Sevda E. ISAYEVA

THE EXISTENCE OF AN ABSORBING SET FOR ONE MIXED PROBLEM WITH HYSTERESIS

Abstract

In this work we consider the mixed problem for one quasilinear parabolic equation with hysteresis (generalized play) nonlinearity. We prove the existence of a unique solution and the existence of a bounded absorbing set for this problem

Let $\Omega \subset \mathbb{R}^N$ $(N \ge 1)$ be a bounded, connected set with a smooth boundary Γ . We consider the following problem

$$\frac{\partial}{\partial t}\left[u+F\left(u\right)\right] - \Delta u + \left|u\right|^{p} u = h \quad \text{in } Q = \Omega \times (0,T), \qquad (1)$$

$$u = 0 \quad \text{on} \ \Gamma \times [0, T], \tag{2}$$

$$[u + F(u)]|_{t=0} = u^0 + w^0 \text{ in } \Omega, \qquad (3)$$

where $0 if <math>N \ge 3$ and p > 0 if N = 1, 2, ; F is a memory operator (at any instant t, F(u) may depend not only on u(t) but also on the previous evolution of u), which acts from $M(\Omega; C^0([0,T]))$ to $M(\Omega; C^0([0,T]))$. Here $M(\Omega; C^0[0,T])$ is a space of strongly measurable functions $\Omega \to C^0([0,T])$. We assume that the operator F is applied at each point $x \in \Omega$ independently: the output [F(u)](x,t)depends on $u(x,\cdot)|_{[0,t]}$, but not on $u(y,\cdot)|_{[0,t]}$ for any $y \neq x$.

We assume that

$$\begin{cases} \forall v_1, v_2 \in M \left(\Omega; C^0 \left([0, T]\right)\right), \ \forall t \in [0, T], \ \text{if} \ v_1 = v_2 \ \text{in} \ [0, t], \ \text{a.e. in} \ \Omega,\\ \text{then} \ [F \left(v_1\right)] \left(\cdot, t\right) = [F \left(v_2\right)] \left(\cdot, t\right) \ \text{a.e. in} \ \Omega, \end{cases}$$
(4)

 $\left\{ \begin{array}{l} \forall \left\{ v_n \in M\left(\Omega; C^0\left([0,T]\right)\right) \right\}_{n \in N} \ , \ \text{ if } \ v_n \to v \ \text{ uniformly in } [0,T] \ \text{a.e. in } \Omega, \\ \text{ then } F\left(v_n\right) - F\left(v\right) \ \text{ uniformly in } [0,T] \ , \ \text{ a.e. in } \ \Omega. \end{array} \right.$ (5)

Let $V = H_0^1(\Omega)$ and

$$u^{0} \in V, \quad w^{0} \in L^{2}(\Omega), \quad h \in L^{2}(\Omega).$$
 (6)

Definition. A function $u \in M(\Omega; C^0([0,T])) \cap L^2(0,T;V)$ is said to be a solution of problem (1)-(3) if $F(u) \in L^2(Q)$ and

$$\int_{0}^{T} \int_{\Omega} \left\{ -\left[u + F\left(u\right)\right] \frac{\partial v}{\partial t} + \nabla u \cdot \nabla v + \left|u\right|^{p} uv \right\} dxdt =$$
$$= \int_{0}^{T} \int_{\Omega} hv dxdt + \int_{\Omega} \left[u^{0}\left(x\right) + w^{0}\left(x\right)\right] v\left(x,0\right) dx$$

for any $v \in L^2(0,T;V) \cap H^1(0,T;L^2(\Omega))$ $(v(\cdot,T) = 0$ a.e. in $\Omega)$.

[S.E.Isayeva]

We also assume that

$$\begin{cases} \exists \overline{L} \in R^+, \ \exists g \in L^2(\Omega) : \forall v \in M\left(\Omega; C^0\left([0,T]\right)\right), \\ \|F\left(v\right)\left(x,\cdot\right)\|_{C^0\left([0,T]\right)} \leq \overline{L} \|v\left(x,\cdot\right)\|_{C^0\left([0,T]\right)} + g\left(x\right) \quad a.e. \ in \ \Omega, \end{cases}$$
(7)

 $\begin{cases} \forall v \in M\left(\Omega; C^{0}\left([0, T]\right)\right), \quad \forall [t_{1}, t_{2}] \subset [0, T], \\ if \quad v\left(x, \cdot\right) \text{ is affine in } [t_{1}, t_{2}] \quad a.e. \ in \ \Omega, \ then \\ \{[F\left(v\right)]\left(x, t_{2}\right) - [F\left(v\right)]\left(x, t_{1}\right)\} \cdot [v\left(x, t_{2}\right) - v\left(x, t_{1}\right)] \ge 0 \quad a.e. \ in \ \Omega. \end{cases}$ (8)

The following theorem (existence of solutions of the problem (1)-(3)) was proved in [3].

Theorem 1. Assume that (4)-(8) hold. Then problem (1)-(3) has at least one solution such that

$$u \in H^{1}(0,T;L^{2}(\Omega)) \cap L^{\infty}(0,T;V), \ F(u) \in L^{2}(\Omega;C^{0}([0,T])).$$
(9)

In this work we consider the problem (1)-(3) under the additional condition that F is a generalized play operator (see [1]). Note that similar mixed problems with a generalized play operator was studied in the works, for example [3], [4]. Well posedness of problem (1)-(3) without F was studied in the works of different authors (see, for example [2]). The corresponding problem for the parabolic equation without nonlinear term $|u|^p u$ was studied in [1]. In this work we prove the existence of a unique solution and the existence of a bounded absorbing set for problem (1)-(3)under the additional condition that F is a generalized play operator.

Assume that we are given two functions $\gamma_{l}(\sigma)$, $\gamma_{r}(\sigma) \in C^{0}(R)$ such that for any $\sigma \in R$ it holds

$$\gamma_r\left(\sigma\right) \le \gamma_l\left(\sigma\right). \tag{10}$$

We denote by E a generalized play operator (hysteresis operator) (see [1], chapter III). We fix any $\xi^0 \in L^1(\Omega)$ and set for any $v \in M(\Omega; C^0([0, T]))$

$$[F(v)](x,t) = \left[E\left(v\left(x,\cdot\right),\xi^{0}\left(x\right)\right)\right](t) \quad \forall t \in (0,T), \quad a.e. \ in \ \Omega.$$
(11)

The operator E satisfies the conditions (4),(5),(7),(8), the inequality

$$\left|\frac{\partial}{\partial t}F\left(u\right)\right| \le L \left|\frac{\partial u}{\partial t}\right| \quad a.e. \quad on \quad (0,T)$$
(12)

and the Hilpert inequality ([1], chapter III).

Hilpert's inequality. Let $(\sigma_i, \varepsilon_i^0) \in W^{1,1}(0, T) \times R$ (i = 1, 2) and $g: [0, T] \to R$ be a measurable function such that $g \in H(\sigma_1 - \sigma_2)$ a.e. in (0, T). Set $\varepsilon_i = E(\sigma_i, \varepsilon_i^0)$ (i = 1, 2), $\overline{\varepsilon} = \varepsilon_1 - \varepsilon_2$ and $\overline{\varepsilon}^+ = \max{\{\overline{\varepsilon}, 0\}}$. Then

$$\frac{d\overline{\varepsilon}}{dt}g \ge \frac{d}{dt}\left(\overline{\varepsilon}^{+}\right) \quad \text{a.e. in } \left(0,T\right).$$

Theorem 2. For i = 1, 2 let u_i^0 , $\xi_i^0 \in L^2(\Omega)$, $h_i(x) \in L^2(\Omega)$ and $h_1 - h_2 \in L^2(\Omega)$. Let $\gamma_l(\sigma)$, $\gamma_r(\sigma) \in C^0(R)$ be as in (10), locally Lipschitz continuous and affinely bounded. Define F as in (11) and set

$$w_i^0 = \min\left\{ \max\left\{\xi_i^0, \gamma_r\left(u_i^0\right)\right\}, \gamma_l\left(u_i^0\right)\right\} \text{ a.e. in } \Omega\left(i = 1, 2\right).$$

28

Transactions of NAS of Azerbaijan ______ [The existence of an absorbing set for...]

Let $u_i \in W^{1,1}(0,T;L^1(\Omega)) \cap L^2(0,T;V)$ be any solution of the corresponding problem (1)-(3) with $h = h_i$ and $w_i = F(u_i)$ (i = 1,2,). Then for any $t \in [0,T]$

$$\int_{\Omega} \left[(u_1 - u_2)^+ (x, t) + (w_1 - w_2)^+ (x, t) \right] dx \le$$
$$\le \int_{\Omega} \left[\left(u_1^0 - u_2^0 \right)^+ (x) + \left(w_1^0 - w_2^0 \right)^+ (x) \right] dx + T \int_{\Omega} (h_1 - h_2)^+ dx.$$
(13)

Proof. We set for any $m \in N$

$$H_{m}(\eta) = \begin{cases} 1, & \text{if } \eta > \frac{1}{m}, \\ m\eta, & \text{if } 0 \le \eta > \frac{1}{m}, \\ 0, & \text{if } \eta < 0. \end{cases}$$

By Theorem III. 2.3 (see [1]), $w_i \in W^{1,1}(0,T;L^1(\Omega))$, i = 1, 2.

Since

$$\frac{\partial}{\partial t} [u_1 + F(u_1)] - \Delta u_1 + |u_1|^p u_1 = h_1,
\frac{\partial}{\partial t} [u_2 + F(u_2)] - \Delta u_2 + |u_2|^p u_2 = h_2,$$

then

$$\frac{\partial}{\partial t} \left[(u_1 - u_2) + F(u_1) - F(u_2) \right] - \Delta \left(u_1 - u_2 \right) + |u_1|^p u_1 - |u_2|^p u_2 = h_1 - h_2,$$

whence multiplying by $H_m(u_1 - u_2)$ and integrating in Ω , we have

$$\int_{\Omega} \left[\frac{\partial}{\partial t} \left(u_1 - u_2 \right) + \frac{\partial}{\partial t} \left(w_1 - w_2 \right) \right] H_m \left(u_1 - u_2 \right) dx + \int_{\Omega} \nabla \left(u_1 - u_2 \right) \nabla H_m \left(u_1 - u_2 \right) dx + \int_{\Omega} \left[\left| u_1 \right|^p u_1 - \left| u_2 \right|^p u_2 \right] H_m \left(u_1 - u_2 \right) dx = \int_{\Omega} \left(u_1 - u_2 \right) H_m \left(u_1 - u_2 \right) dx.$$

Since

$$\int_{\Omega} \nabla (u_1 - u_2) \nabla H_m (u_1 - u_2) \, dx = \int_{\Omega} H'_m (u_1 - u_2) \left| \nabla (u_1 - u_2) \right|^2 \, dx \ge 0$$

a.e. in (0, T) and

$$\int_{\Omega} \left[|u_1|^p \, u_1 - |u_2|^p \, u_2 \right] H_m \left(u_1 - u_2 \right) dx \ge 0,$$

we get

$$\int_{\Omega} \left[\frac{\partial}{\partial t} \left(u_1 - u_2 \right) + \frac{\partial}{\partial t} \left(w_1 - w_2 \right) \right] H_m \left(u_1 - u_2 \right) dx \le$$

Transactions of NAS of Azerbaijan

30_____ [S.E.Isayeva]

$$\leq \int_{\Omega} (h_1 - h_2) H_m (u_1 - u_2) \, dx.$$
(14)

Now we pass to the limit as $m \to \infty$. There exists $\psi \in L^{\infty}(\Omega)$ such that $H_m(u_1-u_2) \to \psi$ a.e. in Q. Moreover $\psi \in H(u_1-u_2)$ a.e. in Q, where

$$H(y) = \begin{cases} \{0\}, & \text{if } y < 0, \\ [0,1], & \text{if } y = 0, \\ \{1\}, & \text{if } y > 0. \end{cases}$$

Then from (14) we get that

$$\int_{\Omega} \left[\frac{\partial}{\partial t} \left(u_1 - u_2 \right) + \frac{\partial}{\partial t} \left(w_1 - w_2 \right) \right] \psi dx \le \int_{\Omega} \left(h_1 - h_2 \right) \psi dx \le \int_{\Omega} \left(h_1 - h_2 \right)^+ dx.$$
(15)

Since by the Hilpert inequality it holds

$$\frac{\partial}{\partial t} (w_1 - w_2) \psi \ge \frac{\partial}{\partial t} \left[(w_1 - w_2)^+ \right] \quad a.e. \quad in \quad Q,$$

then from (15) we have

$$\frac{\partial}{\partial t} \int_{\Omega} \left[(u_1 - u_2)^+ + (w_1 - w_2)^+ \right] dx \le \int_{\Omega} (h_1 - h_2)^+ dx \quad a.e. \ in \ Q,$$

whence it is obtained (13).

Theorem 2 is proved.

Theorem 3. Assume that

$$u^{0} \in V, \quad \xi \in L^{2}(\Omega), \quad h \in L^{2}(\Omega).$$
 (16)

Let $\gamma_{l}(\sigma), \gamma_{r}(\sigma) \in C^{0}(R)$ be as in (10), locally Lipschits continuous and affinely bounded and F be as in (11). Then the problem (1)-(3) has one and only one solution with the regularity (9).

Proof. Straightforward consequence of the theorems 1 and 2.

The problem (1)-(3) generates a semigroup $\{S(t)\}_{t>0}$ in V by the formula

$$S\left(t\right)\left(u^{\left(0\right)}\right) = u,$$

where u is a unique solution of this problem.

Theorem 4. Under the conditions of theorem 3 there exists an absorbing set $B_0 \subset V$ for the problem (1)-(3).

Note that a bounded set $B_0 \subset V$ is said to be absorbing, if for arbitrary bounded set $B \subset V$ there exists $t_1(B)$ such that $S(t) B \subset B_0$ for all $t \ge t_1(B)$.

Proof. We introduce the following functional

$$\Phi(u) = \int_{\Omega} \left(|u|^2 + |\nabla u|^2 + |u|^{p+2} \right) dx.$$

Transactions of NAS of Azerbaijan ______ [The existence of an absorbing set for...]

We prove at first that if u is a solution of the problem (1)-(3) then for arbitrary $t \ge 0$ is hold the inequality

$$\frac{d}{dt}\Phi\left(u\right) + \delta\Phi\left(u\right) \le C,\tag{17}$$

where C is some positive constant.

By multiplying (1) by u_t and by integrating in Ω we obtain

$$\begin{split} \int_{\Omega} |u_t|^2 \, dx + \int_{\Omega} \frac{\partial}{\partial t} F\left(u\right) u_t dx + \frac{1}{2} \frac{d}{dt} \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{p+2} \cdot \frac{d}{dt} \int_{\Omega} |u|^{p+2} \, dx \leq \\ & \leq \frac{1}{2} \int_{\Omega} h^2 dx + \frac{1}{2} \int_{\Omega} u_t^2 dx. \end{split}$$

Using at last relation the inequality

$$\int_{\Omega} \frac{\partial}{\partial t} F(u) \, u_t dx \ge 0$$

which is obtained from the condition (8), we have

$$\frac{1}{2} \int_{\Omega} |u_t|^2 \, dx + \frac{1}{2} \frac{d}{dt} \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{p+2} \cdot \frac{d}{dt} \int_{\Omega} |u|^{p+2} \, dx \le \frac{1}{2} \int_{\Omega} h^2 dx. \tag{18}$$

Now by multiplying (1) by u and integrating in Ω , we have

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}|u|^{2}\,dx+\int_{\Omega}|\nabla u|^{2}\,dx+\int_{\Omega}|u|^{p+2}\,dx\leq\int_{\Omega}\left|\frac{\partial}{\partial t}F\left(u\right)\right|\left|u\right|\,dx+\int_{\Omega}hudx.$$

Using the inequality (12) at last relation, we have

$$\frac{d}{dt} \int_{\Omega} |u|^{2} dx + \int_{\Omega} |\nabla u|^{2} dx + \int_{\Omega} |u|^{p+2} dx \leq L \int_{\Omega} |u_{t}| |u| dx + \int_{\Omega} hu dx \leq
\leq L \left[\frac{L}{4\nu} \int_{\Omega} |u_{t}|^{2} dx + \frac{\nu}{L} \int_{\Omega} |u|^{2} dx \right] + \frac{1}{2} \int_{\Omega} h^{2} dx + \frac{1}{2} \int_{\Omega} u^{2} dx
= \frac{1}{2} \frac{d}{dt} \int_{\Omega} |u|^{2} dx + \int_{\Omega} |\nabla u|^{2} dx + \int_{\Omega} |u|^{p+2} dx \leq
\leq \frac{L^{2}}{4\nu} \int_{\Omega} |u_{t}|^{2} dx + \left(\nu + \frac{1}{2}\right) \int_{\Omega} |u|^{2} dx + \frac{1}{2} \int_{\Omega} h^{2} dx.$$
(19)

or

1 $\overline{2}$

By multiplying (18) by $\frac{L^2}{4\nu}$ and by adding with (19), we obtain that

$$\frac{L^2}{4\nu}\frac{d}{dt}\int_{\Omega}|\nabla u|^2\,dx + \frac{L^2}{2\nu\,(p+2)}\frac{d}{dt}\int_{\Omega}|u|^{p+2}\,dx + \frac{1}{2}\frac{d}{dt}\int_{\Omega}|u|^2\,dx + \frac{L^2}{2\nu\,(p+2)}\frac{d}{dt}\int_{\Omega}|u|^2\,dx + \frac{L^2}{2\nu\,(p+$$

$$32 \underbrace{[S.E.Isayeva]}_{\prod \Omega} \text{ Transactions of NAS of Azerbain} + \int_{\Omega} |\nabla u|^2 \, dx + \int_{\Omega} |u|^{p+2} \, dx \le \frac{L^2}{4\nu} \int_{\Omega} h^2 dx + \left(\nu + \frac{1}{2}\right) \int_{\Omega} |u|^2 \, dx + \frac{1}{2} \int_{\Omega} h^2 dx$$

or

$$\frac{L^{2}}{4\nu}\frac{d}{dt}\int_{\Omega}|\nabla u|^{2} dx + \frac{1}{2}\frac{d}{dt}\int_{\Omega}|u|^{2} dx + \frac{L^{2}}{2\nu(p+2)}\frac{d}{dt}\int_{\Omega}|u|^{p+2} dx + \int_{\Omega}|\nabla u|^{2} dx + \int_{\Omega}|u|^{p+2} dx - \left(\nu + \frac{1}{2}\right)\int_{\Omega}|u|^{2} dx \leq \left(\frac{L^{2}}{4\nu} + \frac{1}{2}\right)\int_{\Omega}h^{2} dx.$$
(20)

Let

$$L_1 = \min\left(\frac{L^2}{4\nu}, \frac{1}{2}, \frac{L^2}{2\nu(p+2)}\right).$$

Since

$$\int_{\Omega} |\nabla u|^2 \, dx = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx \ge \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{2C_{\Omega}^2} \int_{\Omega} |u|^2 \, dx,$$

then from (20) we have

$$L_{1}\frac{d}{dt}\int_{\Omega} \left(|\nabla u|^{2} + |u|^{2} + |\nabla u|^{p+2}\right) dx + \frac{1}{2}\int_{\Omega} |\nabla u|^{2} dx + \left(\frac{1}{2C_{\Omega}^{2}} - \nu - \frac{1}{2}\right)\int_{\Omega} |u|^{2} dx + \int_{\Omega} |u|^{p+2} dx \le \left(\frac{L^{2}}{4\nu} + \frac{1}{2}\right)\int_{\Omega} h^{2} dx.$$

By dividing by L_1 this inequality, by setting

$$\delta = \frac{1}{L_1} \min\left(\frac{1}{2}, \frac{1}{2C_{\Omega}^2} - \nu - \frac{1}{2}\right)$$

and using

$$\|h\|_{L^2(\Omega)}^2 \le m$$

we obtain

$$\frac{d}{dt} \int_{\Omega} \left(|\nabla u|^2 + |u|^2 + |\nabla u|^{p+2} \right) dx + \delta \frac{d}{dt} \int_{\Omega} \left(|\nabla u|^2 + |u|^2 + |\nabla u|^{p+2} \right) dx \le \left(\frac{L^2}{4\nu} + \frac{1}{2} \right) m = C,$$

that is the inequality (17).

Let

$$B_{0} = \left[\left\{ y \in V : \Phi(y) \le \frac{2C}{\delta} \right\} \right],$$

where [M] denotes a closure of set M.

It is easy to see that B_0 is bounded.

We must prove that B_0 is absorbing. For an arbitrary bounded set $B \subset V$ $(B = \{y \in V : ||y||_V \le \chi\})$ we must find $t_1(B) = t_1(\chi)$ such that $S(t) B \subset B_0$ for any $t \ge t_1(\chi)$, that is for arbitrary $u^0 \in B$ it holds $u = S(t) u^0 \in B_0$. Since u is a solution of problem (1)-(3) with initial data u^0 , then it holds the inequality (17). By multiplying (17) by $e^{\delta t}$ we have

$$\frac{d}{dt}\left(\Phi\left(u\right)e^{\delta t}\right) \leq Ce^{\delta t}$$

or

$$\Phi(u) e^{\delta t} - \Phi(u) \Big|_{t=0} \le \frac{C}{\delta} \left(e^{\delta t} - 1 \right)$$

for any $t \ge 0$, whence

$$\Phi(u) \le \frac{C}{\delta} + \left(-\frac{C}{\delta} + \Phi(u)\Big|_{t=0}\right) e^{-\delta t}.$$
(21)

Since $o if <math>N \ge 3$ and p > 0 if N = 1, 2, then

$$\Phi(u)|_{t=0} = \int_{\Omega} \left(\left| u^0 \right|^2 + \left| \nabla u^0 \right|^2 + \left| u^0 \right|^{p+2} \right) dx = \left\| u^0 \right\|_V^2 + \left\| u^0 \right\|_{p+2}^{p+2} \le \left\| u^0 \right\|_V^2 + \left\| u^0 \right\|_V^{p+2}.$$

Since

$$u^0 \in B = \{ y \in V : \|y\|_V \le \chi \}$$

then the right part of the last inequality is bounded by a constant which depends on χ . We denote this constant by $C(\chi)$. Then from (21) we obtain

$$\Phi(u) \le \frac{C}{\delta} + \left(-\frac{C}{\delta} + C(\chi)\right)e^{-\delta t}.$$
(22)

We choose t such that

$$\left(-\frac{C}{\delta}+C\left(\chi\right)\right)e^{-\delta t}\leq\frac{C}{\delta},$$

that is

$$t \ge \frac{1}{\delta} \ln \frac{-\frac{C}{\delta} + C(\chi)}{\frac{C}{\delta}} = \frac{1}{\delta} \ln \left(\frac{\delta C(\chi)}{C} - 1 \right) = t_1(\chi)$$
$$\left(t > 0, \text{ if } \frac{\delta C(\chi)}{C} - 1 \le 0 \right).$$

Therefore from (22) we obtain that

$$\Phi\left(u\right) \le \frac{2C}{\delta},$$

that is

$$u = S(t) u^0 \in B^0$$

for any $t \ge t_1(\chi)$.

Theorem 4 is proved.

33

34_____[S.E.Isayeva]

References

[1]. Visintin A. Differential model hysteresis. Springer, 1993.

[2]. Lions J.L. Some solution methods for nonlinear boundary value problems. M.: Mir, 1972 (Russian).

[3]. Kopfova J. Uniqueness theorem for a Cauchy problem with hysteresis. Proseedings of the American Mathematical Society, 1999, vol. 127, No 12, pp. 3527-3532.

[4]. Kopfova J. Periodic solutions and asymptotic behavior of a PDE with hysteresis in the source term. Rocky Mountain Journal of Mathematics, 2006, vol. 36, No 2, pp. 539-554.

[5]. Isayeva S.E. The mixed problem for one semilinear hyperbolic equation with memory. Transactions of NAS of Azerbaijan, 2010, vol.XXX, No 1, pp. 105-112.

[6]. Isayeva S.E. The mixed problem for a quasilinear parabolic equation with memory. Proceedings of IMM of NAS of Azerbaijan, 2010, vol. XXXII(XL), pp. 111-118.

Sevda E. Isayeva

Baku State University 23, Z.I. Khalilov str., AZ 1148, Baku, Azerbaijan Tel.: (99412) 539 47 20 (off.).

Received June 20, 2012; Revised October 16, 2012.