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Abstract. The paper is devoted to modeling the process of gas injection
into an aquifer. The key element of the model is to take into account the
Archimedes force as an external mass force acting on the gas volume
from the underlying water. This force is added to the Darcy filtration law
and on this basis the stabilization of the top of the gas volume during
gas injection into the upper region of a horizontal aquifer is justified.
The task of determining the rate of gas surfacing and spreading at the
formation roof.
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1 Introduction

Control of filtration processes during gas injection into reservoir systems is one of the key
tasks of modern underground hydro-gas dynamics. This problem has a wide range of prac-
tical applications: from the creation and operation of underground gas storage facilities in
aquifers and the management of gas caps in oil fields to promising technologies for geo-
logical disposal of carbon dioxide (co2) in order to reduce greenhouse gas emissions. In
all these cases, the ability to predict the behavior of the light (gas) phase after its injection
into a porous medium saturated with a heavier fluid phase, usually water, is of fundamental
importance.

Classical filtration models based on Darcy’s law often treat the fluid as a homogeneous
medium or take into account gravitational effects in the framework of standard two-phase
filtration equations [2]. However, when the gas volume locally forms a macroscopic cluster
(’bubble”) in the underlying water-saturated medium, a physical effect occurs that requires
separate consideration. We are talking about the Archimedean force acting on a body im-
mersed in a liquid, which can be interpreted as an external mass force in the framework
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of the continuum approach. This force is not an internal property of the phases, but arises
solely as a result of their interaction in the gravitational field and has a determining effect
on the vertical migration of the gas cluster.

Existing approaches to modeling gas injection do not always adequately take into ac-
count this mechanism [8-10]. Ignoring the explicit consideration of the Archimedean force
as a driving factor can lead to significant errors in the forecasts of the gas front rise rate,
the shape of its contact with a water-saturated reservoir, and, most importantly, the condi-
tions for its stabilization near an impenetrable roof. Thus, there is a scientific and practical
problem associated with the development of a physically sound and mathematically cor-
rect model that would integrate the mechanism of Archimedean ascent into the standard
apparatus of filtration theory.

2 Problem statement.

Consider a solid body T with volume (2 and weight G, which is completely submerged in
a liquid at rest. According to Archimedes law, a buoyant force A, equal to the weight of the
liquid displaced by the body, acts on the body through its surface > from the side of the
liquid G ;. In this case, the line of action of the Archimedes force A passes through the center
of mass of the displaced liquid (Fig. 2.1, b). The Archimedes force A is a hydrostatic force
that occurs due to an uneven distribution of pressure in the liquid (pressure increases with
depth). For a floating body, the hydrostatic lifting force of Archimedes will be determined
in terms of a closed surface ) consisting of the wetted surface of the body and the cross-
sectional area of the body volume by a horizontal plane coinciding with the level of the
liquid at rest. B

We note that the expression for the Archimedean force A is obtained by applying the
Gauss-Ostrogradsky theorem from the theory of analysis of continuous functions. A solid
body (like a liquid) is represented as a system of material points that continuously fill a
certain part of space.

a) b) c)

A=4 GzAz06
Fig. 2.1 Archimedean force acting on a body submerged in a liquid

In this case, it is necessary (Fig. 2.1, b) to mentally replace the volume of a body immersed
in a liquid with the same volume of a resting liquid with density and pressure distributions
satisfying the equilibrium equations. It is quite obvious that the equilibrium of the fluid
surrounding the body will not be disturbed (the force A will not change). For the filled
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volume W of a liquid, as for a part of a single liquid space, the Gauss-Ostrogradsky formula
is used, which makes it possible to convert the surface integral of the pressure P over the
surface ) _ of the selected volume W into the volume integral of the pressure P over the same
volume W. In this case, there is a transition from surface pressure forces to the category of
volume (mass) forces.

The expression for the hydrostatic lifting force of Archimedes in vector form is repre-
sented as [2]:

A:/Pﬁdaz—/gradeT:—/deT. 2.1)

> Q Q

O If Fis the gravity density vector, and the z axis is directed vertically upwards, then

F = gk; then

A= / pgk dr = -Gy, (2.2)
N

where GTtiS the weight of the liquid contained in the volume (2.

Note (explanation) to expression (2.1):

The equality of the first and second integrals expresses the content of the Gauss-Ostrogradsky
theorem (Fig 2.1., a and b).

The equality of the second and third integrals expresses the equilibrium state of the
extracted volume §2; (Fig. 1, b) of the liquid in accordance with the Euler equations:

oP oP oP

ox Prys 5,

F
ay pPr 2,

where: I, F,, F.- projections of the density vector Fof massive forces;

p- density of the liquid. -

Thus, the vector of the Archimedean force A, as the resulting vector of surface forces
acting on a body immersed in a liquid, is equal to and opposite to the vector of gravity Gijc
of the volume {2 of the liquid displaced by the body, i.e., the liquid mentally introduced
into the surface > of the volume §2; A = Gy. The latter is the main vector of vertical
gravity forces 0G ¢ of liquid masses of elementary volumes 642, i.e. Gy = > dG;. Since
the vector A is balanced by a force ?f, i.e. it is balanced by a system of gravity forces

§G; of elementary volumes of a liquid, therefore A we will also consider the Archimedean
force as the resulting vector distributed over the entire volume in the form of elementary
Archimedean forces § A equal to and opposite to the forces of gravity 0G; — 6G§ = §A),
(ie. A=Y 0A.

As a result, we note that for each * element of the volume dW of a body immersed in a
liquid, two forces act: dG7 |1 A (Fig. 1, b).

G - the gravity of the body, as a result of direct (direct) manifestation of the gravita-
tional field.

A - the Archimedes force, as a result of the indirect (opposite) manifestation of the
gravitational field through the fluid displaced by the body.

In addition, we note that the surface forces acting on a body immersed in a liquid during
the movement of the liquid will depend and be determined not only by the hydrostatic
pressure, which in the general case will be part of the total pressure [6].

All of the above regarding the Archimedean force acting on a body immersed in a liquid
is fully transferred to any other type of medium (liquid, gas, placed in a denser liquid).
In this case, the principal vector A of the Archimedean force acting from the side of the
resting liquid on the surface of the submerged volume W of the considered liquid will be
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determined in the same way. The study of the manifestation of Archimedean forces in this
case is of particular importance for the transition to the region of liquid and gas filtration in
a porous medium, where Darcy’s law is decisive [11].

To Darcy’s Law.

Consider a certain volume of gas hypothetically located at the roof of an aquifer (Fig.
2.2). Under the action of Archimedean forces, gas will float up and spread out at the top
of the formation, thereby changing the shape of the gas volume. We will consider the gas
volume as the mass volume of gas submerged in the aquifer region of the formation and
bounded from below by the contact surface with the underlying reservoir water, and from
above by the surface of the formation roof [1, 13].

We will consider the manifestation of the Archimedean forces of gas ascent as external
mass forces in terms of elementary Archimedean forces J A acting on the gas mass in each
of its elementary volumes ¢ §2. Let’s select the elementary volume of the reservoir in the
gas zone in the form of a rectangular parallelepiped with a volume of §{2 = dxdydz. The
gas contained in this volume is affected by gravity §G and the Archimedean force SA.

g4

Z i

: &l 7 I . fur
water } ah

Fig. 2.2 Gas volume located at the top of a water-saturated aquifer

We have: 6G, = - 692 = prg dedydz - m;
0A = - 082 = pyg dedydz - m;

where: pr, py, is the density of the floating gas and underlying water, respectively.
m is the porosity coefficient of the formation.
Gas gravity and Archimedean force densities:

oGy prgmdéf2
ToM prme2 P

Zg
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We mark it. Darcy’s law, according to which the projections of the filtration rate of an

incompressible liquid (gas) on the coordinate axes (without taking into account mass forces)
have the form:

ZA 2.3)

vo ko oy kOp o kO 2.4)
p Oy

oz’ w oz’
where k is the permeability coefficient of the porous medium;
w1~ absolute viscosity coefficient of the liquid.
The Euler equations for the motion of an ideal fluid (without convective terms) in re-
lation to a porous medium, when the friction forces of the fluid on the surface of grains
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composing the porous medium were classified as volume (mass) forces distributed over the
entire volume of the porous medium, take the form (N. E. Zhukovsky’s equations):

98— pay — pra =0
o — py1 —pya =0, 2.5)
oP

5, —prx1—pz2=20

where: z1, y1, 21 - projections of external mass forces related to the unit mass of the liquid
(density of mass drag forces).

From equations (2.3), taking into account expressions (2.2), we obtain the expression of
projections of the filtration rate according to Darcy’s law, taking into account mass forces

__k(op _ k(o _ k(o
Ve = ,u<8x P$1>7V:y— u((?y Pyl>,Vz— M<8z le)« (2.6)

In our case, the mass forces 6G3 and dAare projected only on the axis z. Therefore,
the velocity expression V, is supplemented with a term that takes into account the action of

the Archimedean force:
k (Op
‘/;; = —; <8z —ngg —ngA> .

Given (2.1), we get (the z-axis is directed upwards):

where v = v, — 74;

Vv, Yg— the volume weight of water and gas, respectively.

As a result, the projections of the filtration rate (2.6) according to Darcy’s law, taking
into account mass forces, take the form:

_k dp

Vx = 4.
fig O

y =

2 =

k Op k (8]9
- =V
g Oy Iig

—+Ay).
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—+ Ay — with the axis zpointing downwards.
— A~ — with the axis zpointing up.
If we ignore the value ~,, since 7, < 7, then the velocity projection expression V,

takes the form:
k [0
‘/vz T <p j: ’YU> ’
g \ 0z

that is, we have in Darcy’s law a clear manifestation of the Archimedean force through +,,
displacing the reservoir fluid (water).
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3 To the problem of gas injection.

Let us consider in general terms the manifestation of the Archimedean force during gas
injection into a horizontal partially opened aquifer (in relation to the problem of possible
creation of underground gas storage facilities in such reservoirs) [7].

A horizontal aquifer with a thickness of h, which is opened to a depth of b, is injected
with gas, which is incompressible under reservoir conditions (Fig. 3.1). The problem of
forming a gas volume is extremely difficult, since it is associated with a mobile gas - water
interface and the unknown shape of the interface itself. However, it can be assumed that in
the process of injecting gas into the formation with a certain volume flow () = Const rate,
it is possible to stabilize the top A of the gas volume; in this case, the injected gas will be
located (pushing water) in the zone adjacent to the formation roof. We assume that when
gas is injected into the reservoir, its pressure p = P (r, z) in the gas zone will be known
at some point in time. This pressure along the well axis p = P (o, z) will decrease as you
move away from the injection well. We find a condition under which gas particles at the top
A of the gas volume can become stationary. Finding this condition is similar to determining
the condition of immobility of the top of a water cone during oil extraction from a reservoir
underlain by reservoir water [3, 5].

x
N
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Fig. 3.1 Gas injection into a horizontal aquifer and stabilization of the gas volume top

Two assumptions for the gas injection process when the gas volume of vertex A is sta-
bilized:

1. The moving interface of the AC will have a concave section of the ACC and a convex
CS with an inflection point “C” at the bottom of the well.

2. In the aquifer region of the formation, a zone of stationary water will appear with its
upper boundary AB moving in the form of the lowest water stream line.

Let us select at the top A of the gas volume lying on the axis of the well an elementary
cylinder of a porous medium with a height dz and cross-section dw filled with gas that has
penetrated into the aquifer zone of the formation (Fig. 3). Let us consider the forces acting
on this elementary volume of gas. If the pressure on the upper face of the element is denoted
by p = P (o, z), then the pressure on the lower face will be:

9
0z

The resulting force due to the injection filtration field will be:

P'=P(o,z+dz) = P+ ——dz.

AP:P—P/:—@dzdw'm%...
0z
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And is directed in the direction of pressure drop, i.e. down the axis z. Here m is the
porosity of the formation, since gas does not occupy the entire cross-sectional dw area, but
only a part mdw of it.

At the same time, the selected element of the gas volume 02 = dzdwm is affected
vertically by the gravity of the gas 8G, and the Archimedean buoyant force J A.

0G4 = vgdzdwm,dA = 7, - dzdwm,

where 74,7y, is the volume weight of gas and water, respectively. When the top A of the gas
volume is stabilized, the condition of equilibrium of all vertical forces must be fulfilled

gpdzdwm + vgdzdwm — vy,dzdwm = 0,
z

ie. 32—yt =03 — Ay =0. 2 < Ay; Ay =7, — 5.

Thus, the movement of the gas volume vertex A will stop (stabilize) at the Z-axis point,
where the pressure drop gradient Wis equal to the difference between the specific vol-
umes of liquid and gasAvy = 7, — 7.

So, the condition for stability and stability of the top of the gas volume during gas
injection into the aquifer is

apgl’z) <Ay Dy = — 3.1)

We note that the condition of stabilization (3.2) of the gas volume vertex is obtained
directly from expression (3.1) for the filtration rate according to Darcy’s law, which takes
into account the manifestation of the Archimedean force, that is, assuming

k (O
vk (Pg _ Av) _o. (3.2)
fg \ 0z
At the same time, we note that after gas injection into the aquifer ceases (Q=0) and
reservoir pressure stabilizes, i.e., when % = 0, the process of gas surfacing (peak A)

begins under the action of Archimedean forces at a speed of

k
V,=V4=—Ay = const. (3.3)
Hg

By way of illustration, we will reveal the condition of stabilization (3.3) of the top of
the gas volume through the flow rate Q of the injected gas. At the same time, we make two
assumptions that are used in the problem of fluid flow to a well that is imperfect in terms of
opening degree [8]:

1. the surface of the borehole through which gas is injected is replaced by an equally
large hemisphere (at b < < h), i.e. 27reb = 27r7"[2); from where ro = /rab.

2. gas injection is considered as injection into a reservoir of infinite thickness (based on
the theory of the potential of a point source in space).
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|
Fig. 3.2 Equivalent hemispherical model of the gas injection zone
Initial condition (3.3):

@ = Ay or k—@ = k—A
0z tg Oz g
But l’f—q% = V- flow rate.
That is .
V=—A~. (a)
Hg

In turn, for a source with a flow rate of Q, the filtration rate at the boundary of a hemi-
sphere of radius Ry will be:

Q
V = .
27rR3

(0)
We equate (a) and (b).

k
Q 5 = —Hr, where Rg = yo
27TRO ,U/g

_ Qug
yo 2k Ay’

Let’s take an example, we accept:
b=2 m; h=8 m. (b << h).

3 3
Q=50000 2 = 0,6 ™;

pig=1cPs=10"% 25 k=34D=341,02- 10712 = 3,5 - 10~ 12m?

We get:

k N
Ap = 980—2: Ay = Apg = 980-9,8 = 9800 —
m m

rg = \/rab=+/0,06-2=20,34 m.

We find:

Qug 0,6-10-3 .
—= e = = m.
YOZ A\ 2mkAy ~ Y0 T\ 27314-3,5-10-12. 9800

Le.yo>b on 3,5m.
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4 The problem of floating and spreading gas.

Let us also consider the process of spreading of a gas volume (Fig. 4.1). Let a horizontal
aquifer with thickness h contain a certain volume of injected gas at its roof. Due to the
manifestation of Archimedean forces, gas will float up and spread out at the top of the
formation. We proceed from the assumption of incompressibility of gas in reservoir con-
ditions. The permeability coefficient k in the gas and water zones of the formation is the
same. We will consider the process of gas surfacing and spreading as quasi-static, i.e. we
assume a hydrostatic pressure distribution in the reservoir that does not correspond to the
dynamic equilibrium of the gas-water system, as a result of which the system reacts to this
discrepancy by shifting the interface [10].

We consider the position of an axisymmetric gas volume at a certain moment of time
t, at which the pressure at any point of it will be P(r, z). Let us find out the rates of gas
ascent and spread, respectively, at contour points A and K of the gas volume (Fig. 4.2).
Selecta point M at the gas volume boundary on a vertical circular section of a reservoir of
arbitrary radius r. Two forces act on the gas boundary layer at this point: the force due to the
weight of the gas column, and the counteracting (Archimedean) force due to the hydrostatic
pressure of the reservoir water surrounding the gas volume.

Gas

rreprnn

Water 4 M

Fig. 4.1 Forces acting on a gas element at the gas—water interface

peltd

iz
Fig. 4.2 Paraboloid model of the gas volume during buoyant rise and spreading
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We denote the pressure at the roof of the aquifer through Py. Then, taking the vertical
pressure distribution as hydrostatic, we write the expression of pressure at the point M:

Py = Po+ vy — gy = Po+ (70 — vg) y = Po + Avy. 4.1)

The pressure at any Nvertical point is similar:

Py = Py+Avy-z, Py = Pp— Ay (y — 2) = Po+ Ayy— Ayy+Ayz = Py+ Avyz. (4.2)
We find the vertical velocity of gas filtration through pressure at an arbitrary point V:
k 0Py k 0

k
V,=- = P, + Avz) = —— A~ = const. 4.3)
PP FE ( 7z) R

In other words, the rate of gas upsurge does not depend on the vertical coordinate z and
is the same at all vertical points, including at M the interface point.

Therefore,

Vvz =VNz = —uﬁAfy, which corresponds to (4.1) to expression (3.3) of Darcy’s law.

The horizontal Veloéity V-of gas spreading is found through the expression of pressure
(4.1) at a point M.

k OP, k 0 k 0
V= Vagp = ——ZM _ K 9 p Ay = Rl 29 (4.4)
pg Or fig O or
Comparing (4.4) and (4.5), we find the possibility of velocities V,.and V:
v, = 4.5)
“or’

The component A~yyfor the pressure at the boundary (4.1) will be called the ascending
(Archimedean) pressure (hyy = A~vy), which changes at the boundary of the gas volume
and thereby causes the gas to spread horizontally (4.5).

We find the heads reduced to the axis rat points MandN

Py Py Py Fo
hav = Ay YT Ay hN—A7 = Ay (4.6)

That is, the heads are equal (as they should be with a vertical hydrostatic pressure distri-
bution). Therefore, the horizontal filtration rates V,.and are the same along the entire vertical
and their value will be determined by the speed (4.7) of the boundary point Mthrough its
upward pressure ang = Ay gy :

To expand expression (4.7), it is necessary to have an equatlon of the interfacey =y (r),
which we assume based on the assumed constant shape and size of the gas volume W [12,
14]. We take the gas volume as a paraboloid of rotation:

r2
y=y0<1—2)~ 4.7
o
Then 9 &
9% _ —2y07‘ V. = 2—A7y0 (4.8)
or 3 Hg 7o
That is V., it depends linearly on the coordinate r.
At
k
r=0, Vp =07 =10, Vy = Vi oy = 2—— Ay . 49)

Hg To
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Taking into account (4.3) V. = 2VZ§—2; Vi maz = 2V, %0
0

Z'rg

We also find the relationship yg and rq for (4.9) from W the gas volume expression. We
find the volume of the paraboloid based on (4.7).

Select the b/m element of the paraboloid by volume dW = ds - dz = 7% - dz =
7r2dy - yo.

Then:

W= [dW = /7r7“2dy.

From equation (4.7) we find

then

Y 1 1
W = /777"8 (1 — % dy = m”g <y0 — 2y0) = iﬂrg - Yo-
0

1
W = §7r7“§ Yo (4.10)
From (4.10) we have:
2W 2W
rog = $Y0= —> (4.11)
TYo T
Then: L oW AW
V;"ma:z:ZQVYz*iQ :‘/2737 4.12)
To T g
or:
2 3
Vi mas = 2Ve—ae = V4| 20, (4.13)
2W w
Yo

Expressions (4.11) and (4.13) determine the dependences of the radius rg and velocity
of gas spreading V; max of a gas volume on the coordinate yg of its vertex A at a known
volume wg(under reservoir conditions) of the injected gas. As the gas g rises (decreases),
the gas spreading rate decreases V; max-

Wo = Mow;

m~— gas porosity coefficient

o— average gas saturation of the gas volume w

By revealing the condition of stabilization (2.1) Aof the gas volume vertex, i.e.%—f =
A~, we can determine the initial value of the coordinate yo = o (0).

From expression (4.11), we find the initial value ro = r (0) of the gas spreading radius
at the top of the formation at a fixed value of the gas volume pumped into the formation
wyp by the time the top is stabilized A. At subsequent points in time (t > 0), the values of
the spreading radius r( (f) will be determined from the same dependence (4.11) with the
corresponding coordinate value yo = o (f) determined by the pop-up speed V, = k}f: =
Const.

Note that W = 2.

Find the equations of motion y (¢) of the vertex Aand contour K of the gas volume
W. The starting time (t = 0) takes the moment when the vertex stabilizes A(%—(Z) = 0).
Therefore, the initial conditions for the motion of points A and K are the parameters 3o and
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rodefined by expression (4.13) in terms of the known value of the ordered gas volume wy
at this moment [15].
The initial equations are expressions of filtration rates (4.9) and (4.13), which are related
to the actual (true) speed of movement by the dependence vp = muvsap
— the porosity coefficient of the formation.
Consider the movement of a vertex A.
00 _ kAy Oy kdy

— 2.0 _ Y 4.14
"ot pg Ot mig (4.14)

We divide the variables in (4.14) and integrate them within the time range from O to ¢

A A
dyo = — 27 gy, / dyo = —M/dt.
my mp

Yo 0
We get:
kA . kA
Yo (t) — Yo = ———Lt, thatis y, (£) = yo — — 1 (4.15)
mp mp
We have a linear time law of vertex motion A.
Consider the motion of the contour b point of the gas volume
o _ AW kA aw
a T fmd o
Separating variables
4kA~y - W 4kA
dro = AW 8y — By gy
T
Integrating:
4kA
ridrg = JW [bdt.
We get:
1 4k A~y
From where:
16k A
ro (t) = i‘/ré + Pth W = *TI"I“Oyo
T
Then
16kA
ro (t) =19 </1 + 747 mréyot
TMUry - 2
8k A~y -
ro (t) :roi/l—l-’y 0
TR
1
8k A~ - 1
0 (t) =179 |:1 + '7?2J()t:|
m - 1§

Thus , having the initial values of contour parameters rg and y gas volume W, expres-
sions (4.13) and (4.15) allow us to find their values yo (¢) and r( (¢) at subsequent points in
time t > 0.
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5 Conclusions

Archimedes’ force acting on the volume of gas in a water-saturated porous medium is con-
sistently represented as an external mass force distributed throughout the entire volume
of gas. Including Archimedes’ force in Darcy’s law leads to a modified filtration rate that
correctly describes the buoyant migration of gas in aquifers.

The condition for stabilizing the upper level of the gas volume during gas injection
into a horizontal aquifer is determined based on the balance between the pressure gradient
caused by the injection and the difference in the specific weights of water and gas. After gas
injection ceases, gas rise occurs only under the action of Archimedes’ forces at a constant
vertical velocity independent of depth.

A quasi-static analytical model of gas distribution across the reservoir roof has been de-
veloped, allowing the geometry of the gas volume and migration dynamics to be predicted.
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