x, y) ∈ L2(Ω), K(x, y, t) ∈ L∞(Q), g(x, y) ∈ L2(Ω) are given functions,
h(x, y) -is sufficiently smooth given function, a, b, T are given positive numbers, µ0, µ1
given numbers.
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As a generalized solution for the problem (2.1)-(2.3) for each function υ (x, y) from
L2(Ω) we consider the function u(x, y, t) ∈ U such that for any ∀η(x, y, t) ∈ U , η(x, y, T ) =
0 the integral identity∫
Q

[
−ρ∂u

∂t
· ∂η
∂t

+D∆u∆η + (1− ν)

(
2
∂2D

∂x∂y

∂2u

∂x∂y
− ∂2D

∂x2
∂2u

∂y2
− ∂2D

∂y2
∂2u

∂x2

)
η

]
dxdydt−

−
∫
Ω
ρf1(x, y)η(x, y, 0)dxdy +

∫
Q
u3ηdxdydt =

∫
Q
υ (x, y) f (t) ηdxdydt. (2.5)

is fulfilled.
This problem we reduce to the following optimal control problem: to find the minimum

of the functional

J0(υ) =
1

2

∫
Ω

[∫ T

0
K(x, y, t)u(x, y, t, υ)dt− g(x, y)

]2
dxdy, (2.6)

subject to (2.1)-(2.3). The function υ(x, y) is called a control. By u = u(x, y, t, υ) we de-
note the generalized solution of the problem (2.1)-(2.3) corresponding to the control υ(x, y).

We regularize the problem (2.1)-(2.3), (2.6) by the following way: instead of the func-
tional (2.6) consider the next one

Ja(υ) = J0(υ) +
a

2

∫
Ω
υ2(x, y)dxdy, (2.7)

where a > 0 is a positive number.
Let’s assume that by any fixed control υ(x, y) boundary problem (2.1)-(2.3) has unique

generalized solution from U .

3 Existence of the optimal control

Theorem 1. Under the imposed conditions on the problem data, there exists an optimal
control in problem (2.1)-(2.3), (2.7).

Proof. Let’s {υn} ∈ Uad be a minimizing sequence, i.e.

lim
n→∞

Ja(υn) = inf
υ∈Uad

Ja(υ).

It is clear, that
∥υn∥L2(Ω) ≤ const. (3.1)

Taking into account, for solutions of problem (2.1)-(2.3) corresponding to υn, we obtain
the estimation

∥un∥ ◦
W

2

2(Ω)
+

∥∥∥∥∂un∂t
∥∥∥∥
L2(Ω)

≤ const, ∀t ∈ [0, T ] . (3.2)

By virtue of (3.1) and (3.2), property of weak compactness in he Hilbert spaces and
imbedding theorem [13], it is possible to consider, that as n→ ∞

υn → υ0 weakly in L2(Ω),
un → u0 weakly in L6(Q),
un → u0 a.e.on Q,
u3n → u30 weakly in L2(Q),
un → u0, ∂un

∂x → ∂u0
∂x , ∂un

∂y → ∂u0
∂y strongly in L2(Q),
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∂2un
∂x2 → ∂2u0

∂x2 , ∂2un
∂x∂y → ∂2u0

∂x∂y , ∂2un
∂y2

→ ∂2u0
∂y2

weakly in L2(Q).
Considering these relations, in the definition of the generalized solution for the problem

(2.1)-(2.3), by υ = υn, u = un, passing to limit as n→ ∞ we have∫
Q

[
−ρ∂u0

∂t
· ∂η
∂t

+D∆u0∆η + (1− ν)

(
2
∂2D

∂x∂y

∂2u0
∂x∂y

− ∂2D

∂x2
∂2u0
∂y2

− ∂2D

∂y2
∂2u0
∂x2

)
η

]
dxdydt−

−
∫
Ω
ρφ1(x, y)η(x, y, 0)dxdy +

∫
Q
u30ηdxdydt =

∫
Q
η (x, y) f (t) ηdxdydt.

Therefore,
lim
n→∞

Ja(υn) = inf
υ∈Uad

Jα(υ) = Jα(υ0).

It shows, that υ0(x, y) provides the minimum to functional (2.7), i.e. is an optimal con-
trol.

The theorem is proved.

4 Differentiability of the functional (2.7) and necessary and sufficient optimality
conditions

Let us introduce the adjoint to (2.1)-(2.3), (2.7) problem for the given control
υ(x, y) ∈ L2(Ω):

ρ
∂2ψ

∂t2
+∆ (D∆ψ)+(1− ν)

[
2
∂2

∂x∂y

(
∂2D

∂x∂y
ψ

)
− ∂2

∂x2

(
∂2D

∂y2
ψ

)
− ∂2

∂y2

(
∂2D

∂x2
ψ

)]
+

+3u2ψ = −K(x, y, t)

[∫ T

0
K(x, y, t)u(x, y, t)dt− g(x, y)

]
, (x, y, t) ∈ Q, (4.1)

ψ(x, y, T ) = 0, ρ
∂ψ(x, y, T )

∂t
= 0, (x, y) ∈ Ω, (4.2)

ψ(0, y, t) = ψ(a, y, t) = 0,
∂ψ(0, y, t)

∂x
=
∂ψ(a, y, t)

∂x
= 0, 0 ≤ y ≤ b, 0 ≤ t ≤ T,

ψ(x, 0, t) = ψ(x, b, t) = 0,
∂ψ(x, 0, t)

∂y
=
∂ψ(x, b, t)

∂y
= 0, 0 ≤ x ≤ a, 0 ≤ t ≤ T.

(4.3)
From the conditions imposed on the data of the problem (2.1)-(2.3), (2.7) follows that this
ad joint problem has unique generalized solution from the space W 2,1

2 (Q) [11].
To derive the necessary conditions for optimality in the considered problem we take two

arbitrary admissible controls υ(x, y) and υ(x, y) + δυ(x, y). The corresponding solutions
of problem (2.1)-(2.3) are denoted by u(x, y, t; υ) and u(x, y, t; υ + δυ) ≡ u(x, y, t; υ) +
du(x, y, t). Then δu(x, y, t) = u(x, y, t; υ+δυ)−u(x, y, t; υ) is a solution of the boundary
value problem

ρ
∂2(δu)

∂t2
+∆(D∆(δu)) + (1− ν)

[
2
∂2D

∂x∂y

∂2(δu)

∂x∂y
− ∂2D

∂x2
∂2(δu)

∂y2
−

∂2D

∂y2
∂2(δu)

∂x2

]
+ 3(u+ θδu)2δu = f (t) δυ, (4.4)

δu(x, y, 0) = 0,
∂(δu(x, y, 0))

∂t
= 0, (4.5)
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δu(0, y, t) = δu(a, y, t) = 0,
∂(δu(0, y, t))

∂x
=
∂(δu(a, y, t))

∂x
= 0,

δu(x, 0, t) = δu(x, b, t) = 0,
∂ (δu (x, 0, t))

∂y
=
∂ (δu (x, b, t))

∂y
= 0, (4.6)

0 ≤ θ ≤ 1.
Let’s show that

∥δu∥ ◦
W

2

2(Ω)
+

∥∥∥∥∂δu∂t
∥∥∥∥
L2(Ω)

≤ C∥δυ∥L2(Ω), ∀t ∈ [0, T ] . (4.7)

For this purpose, we use Faedo-Galerkin’s method. Take the basis {ωi(x, y)}∞i=1 from
◦
W

2

2(Ω) where the system {ωi(x, y)}∞i=1 is orthonormal in L2(Ω) and the approximate so-
lution for the problem (4.4)-(4.6) search in the form

δuN (x, y, t) =
N∑
i=1

cNi (t)ωi(x, y)

from the equalities∫
Ω
ρ
∂2δuN

∂t2
ωj(x, y)dxdy +

∫
Ω
D∆δuN∆ωj(x, y)dxdy+

+(1− ν)

∫
Ω

(
2
∂2D

∂x∂y

∂2δuN

∂x∂y
− ∂2D

∂x2
∂2δuN

∂y2
− ∂2D

∂y2
∂2δuN

∂x2

)
ωj(x, y)dxdy+

+3

∫
Q
θ2

(
δuN

)3
ωj (x, y) dxdydt+

+3

∫
Q

[
(u+ θδuN )

2
δuN − θ2

(
δuN

)3]
ωj (x, y) dxdydt =

=

∫
Ω
f (t) δυωj(x, y)dxdy, 1 ≤ j ≤ N, (4.8)

cNi (0) = 0,
d

dt
cNi (t)

∣∣∣∣
t=0

= 0.

Both sides of (4.8) multiply by d
dtc

N
j (t) and sum over j from 1 to N . Then we get

1

2

d

dt

∫
O

[
ρ

(
∂δuN

∂t

)2

+D
(
∆δuN

)2
+

3θ2

4

(
δuN

)4]
dxdy =

= −(1− ν)

∫
Ω

(
2
∂2D

∂x∂y

∂2δuN

∂x∂y
− ∂2D

∂x2
∂2δuN

∂y2
− ∂2D

∂y2
∂2δuN

∂x2

)
∂δuN

∂t
dxdy−

−3

∫
Q

[
(u+ θδuN )

2
δuN − θ2

(
δuN

)3] ∂δuN
∂t

dxdydt+

+

∫
Ω
f (t) δυ

∂δuN

∂t
dxdy.
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If to integrate this equality over t by the imposed conditions we get∫
Ω

[(
∂δuN (x, y, t)

∂t

)2

+
(
∆δuN (x, y, t)

)2
+

3θ2

4

(
δuN

)4]
dxdy ≤

+C

∫ t

0

∫
Ω

[∣∣∣∣∂2δuN∂x2

∣∣∣∣2 + ∣∣∣∣∂2δuN∂y2

∣∣∣∣2 + ∣∣∣∣∂2δuN∂x∂y

∣∣∣∣2
]
dxdyds+

+C

∫ t

0

∫
Ω

∣∣∣∣∂δuN (x, y, t)

∂t

∣∣∣∣2dxdyds+
+C

∫ t

0

∫
Ω

∣∣δuN ∣∣ ∣∣∣∣∂δuN (x, y, t)

∂t

∣∣∣∣ dxdyds+
+ C

∫ t

0

∫
Ω

∣∣δuN ∣∣2 ∣∣∣∣∂δuN (x, y, t)

∂t

∣∣∣∣ dxdyds+ C

∫ t

0

∫
Ω
|δυ|2|f (t)|2dxdyds ≤

≤ C

∫ t

0

∫
Ω

∣∣δuN ∣∣2dxdyds+C ∫ t

0

∫
Ω

∣∣δuN ∣∣4dxdyds+C ∫ t

0

∫
Ω

∣∣∣∣∂δuN (x, y, t)

∂t

∣∣∣∣2dxdyds+
+C

∫ t

0

∫
Ω

[∣∣∣∣∂2δuN∂x2

∣∣∣∣2 + ∣∣∣∣∂2δuN∂y2

∣∣∣∣2 + ∣∣∣∣∂2δuN∂x∂y

∣∣∣∣2
]
dxdyds ≤

≤ C

∫ t

0

∫
Ω

[(
δuN (x, y, s)

)2
+

(
∂δuN (x, y, s)

∂t

)2

+

+

(
∂δuN (x, y, s)

∂x

)2

+

(
∂δuN (x, y, s)

∂y

)2

+

+

(
∂2δuN (x, y, s)

∂x2

)2

+

(
∂2δuN (x, y, s)

∂x∂y

)2

+

(
∂2δuN (x, y, s)

∂y2

)2
]
dxdyds+

+C

∫ t

0

∫
Ω

∣∣δuN ∣∣4dxdyds+ C∥δυ∥2L2(Ω),∀t ∈ [0, T ] ,

where byC the constants not depending on the estimating quantities and admissible controls
are defined.

Due to equivalency of the norms in
◦
W 2

2 (Ω) we obtain∫
Ω

[∣∣δuN (x, y, t)
∣∣4 + (

δuN (x, y, t)
)2

+

(
∂δuN (x, y, t)

∂t

)2

+

+

(
∂δuN (x, y, t)

∂x

)2

+

(
∂δuN (x, y, t)

∂y

)2

+
(
∆δuN (x, y, t)

)2]
dxdy ≤

≤ C

∫ t

0

∫
Ω

[∣∣δuN (x, y, t)
∣∣4 + (

∂δuN (x, y, s)

∂t

)2

+

(
∂δuN (x, y, s)

∂x

)2

+

(
∂δuN (x, y, s)

∂y

)2

+

+

(
∂2δuN (x, y, s)

∂x2

)2

+

(
∂2δuN (x, y, s)

∂x∂y

)2

+

(
∂2δuN (x, y, s)

∂y2

)2
]
dxdyds+C∥δυ∥2L2(Ω).

(4.9)
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Following to known inequality [13]∫
Ω

[(
∂2δuN

∂x2

)2

+

(
∂2δuN

∂x∂y

)2

+

(
∂2δuN

∂y2

)2
]
dxdy ≤

≤
∫
Ω

[
∂2δuN

∂x2
+
∂2δuN

∂y2

]2
dxdy

from (4.9) we have∫
Ω

[∣∣δuN (x, y, t)
∣∣4 + (

δuN (x, y, t)
)2

+

(
∂δuN (x, y, t)

∂t

)2

+

+

(
∂δuN (x, y, t)

∂x

)2

+

(
∂δuN (x, y, t)

∂y

)2

+

(
∂2δuN (x, y, t)

∂x2

)2

+

+

(
∂2duN (x, y, t)

∂x∂y

)2

+

(
∂2δuN (x, y, t)

∂y2

)2
]
dxdy ≤

≤ C

∫ t

0

∫
Ω

[(
δuN (x, y, s)

)4
+
(
δuN (x, y, s)

)2
+

(
∂δuN (x, y, s)

∂t

)2

+

+

(
∂δuN (x, y, s)

∂x

)2

+

(
∂δuN (x, y, s)

∂y

)2

+

(
∂2δuN (x, y, s)

∂x2

)2

+

+

(
∂2δuN (x, y, s)

∂x∂y

)2

+

(
∂2δuN (x, y, s)

∂y2

)2
]
dxdyds+ C∥δv∥2L2(Ω).

Application of the Gronwall’s lemma leads to∫
Ω

[∣∣∂δN ∣∣4 + (
δuN (x, y, t)

)2
+

(
∂δuN (x, y, t)

∂t

)2

+

(
∂δuN (x, y, t)

∂x

)2

+

(
∂δuN (x, y, t)

∂y

)2

+

(
∂2δuN (x, y, t)

∂x2

)2

+

+

(
∂2δuN (x, y, t)

∂x∂y

)2

+

(
∂2δuN (x, y, t)

∂y2

)2
]
dxdy ≤

≤ C∥δv∥2L2(Ω), ∀t ∈ [0, T ] . (4.10)

From this we get∥∥δuN∥∥
◦
W

2

2(Ω)
+

∥∥∥∥∂δuN∂t

∥∥∥∥
L2(Ω)

≤ C∥δv∥2L2(Ω),∀t ∈ [0, T ] . (4.11)

As follows from this inequality from the sequence
{
δuN (x, y, t)

}
one can chose a sub-

sequence (which is also denoted by
{
δuN (x, y, t)

}
) that converges weakly in U to some

function δu(x, y, t) by N → ∞.
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Then, by the weak lower semi-continuity of the norm in the Banax space (4.11) implies
estimate (4.7).

Theorem 2. Let’s the conditions of the Theorem 1 be satisfied. Then functional (2.7) is
continuously Frechet differentiable on Uad and its differential in the point ∀υ ∈ Uad at the
increment δυ ∈ L2(Ω), υ + δυ ∈ Uad is defined by the expression〈

J
′
α(υ), δυ

〉
=

∫
Ω

[
αυ (x, y)−

∫ T

0
f (t)ψ(x, y, t)dt

]
δυdxdy.

Proof. Let’s calculate the increment of the functional Jα(υ):

∆Jα (υ) = Jα (υ + δυ)− Jα (υ) =

=
1

2

∫
Ω

(∫ T

0
K (u+ δu) dt− g (x, y)

)2

dxdy − 1

2

∫
Ω

(∫ T

0
Kudt− g (x, y)

)2

dxdy+

+
α

2

∫
Ω

[
(υ + δυ)2 − υ2

]
dt =

=

∫
Ω

[(∫ T

0
Kudt− g (x, y)

)∫ T

0
Kδudt

]
dxdy + α

∫
O
υδυdt+R1, (4.12)

here

R1 =
1

2

∫
Ω

(∫ T

0
Kδudt

)2

dxdy +
α

2

∫
Ω
(δυ)2dt

is remainder term.
Taking into account (4.7), we obtain

R1 ≤ C∥δυ∥2L2(Ω). (4.13)

Since δu is a generalized solution of the problem (4.4)-(4.6), for arbitrary function
η(x, y, t) ∈ U , η(x, y, T ) = 0,

η(0, y, t) = 0,
∂η(0, y, t)

∂x
= 0, η(x, 0, t) = 0,

∂η(x, 0, t)

∂y
= 0,

η(a, y, t) = 0,
∂η(a, y, t)

∂x
= 0, η(x, b, t) = 0,

∂η(x, b, t)

∂y
= 0.

is valid integral identity∫
Q

{
−ρ∂(δu)

∂t

∂η

∂t
+D∆(δu)∆η + (1− ν)

[
2
∂2D

∂x∂y

∂2(δu)

∂x∂y
− ∂2D

∂x2
∂2(δu)

∂y2
−

∂2D

∂y2
∂2(δu)

∂x2

]
η + 3(u+ θδu)2δuη

}
dxdydt =

∫
Q
f(t)δυηdxdydt. (4.14)

Similarly, since ψ(x, y, t) is a solution of the problem (4.1)-(4.3), for any function
χ(x, y, t) ∈ U , χ(x, y, 0) = 0,

χ(0, y, t) = 0,
∂χ(0, y, t)

∂x
= 0, χ(x, 0, t) = 0,

∂χ(x, 0, t)

∂y
= 0,

χ(a, y, t) = 0,
∂χ(a, y, t)

∂x
= 0, χ(x, b, t) = 0,

∂χ(x, b, t)

∂y
= 0
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we have ∫
Q

{
−ρ∂ψ

∂t

∂χ

∂t
+D∆ψ∆χ+(1− ν)

[
2
∂2D

∂x∂y
ψ
∂2χ

∂x∂y
− ∂2D

∂x2
ψ
∂2χ

∂y2
−

−∂
2D

∂y2
ψ
∂2χ

∂x2

]
+ 3u2ψχ

}
dxdydt =

−
∫
Q
K(x, y, t)

[∫ T

0
K(x, y, t)u(x, y, t)dt− g(x, y)

]
χdxdydt. (4.15)

If in (4.14) to take ψ(x, y, t) instead of η(x, y, t), and in (4.15) to take δu(x, y, t) instead
of χ(x, y, t) and subtract (4.14) from (4.15) we obtain∫
Ω

(∫ T

0
Kudt− g(x, y)

)∫ T

0
Kδudxdydt =

∫
Q
3θ

[
2uδu+ θ(δu)2

]
δuψ(x, y, t)dxdydt−

−
∫
Q
f(t)ψ(x, y, t)δυ (x, y) dxdydt. (4.16)

Then from (4.12) and (4.16) follows

∆Jα(υ) = α

∫
Ω
υδυdt−

∫
Q
f(t)ψ(x, y, t)δυ (x, y) dxdydt+R, (4.17)

here
R = R1 +R2,

R2 =

∫
Q
3θ

[
2θδu+ θ (δu)2

]
δuψ(x, y, t)dxdydt.

Taking into account (4.7), we obtain

|R2| ≤ C∥δυ∥2L2(Ω). (4.18)

Then from formula for increment of the functional (4.17) follows that differential of
functional (2.7) is calculate by formula〈

J
′
α(υ), δυ

〉
=

∫
Ω

[
αυ (x, y)−

∫ T

0
f (t)ψ(x, y, t)dt

]
δυdxdy. (4.19)

Then as follows from (4.19) the gradient of the functional has a from

gradJα (υ) = αυ (x, y)−
∫ T

0
f (t)ψ(x, y, t)dt.

Thus due to known theorem from [14, pp. 28] in order to the control function υ∗(x, y)
was optimal, it is necessary fulfillment of the inequality∫

Ω

[
αυ∗ (x, y)−

∫ T

0
f(t)ψ(x, y, t)dt

]
(υ(x, y)− υ∗(x, y)) dxdy ≥ 0∀υ ∈ Uad. (4.20)

Thus the following theorem is proved.
Theorem 3. Let’s the conditions of the Theorem 1 be satisfied. Then for the optimality of

the control υ∗ ∈ Uad in problem (2.1)-(2.3),(2.7) it is necessary fulfilment of the inequality
for arbitrary υ = υ(x, y) ∈ Uad, here u∗(x, y, t) and ψ∗(x, y, t) are solutions of problems
(2.1)-(2.3), (4.1)-(4.3) correspondingly.
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