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Abstract. This article investigates non-stationary and stationary lam-
inar flows of non-Newtonian viscous fluids in cylindrical pipes using
group analysis methods. A generalized formulation of the equation of
motion is considered, taking into account the nonlinear rheological fric-
tion law, which leads to a modified form of the classical flow equation. A
group classification of the basic differential equation is performed, and
invariant solutions corresponding to extended symmetry operators, both
point and tangential, are obtained. These solutions describe physically
significant flow regimes, including those with singularities, flow in pipes
with permeable walls, and flow in channels with variable geometry. In
addition, invariant solutions are obtained for non-isothermal motion
of a viscous fluid with temperature-dependent viscosity at high Peclet
numbers. The results show that theoretical group methods provide an
effective basis for constructing accurate and semi-analytical solutions
to complex non-Newtonian flow problems and provide valuable insight
into filtration and heat transfer processes.
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1 Introduction

The rapid development of the petrochemical industry and the widespread introduction of
petroleum and plastics have advanced the task of studying the regularities of the movement
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of such liquids. Many materials flows under certain conditions and exhibit nonlinear viscous
properties [22, 24]. Various technological processes in the chemical, petroleum, and food
industries are associated with the flow of such non-Newtonian materials, which can include
non-Newtonian liquids: viscoelastic liquids, polymer solutions, liquid crystals, suspensions,
and various plastics.

Pumping a non-Newtonian fluid is characterized by a constant power consumption, since
as a result of intensive mechanical action, it acquires properties that do not depend on the
duration of pumping.

Since non-Newtonian fluids have a large apparent viscosity, they are usually character-
ized by laminar motion. At the same time, under certain conditions, the laminar motion
of non-Newtonian fluids can turn into a turbulent one. However, determining the transition
conditions is a very difficult task.

Studies of the flow of non-Newtonian fluids are mostly experimental in nature, and a
mathematical theory of a non-Newtonian fluid, similar to that created for a Newtonian fluid,
has not been constructed [17].

To describe the laws of motion of non-Newtonian fluids, the Navier-Stokes equations
cannot be used, since the apparent viscosity depends on the velocity of motion, and, con-
sequently, not only the velocity, but also the apparent viscosity will change over the flow
cross-section. The derivation of equations of motion for non-Newtonian fluids is given in
the literature [3].

The available methods for calculating the flow of non-Newtonian fluids mainly relate
only to the stationary regime. The rapid development of computer technology and mathe-
matical modeling over the past sixty years has led to a large number of papers devoted to
the numerical study of the motion of viscous media and media with rheologically complex
behavior. The study of such flows is of important practical interest, since many real fluids do
not obey Newton’s rheological law. In particular, when processing polymer compositions
by casting, liquid media are characterized by non-Newtonian rheological properties [9, 15].

Accounting for the non-Newtonian behavior of a fluid requires considerable effort for
the successful implementation of computational technologies. Data on the rheological and
thermophysical properties of non-Newtonian fluids are presented in [6, 8, 11]. The theory
and methods for calculating laminar flow and heat transfer of high-viscosity non-Newtonian
fluids in round tubes with variable physical properties of the fluid are described, taking into
account the influence of motion energy dissipation.

The authors of [19] conducted a study for a power-law fluid, during which parametric
calculations were performed for varying the Reynolds number, the degree of pipe expansion,
and the nonlinearity index of the fluid, and the dependences of local hydraulic resistance on
the defining parameters of the problem were constructed.

In [14], the stationary laminar flow of non-Newtonian fluids in curved channels (bends
and turns) is considered, and a mathematical model is presented, as well as the results of
numerical studies. A comparative analysis of hydraulic resistance in curved channels for
pseudoplastic, Newtonian, and dilatant fluids is performed.

In [11], the problem of heat transfer in a non-Newtonian fluid flowing through a round
tube in a stabilized laminar regime is formulated.

Laminar flows of a non-Newtonian fluid in flat channels and in round pipes are real-
ized in many technical applications. In particular, when processing polymer materials in
a fluid state, flows occur between parallel planes and in circular pipes in the elements of
technological equipment [6].

Various methods for calculating laminar flow of rheologically stable liquids through
straight circular pipes are presented in [7, 13]. For engineering calculations, it is advisable
to apply a universal method and invariant solutions suitable for all liquids.

In this paper, we consider an approach for obtaining partial solutions of the laminar
flow equation for non-Newtonian fluids in pipes based on group analysis of differential
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equations. Invariant solutions with respect to point and tangent transformations satisfying
the natural boundary condition are given.

2 Invariant and tangent symmetries of equations describing laminar and filtration
flow of non-Newtonian media

The problem can be formulated as the following equation for the flow velocity w:

ωt = ν
(
ωrr + r−1ωr

)
+ ρ−1f (t)

where −∂p/∂z = f (t) is the given law of change of the differential pressure; p, v - is the
density and kinematic viscosity of the liquid, respectively. This equation has been studied
by many authors [11, 16, 18] under various laws of time dependence of the pressure drop.

For liquids with non-Newtonian properties [26], a similar problem is formulated as fol-
lows:

ωt = Φ′ (ωr)ωrr + r−1Φ (ωr) + ρ−1f (t) , (2.1)

where Φ is a function that characterizes the law of friction of a non-Newtonian fluid.
As a replacement

ω = u+
1

ρ

t∫
0

f (t) dt,

equation (2.1) reduces to the equation

ut = Φ′ (ur)urr + r−1Φ (ur) (2.2)

The aim of this work is to obtain some partial solutions of equation (2.2), and hence
(2.1), by studying the group properties of this equation [21].

In the case of an arbitrary dependence Φ = Φ (ur), equation (2.2) admits a three-
dimensional algebra L3 of infinitesimal operators with a basis X1 = ∂/∂t, X2 = ∂/∂u
corresponding to shifts in t and u, and X3 = r∂/∂r++2t∂/∂t+ u∂/∂u corresponding to
a self-similar solution.

A group classification of equation (2.2) by functionΦ (up to equivalence transformations
[21]) leads to the following result. The expansion of the algebra L3 occurs only in the
following specializations Φ (ur) (cases Φ′ ≡ 0, Φ′ ≡ 1 are excluded):

1 Φ (ur) = exp (ur); additional basis operator

X4 = r∂/∂r + (u+ 2r) ∂/∂u

2 Φ (ur) = uλr ; additional basis operator

X5 = (λ− 1) r∂/∂r + (λ+ 1)u∂/∂u

3 Φ (ur) = u−1
r . We obtain an infinite-dimensional group containing in addition X1 to ,

X2, X3, X5 (for λ = −1) additional operators

X6 = 8t2∂/∂t+ r
(
u2 − 2t

)
∂/∂r + 8ut∂/∂u

X7 = ru∂/∂r + 4t∂/∂u, X∞ = ωr−1∂/∂r
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where the function ω satisfies the equation ωt + ωuu = 0.
Let us consider invariant solutions of equation (2.2) associated with the appearance of

these additional symmetries and corresponding to natural boundary conditions

w|r=R = 0, wr|r=0 = 0 (2.3)

where R is the radius of the pipe (we assume later R = 1).
Consider an invariant solution for the operator

X5 + αX3 = δr∂/∂r + 2αt∂/∂t+ σu∂/∂u

δ = λ+ α− 1, δ = λ+ α+ 1

At α = 0 the same time, we get a solution in the form

w = β (1− rγ) (t0 − t)1/(1−λ) , β = (γ (3λ− 1))1/(1−λ) , γ = (λ+ 1) / (λ− 1)

which corresponds f (t) = ρ (λ− 1)−1 (t0 − t)−λ/(λ−1) to, satisfies under λ > 1 condi-
tions (2.3), and describes the regime with exacerbation.

When α ̸= 0 the invariant solution is written as

u = t1/2σ/αφ (ξ) , ξ = rt−1/2σ/α

where φ satisfies the corresponding differential equation. For α = −λ − 1, it is integrated
in quadratures, and the solution satisfying conditions (2.3) (for λ < 0) is written as

w =

t−1/(1+λ)∫
rt−1/(1+λ)

ξ−1/λ

(
1− λ

(1 + λ) (3λ+ 1)
ξ(3λ−1)/λ + ξ0

)
dξ

and the corresponding mode

f (t) = ρt1/[λ(λ+1)]

(
1− λ

(1 + λ) (3λ− 1)
t(1−3λ)/[λ(λ+1)]

)1/(λ−1)

When Φ (ur) = u−1
r equation (2.2) is replaced x = r2 by the equation

ut = (1/ux)x (2.4)

which x1 = u, u1 = x is converted by substitution to the linear heat conduction equation
[1, 12]. However, from the solutions of this equation, it is difficult to obtain and study a
solution of equation (2.1) that satisfies the conditions (2.3).

If we introduce a function v = ux, then by differentiating (2.2) with respect to x, we
obtain an equation that has a self-similar solution (the function ϕ has a parametric represen-
tation):

v = 1/2
√
2ξϕ (ln ξ) , ξ = xt−1/2 (2.5)

φ =
1

s− F (s)
, ξ = exp

s∫
s2

(
F

′
(s)− 1

)
ds

(s− F (s)) (sF (s)− F 2 (s)− 1)

F (s) = exp
(s
2

)2

 s∫
s0

exp

(
τ2

2

)
dτ + s1

−1
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Then the solution of equation (2.1) satisfying conditions (2.3) can be represented by
(2.5) as

w =
√
t

∫
ln r2t−1/2

dz

φ (z)
(2.6)

The solution of equation (2.2) corresponding to (2.6) is no longer invariant under point
transformations, but will be invariant under some tangent transformation [12].

We present a method for constructing some tangent symmetries for equation (2.2), con-
sidered in [2].

Differentiating equation (2.2) and introducing a new function v = ur, we obtain the
equation:

vt =
(
r−1 (rΦ (v))r

)
r

(2.7)

The group classification of equation (2.7) with respect to point transformations leads
to the following result. If Φ (v) is an arbitrary function, then equation (2.7) admits a two-
dimensional algebra with basis Y1 = ∂/∂t, Y2 = 2t∂/∂t + r∂/∂r. The extension of this
algebra occurs under the following specializations Φ (v) (cases Φ′ ≡ 0, Φ′ ≡ 1 are ex-
cluded):

1 Φ (v) = ev; additional operator

Y3 = r∂/∂r + 2∂/∂v

2 Φ (v) = vλ; additional operator

Y3 = (λ− 1) r∂/∂r + 2v∂/∂v

3 Φ (v) = v−1/5; additional operators

Y4, Y5 = r3∂/∂r − 5r2v∂/∂v

4 Φ (v) = v−1; additional operators

Y4, Y6 = r−1∂/∂r + vr−2∂/∂v

The operators Y3, . . . , Y6 associate tangent symmetry operators for equation (2.2) and
allow us to construct invariant solutions corresponding to them.

In particular, when Φ (ur) = u
−1/5
r the invariant solution corresponding to the associ-

ated operator Y2 + 5/6Y4 + Y5 can be written as

w =

1∫
r

r exp

(
1

6r2

)
F

(
t1/2exp

(
1

6r2

))−5

dr

where F (z) satisfies the ordinary differential equation

2z2F
′′
+ 6zF

′
+ 15F−6z−5F

′
+ 18F = 0 (2.8)

and the operator Y2 + Y5 corresponds to the solution

w =

1∫
r

(
r2 + 1

)−5/2
G−5

(
r2

(r2 + 1) t

)
dr
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where G (z) satisfies the equation

4z2G′′ + 4zG′ + 5z2G−6G′ −G = 0 (2.9)

In equations (2.8), (2.9) by introducing new functions

F (z) = z−1φ (ln z) , G (z) = z1/6ψ (ln z)

you can lower the order and investigate them using the methods of the qualitative theory of
differential equations.

It should be noted that equation (2.2) is used to describe the plane-radial filtration of non-
Newtonian media [5]. Therefore, the results obtained can also have a filtering interpretation.

3 Invariant solutions of equations of nonisothermal stationary flow of a viscous fluid
in pipes

A stationary nonisothermal flow of a viscous Newtonian fluid in a flat channel filled with a
porous material is investigated. The Brinkman equation is used as the motion equation. The
viscosity is considered temperature-dependent. When writing the energy equation, a single-
temperature model is used. Dissipative heat releases are taken into account. The problem is
solved for temperature boundary conditions of the first kind. For the first time, the problem
of nonisothermal fluid flow in a flat channel completely filled with a porous material is
posed and solved by an approximate method. The temperature at the channel inlet can be
very different from the temperature of the channel wall, which immediately makes the non-
isothermal factor decisive in this process. The mathematical model takes into account the
temperature dependence of viscosity and energy dissipation. The results obtained showed
that the neglect of any of these factors can lead to significant distortions of the actual flow
pattern and heat exchange in the channel [4].

A laminar stationary nonisothermal flow of a power-law fluid in a cylindrical channel
with sudden narrowing is studied. A mathematical model of the flow is formulated, which
includes the hydrodynamic equations written in the variables current function-vortex, and
the energy equation. The rheological properties of a liquid are described by the Ostwald-de-
Waale power law, in a modified form of which the dependence of the effective viscosity on
temperature is taken into account. To solve the problem, we use the establishment method
followed by the implementation of a finite-difference method based on the variable direction
scheme. The effect of viscous dissipation on the flow structure of pseudoplastic, Newtonian,
and dilatant fluids is estimated. The temperature and effective viscosity fields are demon-
strated. The results of a parametric study of the local hydraulic resistance coefficient are
presented. Mathematical modeling of the flow of a power-law fluid in a channel with a nar-
rowing cross-section jump under nonisothermal conditions is performed. An algorithm for
numerical solution of the problem is developed. The calculation results made it possible to
estimate the effect of viscous dissipation and the temperature dependence of viscosity on
the introduced dimensionless geometric characteristics of the flow structure. In the course
of parametric studies, it was found that when the main parameters of the problem (the non-
linearity indicator of the fluid, the Peclet number, and the Reynolds number) vary, the length
of the two-dimensional flow zone changes significantly behind the cross-section jump. Of
particular interest is the fact that an increase in the nonlinearity index for the isothermal
and non-isothermal cases has a different effect on the length of this zone: in the first case, it
decreases, and in the second, it increases. Characteristic features of the effective viscosity
and temperature fields for pseudoplastic, Newtonian, and dilatant fluids are shown. Based
on the obtained data, the dependences of the local hydraulic resistance coefficient on the di-
mensionless criteria of the problem and the non-linearity index of the fluid are constructed
[23].
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The influence of the nature of changes in the viscosity-temperature dependence on the
flow stability of a 45% aqueous solution of propylene glycol in a flat channel with a linear
temperature distribution is considered. The study of hydrodynamic stability was reduced to
solving the generalized Orr-Sommerfeld equation by the spectral method. The eigenvalue
spectra and eigenfunctions for both sections of the viscosity-temperature dependence are
constructed, and the corresponding critical Reynolds numbers are determined. The results
of the study indicate that the laminar-turbulent transition depends not only on the presence
of a temperature dependence of viscosity, but also on the intensity of its change. The results
of numerical studies made it possible to establish a significant influence of the inhomoge-
neous temperature distribution on the flow regimes of a thermos-viscous liquid. It is found
that taking into account the dependence of viscosity on temperature reduces the critical
Reynolds number and increases the range of unstable flow regimes. Comparison of two
different sections of the viscosity function as a function of temperature for a propylene gly-
col solution, which differ in the values of the derivative, showed that the interface between
stable and unstable flow regimes also depends on the intensity of the viscosity change: the
higher it is, the smaller the region of stable laminar flows. It should be added that averaging
the viscosity over the range of its variation leads to the classical Orr-Sommerfeld equation
and its corresponding results [20].

We study the group properties [21] of a system of equations describing the flow in pipes
of a liquid whose viscosity depends on temperature at high Peclet numbers. It is shown that
for exponential and power-law dependences, the main transformation group expands. For
these cases, we consider invariant solutions that have a physical meaning.

Equations describing the motion of a viscous fluid in a cylindrical tube can be written in
dimensionless form as follows for δ ≪ 1, Pe≫ 1[25]:

∂p

∂R
= 0,

∂p

∂z
= δPe

1

R

∂

∂R
(µRu) (3.1)

∂v

∂R
+R

∂u

∂z
= 0,

∂2T

∂R2
+

1− v

R

∂T

∂R
= u

∂T

∂z
(3.2)

Here
z =

x

Per0
, µ =

η

η0
, T =

t

t0
, R =

r

r0
, δ =

r0
l
, p =

P

P0

v = R
VrPe

2V0
, u =

Vx
2V0

, P0 =
2η0lV0
r20

, P e =
2V0r0
a

where x is the longitudinal coordinate r– is the distance from the pipe axis r0, and is the
pipe radius,

t– temperature Vx, Vr– - longitudinal and radial velocity components η– - fluid viscosity
l– - pipe length P– - pressure, t0, η0, V0- characteristic values of temperature, viscosity
and velocity Pe– - Peclet number.

From the first equation (3.1) it follows that ∂p/∂z– is a certain function z, we de-
note it g (z). Therefore, the second equation (3.1) can be integrated once with respect
to R under the natural symmetry condition ∂u/∂R|R=0 = 0. Introducing the notation
f (T ) = δµPe/2 equation (3.1), we replace it with the following:

∂u/∂R = Rf (T ) g (z) (3.3)

We carry out a group classification [21] of the system (3.2), (3.3).
For an arbitrary function type f , the system allows infinitesimal operators:

X1 = R

(
1− z

g′

g

)
∂

∂R
+ 4z

∂

∂z
+ 2u

(
1 + z

g′

g

)
∂

∂u
−R2u

(
z
g′

g

)
∂

∂v
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X2 = −Rg
′

g

∂

∂R
+ 4

∂

∂z
+ 2u

g′

g

∂

∂u
−R2u

(
g′

g

)′
∂

∂v

Extensions of this algebra are obtained under the following specifications f (T ) up to
equivalence transformations [21]:

1) f (T ) ≡ const; additional basis operators

X3 = ∂/∂T, X4 = T∂/∂T

2) f (T ) = T γ ; additional operator

X5 = γR∂/∂R− 4T∂/∂T + 2γu∂/∂u

3) f (T ) = eT ; additional operator

X6 = R∂/∂R− 4∂/∂T + 2u∂/∂u

Let us consider some invariant solutions corresponding to these operators that allow
physical interpretation.

By
f (T ) = eεT , g (z) = −2p0e

−εz, p0 = Const

the invariant solution of the operator X2 −X6 has the form:

v = φ1 (R) , u = φ2 (R) , T = z + φ3 (R)

φi (i = 1, 2, 3) satisfy a system of ordinary differential equations whose solution under
boundary conditions is:

v|R=1 = u|R=1 = 0,

it can be written as:

φ1 = 0, φk = φ
(0)
k + εφ

(1)
k +O

(
ε2
)
, k = 2, 3;

φ
(0)
2 = p0

(
1−R2

)
, φ

(1)
2 = −2p0

1∫
R

Rφ
(0)
3 dR;

φ
(i)
3 =

R∫
0

 R∫
0

Rφ
(i)
2 dR

 dR

R
+ α, α = const, t = 0, 1.

By
f (T ) = eεT , g (z) = −2p0z

1−ε, p0 = const,

the invariant solution of the operator X1 −X6 has the form

v = φ1 (R) , u = zφ2 (R) , T = ln z + φ3 (R) ,

where the functions φi (i = 1, 2, 3) satisfy a system of ordinary differential equations

φ
′
2 = −2p0Re

εφ3 , Rφ2 + φ
′
1 = 0;

(1− φ1)φ
′
3 +Rφ

′′
3 −Rφ2 = 0,

the solution of which is

φi = φ
(0)
i + εφ

(1)
i +O

(
ε2
)
, i = 1, 2, 3,
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φ
(0)
1 = p0

(
R4/4−R2/2

)
, φ

(0)
2 = p0

(
1−R2

)
,

φ
(0)
3 = p0

 1∫
R

 R∫
0

(
1−R2

)
RF (R) dR

 dR

RF (R)
+ α

 ,

φ
(1)
1 = −

1∫
R

Rφ
(1)
2 dR,

φ
(1)
2 = −2p0

1∫
R

Rφ
(0)
3 dR, φ

(1)
3 =

1∫
R

 R∫
0

(
Rφ

(1)
2 + φ

(1)
1 φ

(0)′

3

)
RF (R) dR

 dR

RF (R)
,

F (R) = exp
(
(p0/4)

(
R2 −R2/4

))
,

describes the flow in a pipe with permeable walls at a constant injection (suction) rate
v|R=1 = −p0/4.

For arbitrary functions f and g, the invariant solution of the operator X2can be written
as

v = −1

4

g
′

g
φ (ξ) , u =

φ (ξ)

R2
, T = A1 ln ξ +A2,

φ = ξ1/2
(
1

4

∫
ξ−1/2f(T )dξ +A3

)
, ξ = R4g(z),

where Ai (i = 1, 2, 3) are arbitrary constants, they can be chosen in such a way that

φ (βi) = 0, βi > 0, i = 1, 2 .

This solution corresponds to the flow in an annular channel, the radii of the walls of
which vary according to the law Ri = (βi/g)

1/4. Since g (z)– is an arbitrary function, and
the initial system of equations is invariant with respect to the shift by z, then you can choose
the function g (z) and the range of changes z so that Rithey are practically constant.

4 Conclusions

The group analysis method has shown high efficiency for the study of equations describing
the unsteady laminar flow of non-Newtonian fluids in pipes. The group classification made
it possible to identify cases of extending the symmetry algebra and obtain invariant solutions
that have a physical meaning and satisfy natural boundary conditions.

Invariant and tangent solutions have been constructed for various types of rheological
functions that characterize the law of friction of a non-Newtonian fluid, which describe var-
ious modes of motion, including modes with sharpening, modes with permeable walls, and
flows in channels of variable radius. The obtained solutions have not only hydrodynamic,
but also filtration interpretation, which expands the scope of the method.

Within the framework of non-isothermal flows, it is shown that the temperature depen-
dence of viscosity significantly affects the flow structure, regime stability, and hydraulic
resistance. Group analysis of the system of equations for large Peclet numbers revealed the
presence of additional symmetries, which allowed us to obtain new invariant solutions de-
scribing physically significant non-isothermal processes, including the influence of energy
dissipation and temperature inhomogeneity.
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