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INTEGRAL LIMIT THEOREM FOR THE FIRST
PASSAGE TIME FOR THE LEVEL OF RANDOM
WALK, DESCRIBED WITH AR(1) SEQUENCES

Abstract

In the paper the integral limit theorem is proved for the first passage for a
level of random walk described by an autoregression sequences AR(1).

1.Introduction. Let ξn; n ≥ 1 be a sequence of independent identically dis-
tributed random variables determined on some probability space (Ω, F, P ).

As is known, the autoregressive sequence of first order AR(1) is determined as
the solution of the equation

Xn = βXn−1 + ξn, n ≥ 1, X0 = x, (1)

where x and β are non-random constants, and we’ll suppose x ≥ 0 and |β| < 1.
Assume

Tn =
n∑

k=1

Xk−1Xk, n ≥ 1

and consider the first passage time

τa = inf {n ≥ 1 : T > a} (2)

of the process Tn, n ≥ 1 for the level a ≥ 0.
The first passage time of type (1) was an investigation object in the papers [1-5],

where different boundary problems for AR(1) sequences were studied.
Sufficient conditions for exponential boundedness of the first passage time for

the level of AR(1) sequences are found and an identity for the mean time of the first
passage is obtained in the paper [1].

In [5], the limit distribution of the first overshoot for the level of the AR(1)
sequence is found.

In the present paper we prove an integral limit theorem for the first passage time
τa of the form (2) under which we understand any assertion on the convergence in
distribution

τa −A(a)
B(a)

d→ η,

where η is some non-degenerate random variable, A(a) and B(a) > 0 are normalized
non-random constants dependent on a. Integral limit theorems play an important
part in theoretical and applied problems of theory of random walks. The role and
value of these theorems are explained in [2], [3] (see also [9]).

2. Conditions and formulation of the main result
At first we give the following definition that plays a fundamental role in investi-

gation of weak convergence of the sum of the random number of random variables
([6], [9]).
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Definition. A sequence of random variables ηn, n ≥ 1 is said to be uniformly
continuous in probability if for any ε > 0

lim
δ→0

sup
n≥1

P

{
max

0≤k≤nδ

∣∣ηn+k − ηn

∣∣ > ε

}
= 0 (3)

Remark 1. Note that any sequence of random variables converging almost
surely to finite limit, is uniformly continuous in probability.

Note that the sum of two random variables uniformly continuous in probability
is uniformly continuous in probability (see [9]).

We’ll assume that

0 < β < 1, Eξn = 0 and Dξn = 1.

Enumerate some properties of AR(1)-sequence. It is easy to see that Xn has the
following representation

Xn = ξn + βξn−1 + β2Xn−1 = ... =
n−1∑

i=0

βkξn−i + βnx.

Hence it follows that

EXn = xβn and DXn =
1− β2n

1− β2

Taking into account that the random variables Xn−1 and ξn are independent,
we have

EXnXn−1 = βEXn + EξnEXn−1 = βEX2
n−1

Then from (4) we find

EXnXn−1 → β

1− β2 = λ, (5)

EX2
n →

1
1− β2 as n →∞.

Remark 2. Note that AR(1) sequence with the initial value X0 = x is non-
stationary since EXn and DXn obviously depend on n. By |β| < 1, the limit
values of its mean value and variance coincide with appropriate characteristics of
the stationary AR(1)-sequence satisfying (1) for all n = 0, ± 1,±2... (see [10]).

Assume

σ =
1
λ

√
1− β2

λ
and Φ(x) =

1√
2π

x∫

∞
e−y2/2

dy.

It holds
Theorem. Let Eξn = 0, Dξn = 1 and 0 < β < 1.
Then

lim
a→∞P




τa − a

λ
σ
√

a
≤ x


 = Φ(x), x ∈ R.
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3. Proof of the theorem. For proving theorem, we need a number of known
statements formulated in the form of the following lemmas 1-5.

Lemma 1. For |β| < 1 it holds

Tn

n

a.s.→ λ as n →∞.

The statement of this lemma was proved in [7] (see also [6]).
Lemma 2. For |β| < 1 it holds

lim
n→∞P (T ∗n ≤ x) = Φ(x)

where T ∗n =
Tn − λn√
n(1− β2)

.

This statement was proved in [7], (see also [6]).
Lemma 3. The sequence T ∗n , n ≥ 1 is uniformly continuous in probability. This

lemma was proved in [6].
Lemma 4. Let tc, c > 0 be a family of integer random variables such that

tc
c

P→ θ > 0 as c → ∞, and let the sequence of random variables Yn, n ≥ 1 satisfy

condition (2) and converge in distribution Yn
d→ y.. Then Ytc

d→ y as c →∞.
The statement of this lemma follows from the Anscombe theorem [8], [9].
Lemma 5. Let the sequence Yn, n ≥ 1 of random variables converge almost

surely to the random variable
(
Yn

a.s.→ y
)
, and let for the family of integer random

variables the convergence tc
a.s.→ ∞ as c → ∞ be fulfilled. Then Ytc

d→ y as c → ∞.
This lemma was proved in [8].

Prove the following lemma on asymptotic properties of the first passage time τa

of the form (1).
Lemma 6. Let 0 < ∞ < 1 . Then the following statements are true:
1) P (τa < ∞) = 1 for all a ≥ 0.
2) τa

a.s.→ ∞ as a →∞
3)

τa

a

a.s.→ 1− β2

β
as a →∞.

Proof. From lemma 1 it follows that

P

(
sup

n
Tn = ∞

)
= 1.

Hence we have

P (τa < ∞) = P

(
sup

n
Tn > a

)
= 1

for all a ≥ 0.
Prove statement 2). The process τa, a ≥ 0 as a function of a increases and

therefore there exists the limit τ∞ = lim
a→∞τa ≤ ∞. On the other hand,

P (τ∞ ≤ n) = lim
a→∞ (τa ≤ n) =

= lim
a→∞P

(
sup

1≤k≤n
Tk > a

)
= 0
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for all n ≥ 1. Thus, lim
a→∞P (τa > n) = 1 and P (τ∞ = ∞) = 1.

For proving statement 3) we note that by statement 2) of the proved lemma from
lemma 1 and 5 we get that

Tτa

τa

a.s.→ λ as a →∞ (6)

From definition of the first passage time τa we have

Tτa−1

τa
≤ a

τa
<

Tτa

τa
(7)

Then statement 3) of lemma 6 follows from (6) and (7).
Theorem’s proof. Having assumed Ra = Tτa − a, we have

Tτa − λτa√
τa

=
a− λτa√

τa
+

Ra√
τa

or

T ∗τa
=

Tτa − λτa√
(1− β2)τa

= −
τa − a

λ√
1− β2

λ

√
τa

+
Ra√

(1− β2)τa

(8)

By statement 3) of lemma 6, from lemmas 2,3, and 4 we have

lim
a→∞p(T ∗τa

≤ x) = Φ(x), x ∈ R (9)

For obtaining the statement of the theorem from equality (8), it suffices to show
that

Ra√
τa

P→ 0 as a →∞ (10)

Indeed, taking into account Tτa−1 ≤ a, we have

Ra = Tτa − a ≤ Tτa − Tτa−1 = Xτa−1Xτa

or
Ra√
τa
≤ Xτa−1Xτa√

τa
(11)

Applying the Cauchy-Bunyakovsky inequality and taking into account (4), (5),
it is easy to show that

E |Xn−1Xn|√
n

→ 0 for n →∞.

Then from the last relation and the Chebyshev inequality it follows that

Xn−1Xn√
n

P→ 0 as n →∞. (12)

Further, we have

Xn−1Xn√
n

=
Tn − nλ√

n
− Tn − (n− 1)λ√

n
+

λ√
n

.
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Then by remark 1 and lemma 3, the sequence
Xn−1Xn√

τa
, n ≥ 1 is uniformly

continuous in probability.
Now from (11) and lemma 4 we find

Xτa−1Xτa√
τa

P→ 0 as a →∞. (13)

Consequently, (10) follows from (11) and (12).
From (8), (9) and (10) we have

lim
a→∞P




τa − a

λ√
1− β2

λ

√
τa

≤ x


 = Φ(x).

By the statement of lemma 6, from the last relation we get the statement of the
theorem.
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