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Abstract. The paper considers the flow of a gas-liquid mixture in a hor-
izontal pipe, considering the influence of gas concentration on density
and viscosity. The problem is approached using a variational approach
based on the Pontryagin maximum principle. The optimal distribution
of gas concentration across the pipe section has been determined, min-
imizing the kinetic energy of the flow. It is demonstrated that at specific
ratios of gas and liquid viscosities, a phenomenon known as the wall
effect occurs - the formation of a gas layer adjacent to the pipe wall.
This layer acts as a “gas bearing”, reducing the hydraulic resistance
of the flow. The findings provide a theoretical framework for the experi-
mentally observed increase in the flow rate of the gas-liquid mixture at
pressures close to the nucleation pressure.
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1 Introduction

It is known that when various suspensions move in a liquid stream, so-called wall-to-wall
or axial effects can occur [12]. Such effects are related to the relative movement of the sus-
pension particles and the carrier medium and consist in the fact that the suspension particles
migrate to the walls or to the axis of the pipe. Experimental detection of various hydro-
dynamic effects was obtained in [6, 7]. The axial effect has been established in theoretical
works [9, 10]. In [3], the existence of a wall effect during the movement of solid particles

Robert Z. Nurgaliyev
Associations of Small Oil Companies of the Republic of Bashkortostan, Ufa, Bashkortostan, Russian Federation,
E-mail: nuracaro@yandex.ru

Olga G. Kantor
Ufa State Petroleum Technological University, Ufa, Bashkortostan, Russian Federation,
E-mail: o_kantor@mail.ru

Gulnar M. Salmanova
Karabakh University MSE AR, Khankendi, Azerbaijan



42 On the wall effect in the gas-liquid mixture flow in pipes

suspended in a viscous liquid was proved. In this paper, the motion of a gas-liquid mix-
ture in a horizontal pipe is investigated. The effect of the amount of gas on the dynamics
is reduced to the functional dependence of the density and viscosity of the mixture on the
gas concentration. The problem is considered in a variational formulation, with the control
being the distribution of concentration over the pipe section.

The optimal concentration distribution is found from the condition of a minimum of
kinetic energy, which is converted into internal energy. The optimal distribution found in-
dicates the presence of a gas layer at the pipe wall, i.e., there is a wall effect [2, 13]. The
appearance of such a “gas bearing” leads to a decrease in the hydraulic resistance of the
mixture, which could be explained by the experimentally detected significant increase in
the flow rate of the gas-liquid stream at pressure levels close to the nucleation pressure [1,
4, 14].

2 Variational formulation and optimal control (Pontryagin’s principle)

Consider the pressure of a gas-liquid mixture in a circular tube of radius . The gas con-
centration is denoted by C'. The gas-liquid mixture will be considered as a continuous, com-
pressible liquid medium, the motion of which is described by the Navier-Stokes equation.
The viscosity 7; and density p of this medium at each point with cylindrical coordinates
(z, 1) are functions.

We will consider the motion to be steady and having axial symmetry. We denote by
v, w, p, respectively, the velocity in the direction of the z-axis, the velocity in the direction
perpendicular to the z-axis, and the pressure of the mixture. Under the assumptions made:

oP
uzu(rl),czc(rl),OgrlgR,wEO,a—:—k(k>()) 2.1
xr
Consider an arbitrary cylinder whose axis coincides with the x axis, the length of the gen-
eratrix is L, and the radius of the base is R. From the condition of the balance of forces of
friction and pressure, as well as from the condition of adhesion on the pipe wall, we have:

kmLr} 4+ 2mLry 3:771 (¢)=0, u(R)=0 (2.2)
1
From (2.2) we find
kT ed T T ede
u(rl):—2/n(c);m:—/ﬂkp(c)n/n(c)dr (2.3)
R 0 R

where m is the mass flow rate of the gas—liquid mixture. We assume that the amount of gas
in the cross section is equal to the known constant F, i.e.

R
27 / c(ryrdr=FE (2.4)

0

Consider the problem of determining a piecewise continuous and bounded on [0, R]
function ¢ (r), 0 < ¢(r) < 1, which maximizes m under conditions (2.2), (2.4). note that
maximizing mass consumption is equivalent to minimizing kinetic energy.

After entering the dimensionless values:
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we get the following optimal control problem

1 T
M = /rp (c)/i?f) - min (2.5)
0 1
when limited
1
F = /rc (r)dr (2.6)

0

The constraint 0 < ¢ < 1 implies that in order for the problem to have a solution, it is
necessary that 0 < F < 1/2.

Similarly, as in [8], we formulate the problem in a convenient way for applying the
Pontryagin maximum principle [11]. Let {zo (r), z1 (r)} be the solution of the following
system

dl‘l

= =Sl =clr)r, 21(0)=0 2.7)
d y d
;:f):fo(r,c)zr.p(c)./%7 79 (0) =0 (2.8)
1

Find a control ¢ () under the influence of which the phase point (x1, ) will move
from point (0, 0) to point (F, 1), while the functional will take the smallest value.
The Hamilton-Pontryagin functional [11] of the formulated problem has the form:

H = o fo+1fi, (2.9)

where (19, 11) is the solution of the following conjugate system:

o _ OH _ O OH _
or  dxo | Or Oy’ o (0) = —1. (2.10)
Hence, we have
Yo = —1, 1 = A= Const.

Considering in (2.9) we get

T

H:—T‘p(c)-/fc(lf)—f—Aw-c. (2.11)
1

For any r € [0;1], A € [0;00] considering ¢ € [0;1] as a numerical function, we find
c(r; A) € [0;1], which maximizes the function (2.11). The same ¢ will be the maximum
for the function:

h(c) = 2[;((00)) (1-r)+A4-c

The optimal value of the constant A is found from the condition:

1
F = /c(r, A*) rdr. (2.12)
0
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Note that the existence of a solution to the formulated problem follows from physical
considerations. Therefore, it follows from the Pontryagin maximum principle that the solu-
tion will be among the found controls ¢ (r, A*).

We assume that there is a wall effect if for the solution ¢ () there exists ¢ > 0, such that
(ry=1,forl—e<r<1.

The following theorem is valid.

Let 1 — & < r < 1 be a continuous function on [0;1] and f (1) exists. Then for any

Fe (“T(O) ; %] there is a wall effect, where:

c1(0) = sup {f(f) = max f(:v)} (2.13)
gelos1] o=l
Proof. We denote
= h(c) A
_ — = . 2.14
RO = 1o = Q)+ e = () 4500, 214
where z = ﬁﬁ. Let ¢ () € [0;1] represent the maximum of the function h (¢) (the
existence of such a point follows from the Weierstrass theorem). Since,
A
c1 (1—7“2> =c(r,A), (2.15)

then from (2.12) we get

1 1 oo 00

A
F= /crArdr—/c (1—r2> dr—/q( 22 2/
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The function ¢; (2) is monotonically increasing and 0 < ¢; (z) < 1. Therefore, for any

dz (2.16)

A > 0, there is an improper integral f = < 0.

At any point A € (0, oo), the function f L is continuous, as can be seen from
the following estimate:

A+ e

a(z)d
/ ol d) ‘_M‘%o for -5 0. 2.17)
Thus o
2= / a2 g (2.18)
A

a continuous function on (0, o). Calculate Hmo D(A)
—

. . c1(2)
1 P(A) =1 2.1
lim @ (A) = lim— (2.19)

Since f (0) = 1/2, there exists a > 0 such that for z < ¢, ¢ (z) = ¢1 (0) where ¢; (0) is
the point representing the maximum of the function f.

lim & (4) =1 (0) /2
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It is clear from the form of the function h (c) that there exists A < oo such that for any
A> A, c1(z) =1.Let A be the smallest of such numbers.
Then

$(A) =

|

A
c1(z) A -1
d —, ®(A) == 2.20
[ =g e
A

It is clear that c1 (0) /2 < 1/2. due to the continuity of @, it follows that for any F' €
[c1 (0) /2;1/2] equation & (A) = F has a solution of 0 < A < A. In this case, A > 0
if F' # ¢;1(0) /2. We prove that for any A > 0 there exists such an £4 > 0, that for any
r €[l —eyu;1], c(r) =1, where ¢ (r) provides the maximum. By the assumption of the
theorem ‘f' (1)

forany c € [0;1]:

< 00, i.e. it is possible to choose such an integer n > 1, which means that

flo)<fM)e+n-(1—-c¢), (2.21)
obviously, otherwise there is a sequence {c,, } such that:
flen)>2f)-cn+n-(1—cy), n=1, 2, ... (2.22)
Choose {{nx}, k=1,2,..., that lim ¢, = cx € [0;1].
n—o0

Since 1 — ¢, < f(flzk) — % - Cp,,, We proceed to the limit at £ — oo

1 —¢Coo <0, co = 1.
Then from (2.22) we have
f (Cn) B f (1)

cn— 1

< —(n—f(1)). (2.23)

If in (2.23) we go to the limit at n — oo, we get a contradiction with the assumption made
| /" (1)| < oo, which proves the validity of (2.21). Considering (2.21) from (2.11), we have

h(c)g[f(l)—k }-c—kn(l—c): f()+ —rlc+n (2.24)

1—1r2 1—1r2

It can be seen from (2.24), that 12 > 1 — A/ (n — f (1)), c(r) = 1 (we assume that

n > f(1)).
Thus, for any F' € (¢1 (0) /2; 1/2) of the equation @ ( A) = F has a solution A, > 0,
for which there is a wall effect. The theorem has been proved.

Example:

Letp(c) =1—¢, n(c)=¢/(e+c), wheren (1) = 5 is the ratio of the viscosity of
the gas to the viscosity of the liquid.

The function & (c) from (2.11) has the form:

h(c):%g(l—c)(c+5) (1-r%) +A-c

An elementary analysis shows that

l—¢ e-A 2e A
Loe 4 =4 0<r(/1- 24

c(r,A)={ °? 1""2“ < e (2.25)
1Ly /1-15(r<1
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The optimal value of parameter A is the solution of the equation

l—¢e ¢ € 2cA
A) = —A—-_-Al =F 2.2
o) =——+34-3 n(l—l—s) (2:26)
Equation (2.26) has a solution A € [0; (1 +¢) /2¢] for any F' € [135;1]. For F =
%, A = 0 and as can be seen from c(r, A) = (1 —¢) /2, i.e. there is no wall effect.

However, forany F € (152 ; 1], A € (0; 1£] and parietal effect. If F € [0; 132), then

equation (??) has no solution A € [0; 12—?]

How easy it is to check ¢1 (0) = 15=.

Thus, in the course of the conducted research, a mathematical model of a gas-liquid mix-
ture flow in a horizontal pipe has been developed, where the density and viscosity depend
on the gas concentration. It was found, that the variational problem of optimal distribution
of gas concentration over the pipe section is posed and solved using the Pontryagin max-
imum principle. The optimal distribution is found, which minimizes the kinetic energy of
the flow, which turns into internal energy [5, 15]. Theoretically, it is shown that the optimal
solution corresponds to the existence of a gas layer at the pipe wall - the wall effect. The
conditions under which the effect exists are derived: it manifests itself if the ratio of the
viscosity of the gas to the viscosity of the liquid exceeds a certain threshold value. An an-
alytical example has been carried out, demonstrating that at certain parameters of viscosity

and gas concentration, the wall effect is realized, while at others it disappears.

3 Conclusions

Spontaneous formation of a wall gas layer caused by internal hydrodynamic processes is
possible in gas-liquid mixtures.

The resulting gas layer plays the role of a “gas bearing”, which reduces friction between
the flow and the walls of the pipe.

The presence of a wall effect leads to a decrease in hydraulic resistance and, conse-
quently, to an increase in the consumption of the mixture.

The theoretical results are consistent with experimental observations of an increase in
flow rate at pressures close to the nucleation pressure.

The findings can be used to explain and predict the behavior of two-phase flows in
pipeline systems, as well as to optimize transport processes in the chemical and oil and gas
industries.
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