Rovshan G. POLADOV

ON THE BASIS IN THE SPACE $L_{p}(0,1), 1<p<+\infty$ OF THE SYSTEM OF EIGEN FUNCTIONS OF STURM-LIOUVILLE PROBLEM WITH A SPECTRAL PARAMETER IN BOUNDARY CONDITIONS

$$
\begin{aligned}
& \text { Abstract } \\
& \text { We consider the following spectral problem } \\
& -y^{\prime \prime}(x)=\lambda y(x), \quad x \in(0,1), \\
& \left(a_{0} \lambda+b_{0}\right) y(0)=\left(c_{0} \lambda+d_{0}\right) y^{\prime}(0), \\
& \left(a_{1} \lambda+b_{1}\right) y(1)=\left(c_{1} \lambda+d_{1}\right) y^{\prime}(1), \\
& \text { where } \lambda \text { is a spectral parameter, } a_{i}, b_{i}, c_{i}, d_{i}, i=\overline{0,1} \text { are real constants, } \\
& \text { moreover } \\
& \qquad \sigma_{0}=a_{0} d_{0}-b_{0} c_{0}<0, \quad \sigma_{1}=a_{1} d_{1}-b_{1} c_{1}>0 .
\end{aligned}
$$

Consider the following boundary value problem

$$
\begin{align*}
-y^{\prime \prime}(x)+q(x) y(x) & =\lambda y(x), \quad x \in(0,1) \tag{1}\\
\left(a_{0} \lambda+b_{0}\right) y(0) & =\left(c_{0} \lambda+d_{0}\right) y^{\prime}(0) \tag{2}\\
\left(a_{1} \lambda+b_{1}\right) y(1) & =\left(c_{1} \lambda+d_{1}\right) y^{\prime}(1) \tag{3}
\end{align*}
$$

where λ is a spectral parameter, $q(x)$ is a real continuous function on $[0,1], a_{i}, b_{i}$, $c_{i}, d_{i}, i=\overline{0,1}$ are real constants, moreover

$$
\begin{equation*}
\sigma_{0}=a_{0} d_{0}-b_{0} c_{0}<0, \quad \sigma_{1}=a_{1} d_{1}-b_{1} c_{1}>0 \tag{4}
\end{equation*}
$$

The problem of the form (1)-(3) arises, for example, by separating variables in a dynamic boundary value problem describing small torsional vibrations of a bar with both pulley stiffened ends. A more complete information on the physical sense of the problems of type (1)-(3) may be found in [1] and [2].

In the paper [3] the complete description of general characteristics of arrangement of eigenvalues on a real axis is given, vibrational properties of eigenfunctions are studied, asymptotic formulae for eigenvalues and eigenfunctions of problem (1)-(3) are obtained. The basis properties of eigenfunctions where it is established that the system of eigenfunctions of this problem after removing two arbitrary functions having different parity ordinal number forms a basis in the space $L_{p}, 1<p<\infty$ is also investigated.

In the paper [4], problem (1)-(3) is reduced to an eigen value problem for a linear operator acting in the Hilbert space $H=L_{2}(0,1) \oplus C^{2}$, necessary and sufficient condition of basicity in $L_{p}(0,1), 1<p<\infty$, of the subsystem of eigen functions of this problem is established. More exactly, it is proved the following theorem.

Theorem A. Let r and l be arbitrary fixed entire non-negative numbers. If

$$
\Delta(r, l)=\left|\begin{array}{cc}
1 & 1 \tag{5}\\
c_{1} y_{r}^{\prime}(1)-a_{1} y_{r}(1) & c_{1} y_{l}^{\prime}(1)-a_{1} y_{l}(1)
\end{array}\right| \neq 0
$$

then the system of eigen functions $\left\{y_{k}\right\}_{k=0, k \neq r, l}^{\infty}$ of problem (1)-(3) forms a basis in the space $L_{p}(0,1), 1<p<\infty$, for $p=2$ the Riesz basis, if $\Delta(r, l)=0$, this system is incomplete and not minimal in the space $L_{p}(0,1), 1<p<\infty$.

The basis properties of the system of root functions in the space $L_{p}(0,1), 1<$ $p<\infty$ of problem (1)-(3) (in special cases) were investigated also in the papers [5] and [6]. In the case $q \equiv 0, b_{j}=c_{j}=0,(-1)^{j+1} a_{j}>0, d_{j}=1, j=\overline{0,1}$, (therewith $\sigma_{0}<0, \sigma_{1}>0$) in [5] it was proved that if $a_{0} \neq a_{1}$ then the system of eigenfunctions of problem (1)-(3) with two removed arbitrary functions forms a basis in the space $L_{p}(0,1), 1<p<\infty$; if $a_{0}=-a_{1}$, then the system of eigenfunctions with two removed arbitrary functions having different parity numbers forms a basis in the space $L_{p}(0,1), 1<p<\infty$, if $a_{0}=-a_{1}$, then the system of eigenfunction with two arbitrary removed functions having the same order parity, is neither complete nor minimal in $L_{p}(0,1), 1<p<\infty$. In the case $q \equiv 0, b_{j}=c_{j}=0, a_{j}<0, d_{j}=1$, $j=\overline{0,1}$ (therewith $\sigma_{0}<0, \sigma_{1}<0$) necessary and sufficient basicity condition in $L_{p}(0,1), 1<p<\infty$, of the system of the root functions of problem (1)-(3) with two removed root functions is found in [6].

The present paper is devoted to the investigation of basis properties of the subsystem of eigenfunctions of problem (1)-(3) for $q \equiv 0$.

Note that the solution of equation (1) satisfying the initial conditions

$$
\begin{equation*}
y(0, \lambda)=c_{0} \lambda+d_{0}, \quad y^{\prime}(0, \lambda)=a_{0} \lambda+b_{0} \tag{6}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
y(x, \lambda)=\left(c_{0} \lambda+d_{0}\right) \cos \sqrt{\lambda} x+\left(a_{0} \lambda+b_{0}\right) \frac{\sin \sqrt{\lambda} x}{\sqrt{\lambda}} . \tag{7}
\end{equation*}
$$

Taking into account boundary condition (3), we get

$$
\begin{aligned}
& \cot \sqrt{\lambda}\left\{\left(a_{0} \lambda+b_{0}\right)\left(c_{1} \lambda+d_{1}\right)-\left(a_{1} \lambda+b_{1}\right)\left(c_{0} \lambda+d_{0}\right)\right\}= \\
& =\frac{1}{\sqrt{\lambda}}\left(a_{0} \lambda+b_{0}\right)\left(a_{1} \lambda+b_{1}\right)+\left(c_{0} \lambda+d_{0}\right)\left(c_{1} \lambda+d_{1}\right) \sqrt{\lambda} .
\end{aligned}
$$

Thus, the eigenvalues $\lambda_{0}<\lambda_{1}<\ldots<\lambda_{k}<\ldots$ of problem (1)-(3) are the roots of the equation

$$
\begin{equation*}
\cot \sqrt{\lambda}=\frac{\left(a_{0} \lambda+b_{0}\right)\left(a_{1} \lambda+b_{1}\right)+\left(c_{0} \lambda+d_{0}\right)\left(c_{1} \lambda+d_{1}\right) \lambda}{\left\{\left(a_{0} \lambda+b_{0}\right)\left(c_{1} \lambda+d_{1}\right)-\left(a_{1} \lambda+b_{1}\right)\left(c_{0} \lambda+d_{0}\right)\right\} \sqrt{\lambda}} \tag{8}
\end{equation*}
$$

[On the basis in the space ...]
and by (7) has only the eigenfunctions

$$
y_{k}(x)=\left(c_{0} \lambda+d_{0}\right) \cos \sqrt{\lambda_{k}} x+\left(a_{0} \lambda+b_{0}\right) \frac{\sin \sqrt{\lambda_{k}} x}{\sqrt{\lambda_{k}}}, \quad k=0,1, \ldots
$$

Then we have

$$
\begin{gather*}
y_{k}(1)=\left(c_{0} \lambda_{k}+d_{0}\right) \cos \sqrt{\lambda_{k}}+\left(a_{0} \lambda_{k}+b_{0}\right) \frac{\sin \sqrt{\lambda_{k}}}{\sqrt{\lambda_{k}}}= \\
=\sin \sqrt{\lambda_{k}}\left\{\left(c_{0} \lambda_{k}+d_{0}\right) \cot \sqrt{\lambda_{k}}+\frac{1}{\sqrt{\lambda_{k}}}\left(a_{0} \lambda_{k}+b_{0}\right)\right\}= \\
=\sin \sqrt{\lambda_{k}}\left\{\frac{\left(c_{0} \lambda+d_{0}\right)\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(a_{1} \lambda_{k}+b_{1}\right)+\left(c_{0} \lambda_{k}+d_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right) \lambda_{k}\right\}}{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda+d_{0}\right)\right\} \sqrt{\lambda}}+\right. \\
\left.+\frac{\left(a_{0} \lambda_{k}+b_{0}\right)\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda_{k}+d_{0}\right)\right\}}{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda+d_{0}\right)\right\} \sqrt{\lambda}}\right\}= \\
=\sin \sqrt{\lambda_{k}} \frac{\left(c_{1} \lambda_{k}+d_{1}\right)\left\{\left(a_{0} \lambda_{k}+b_{0}\right)^{2}+\left(c_{0} \lambda_{k}+d_{0}\right)^{2} \lambda_{k}\right\}}{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda+d_{0}\right)\right\} \sqrt{\lambda_{k}}} . \tag{9}
\end{gather*}
$$

Note that

$$
\sin \sqrt{\lambda_{k}}=(-1)^{k} \frac{1}{\left(1+\cot ^{2} \sqrt{\lambda_{k}}\right)^{1 / 2}}
$$

We have

$$
\begin{aligned}
1+\cot ^{2} & \sqrt{\lambda_{k}}=1+\frac{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(a_{1} \lambda_{k}+b_{1}\right)+\left(c_{0} \lambda_{k}+d_{0}\right)\left(c_{1} \lambda+d_{1}\right) \lambda_{k}\right\}^{2}}{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda+d_{0}\right)\right\}^{2} \lambda_{k}}= \\
& =\left\{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda_{k}+d_{0}\right)\right\}^{2} \lambda_{k}+\right. \\
& +\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(a_{1} \lambda_{k}+b_{1}\right)+\left(c_{0} \lambda_{k}+d_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right) \lambda_{k}\right\}^{2} \times \\
& \times\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda_{k}+d_{0}\right)\right\}^{-2} \lambda_{k}^{-1}= \\
= & \left\{\left(a_{0} \lambda_{k}+b_{0}\right)^{2}\left(c_{1} \lambda_{k}+d_{1}\right)^{2}+\left(a_{1} \lambda_{k}+b_{1}\right)^{2}\left(c_{0} \lambda_{k}+d_{0}\right)^{2}\right\} \lambda_{k}+ \\
+ & \left\{\left(a_{0} \lambda_{k}+b_{0}\right)^{2}\left(a_{1} \lambda_{k}+b_{1}\right)^{2}+\left(c_{0} \lambda_{k}+d_{0}\right)^{2}\left(a_{1} \lambda_{k}+b_{1}\right)^{2} \lambda 2_{k}\right\} \times \\
& \times\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda_{k}+d_{0}\right)\right\}^{-2} \lambda_{k}^{-1}= \\
= & \frac{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)^{2}\left(c_{0} \lambda_{k}+d_{0}\right)^{2} \lambda_{k}\left(a_{1} \lambda_{k}+b_{1}\right)^{2}+\left(c_{1} \lambda+d_{1}\right)^{2} \lambda_{k}\right\}}{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda+d_{0}\right)\right\}^{2} \lambda_{k}} .
\end{aligned}
$$

Taking into account the last two equalities, from (9) we find

$$
\begin{gathered}
y_{k}(1)=(-1)^{k} \times \\
\times \frac{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda+d_{0}\right)\right\} \sqrt{\lambda}}{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)^{2}+\left(c_{0} \lambda_{k}+d_{0}\right)^{2} \lambda_{k}\right\}^{1 / 2}\left\{\left(a_{1} \lambda_{k}+b_{1}\right)^{2}+\left(c_{1} \lambda_{k}+d_{1}\right)^{2} \lambda_{k}\right\}^{1 / 2}} \times
\end{gathered}
$$

$$
\begin{aligned}
& \times \frac{\left(c_{1} \lambda_{k}+d_{1}\right)\left\{\left(a_{0} \lambda_{k}+b_{0}\right)^{2}+\left(c_{0} \lambda_{k}+d_{0}\right)^{2} \lambda_{k}\right\}}{\left\{\left(a_{0} \lambda_{k}+b_{0}\right)\left(c_{1} \lambda_{k}+d_{1}\right)-\left(a_{1} \lambda_{k}+b_{1}\right)\left(c_{0} \lambda_{k}+d_{0}\right)\right\} \sqrt{\lambda_{k}}}= \\
& =(-1)^{k}\left(c_{1} \lambda_{k}+d_{1}\right)\left(\frac{\left(a_{0} \lambda_{k}+b_{0}\right)^{2}+\left(c_{0} \lambda_{k}+d_{0}\right)^{2} \lambda_{k}}{\left(a_{1} \lambda_{k}+b_{1}\right)^{2}+\left(c_{1} \lambda_{k}+d_{1}\right)^{2} \lambda_{k}}\right)^{1 / 2}
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
y_{k}(1)=(-1)^{k}\left(c_{1} \lambda_{k}+d_{1}\right)\left(\frac{\left(a_{0} \lambda_{k}+b_{0}\right)^{2}+\left(c_{0} \lambda_{k}+d_{0}\right)^{2} \lambda_{k}}{\left(a_{1} \lambda_{k}+b_{1}\right)^{2}+\left(c_{1} \lambda_{k}+d_{1}\right)^{2} \lambda_{k}}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

Let the following relation be fulfilled

$$
\begin{equation*}
a_{1}=a_{0}, \quad b_{1}=b_{0}, \quad c_{1}=-c_{0}, \quad d_{1}=-d_{0} \tag{11}
\end{equation*}
$$

Then from (10) we get

$$
\begin{equation*}
y_{k}(1)=(-1)^{k}\left(c_{1} \lambda_{k}+d_{1}\right) \tag{12}
\end{equation*}
$$

If $\left(c_{j} \lambda_{r}+d_{j}\right)\left(c_{j} \lambda_{l}+d_{j}\right) \neq 0, j=0,1$ then by (14) from [4] (see also [3]), equalities (6) and (12) we have

$$
\begin{align*}
\Delta(r, l)= & \Delta_{1}(r, l)=\left|\begin{array}{cc}
1 & 1 \\
c_{1} y_{r}^{\prime}(1)-a_{1} y_{r}(1) & c_{1} y_{l}^{\prime}(1)-a_{1} y_{l}(1)
\end{array}\right|= \\
& =\left|\begin{array}{cc}
1 & 1 \\
\frac{b_{1} c_{1}-a_{1} d_{1}}{c_{1} \lambda_{r}+d_{1}} y_{r}(1) & \frac{b_{1} c_{1}-a_{1} d_{1}}{c_{1} \lambda_{l}+d_{1}} y_{r}(1)
\end{array}\right|= \\
& =\left|\begin{array}{cc}
1 & 1 \\
\frac{y_{r}(1)}{c_{1} \lambda_{r}+d_{1}} & \frac{y_{l}(1)}{c_{1} \lambda_{l}+d_{1}}
\end{array}\right|=\left|\begin{array}{cc}
1 & 1 \\
(-1)^{r} & (-1)^{l}
\end{array}\right| . \tag{13}
\end{align*}
$$

If $c_{0} \neq 0, \lambda_{l}=-d_{0} / c_{0}$, then $\lambda_{l}=-d_{1} / c_{1}, c_{j} \lambda_{r}+d_{j} \neq 0, j=0,1$. Consequently, by (12) we have

$$
\Delta(r, l)=\Delta_{5}(r, l)=\left|\begin{array}{cc}
1 & 1 \tag{14}\\
\frac{y_{r}(1)}{c_{1} \lambda_{r}+d_{1}} & -\frac{c_{1} y_{l}^{\prime}(1)}{\sigma_{1}}
\end{array}\right|=\left|\begin{array}{cc}
1 & 1 \\
(-1)^{r} & -\frac{c_{1} y_{l}^{\prime}(1)}{\sigma_{1}}
\end{array}\right| .
$$

From formula (7) we get

$$
\begin{aligned}
y_{l}(1)=y\left(1, \lambda_{l}\right)= & \left(c_{0} \lambda_{l}+d_{0}\right) \cos \sqrt{\lambda_{l}}+\left(a_{0} \lambda_{l}+b_{0}\right) \frac{\sin \sqrt{\lambda_{l}}}{\sqrt{\lambda_{l}}}= \\
& =\left(a_{0} \lambda_{l}+b_{0}\right) \frac{\sin \sqrt{\lambda_{l}}}{\sqrt{\lambda_{l}}}=0
\end{aligned}
$$

Taking into account this equality, from formula (7) we find

$$
\begin{aligned}
y_{l}^{\prime}(1) & =y^{\prime}\left(1, \lambda_{l}\right)=-\sqrt{\lambda_{l}}\left(c_{0} \lambda_{l}+d_{0}\right) \sin \sqrt{\lambda_{l}} x+\left(a_{0} \lambda+b_{0}\right) \cos \sqrt{\lambda_{l}}= \\
& =\left(a_{0}\left(-\frac{d_{0}}{c_{0}}\right)+b_{0}\right) \cos \sqrt{\lambda_{l}}=-\frac{a_{0} d_{0}-b_{0} c_{0}}{c_{0}} \cos \sqrt{\lambda_{l}}=
\end{aligned}
$$

$$
=-\frac{a_{1} d_{1}-b_{1} c_{1}}{c_{1}} \cos \sqrt{\lambda_{l}}=-\frac{\sigma_{1}}{c_{1}} \sqrt{1-\sin ^{2} \sqrt{\lambda_{l}}}=-\frac{(-1)^{k} \sigma_{1}}{c_{1}}
$$

Taking into account this relation in (14), we get

$$
\Delta_{5}(r, l)=\left|\begin{array}{cc}
1 & 1 \tag{15}\\
(-1)^{r} & (-1)^{l}
\end{array}\right|
$$

From (13) and (15) it follows that if r and l are entire non-negative numbers having the same parity, then $\Delta_{r, l}=0$ and by theorem A, the system of eigenfunctions $\left\{y_{k}\right\}_{k=0, k \neq r, l}^{\infty}$ of problem (1)-(3) for $q \equiv 0$ is neither complete nor minimal in the space $L_{p}(0,1), 1<p<+\infty$.

Thus, we proved
Theorem 1. Let r and l be entire non-negative numbers having the same parity, and condition (11) be fulfilled. Then the system of eigenfunctions $\left\{y_{k}\right\}_{k=0, k \neq r, l}^{\infty}$ of problem (1)-(3) for $q \equiv 0$ is neither complete nor minimal in the space $L_{p}(0,1)$, $1<p<+\infty$.

From this theorem it is seen that the condition of theorem 4 from [3] about that the numbers r and l have different parities is essential.

Let r and l be entire non-negative numbers having the same parities. Then it holds the equality

$$
\begin{gather*}
\Delta(r, l)=\Delta_{1}(r, l)=\left|\begin{array}{cc}
1 & 1 \\
\frac{y_{r}(1)}{c_{1} \lambda_{r}+d_{1}} & \frac{y_{l}(1)}{c_{1} \lambda_{l}+d_{1}}
\end{array}\right|= \\
=(-1)^{r}\left|\begin{array}{cc}
1 \\
1 & \left(\frac{\left(a_{0} \lambda_{l}+b_{0}\right)^{2}+\left(c_{0} \lambda_{l}+d_{0}\right)^{2} \lambda_{l}}{\left(a_{1} \lambda_{l}+b_{1}\right)^{2}+\left(c_{1} \lambda_{l}+d_{1}\right)^{2} \lambda_{l}}\right)^{1 / 2}
\end{array} \begin{array}{c}
\left(\frac{\left(a_{0} \lambda_{r}+b_{0}\right)^{2}+\left(c_{0} \lambda_{r}+d_{0}\right)^{2} \lambda_{r}}{\left(a_{1} \lambda_{r}+b_{1}\right)^{2}+\left(c_{1} \lambda_{r}+d_{1}\right)^{2} \lambda_{r}}\right)^{1 / 2}
\end{array}\right| . \tag{16}
\end{gather*}
$$

Now, let's consider the function

$$
\begin{equation*}
F(\lambda)=\left(\frac{\left(a_{0} \lambda+b_{0}\right)^{2}+\left(c_{0} \lambda+d_{0}\right)^{2} \lambda}{\left(a_{1} \lambda+b_{1}\right)^{2}+\left(c_{1} \lambda+d_{1}\right)^{2} \lambda}\right)^{1 / 2} \tag{17}
\end{equation*}
$$

Let $c_{0}^{2}+c_{1}^{2}>0$. We rewrite the function $F(\lambda)$ in the form

$$
\begin{gathered}
F(\lambda)=\left(\frac{\left(a_{0} \lambda+b_{0}\right)^{2}+\left(c_{0} \lambda+d_{0}\right)^{2} \lambda}{\left(a_{1} \lambda+b_{1}\right)^{2}+\left(c_{1} \lambda+d_{1}\right)^{2} \lambda}\right)^{1 / 2}= \\
=\left(\frac{c_{0}^{2} \lambda^{3}+\left(a_{0}^{2}+2 c_{0} d_{0}\right) \lambda^{2}+\left(d_{0}^{2}+2 a_{0} b_{0}\right) \lambda+b_{0}^{2}}{c_{1}^{2} \lambda^{3}+\left(a_{1}^{2}+2 c_{1} d_{1}\right) \lambda^{2}+\left(d_{1}^{2}+2 a_{1} b_{1}\right) \lambda+b_{1}^{2}}\right)^{1 / 2}
\end{gathered} .
$$

Hence we have

$$
\begin{gathered}
F^{\prime}(\lambda)=(1 / 2)(F(\lambda))^{-1 / 2} \times \\
\times\left\{c_{1}^{2} \lambda^{3}+\left(a_{1}^{2}+2 c_{1} d_{1}\right) \lambda^{2}+\left(d_{1}^{2}+2 a_{1} b_{1}\right) \lambda+b_{1}^{2}\right\}^{-2} \times \\
\times\left\{\left(3 c_{0}^{2} \lambda^{2}+2\left(a_{0}^{2}+2 c_{0} d_{0}\right) \lambda+\left(d_{0}^{2}+2 a_{0} b_{0}\right)\right) \times\right.
\end{gathered}
$$

[R.G.Poladov]

$$
\begin{gather*}
\times\left(c_{1}^{2} \lambda^{3}+\left(a_{1}^{2}+2 c_{1} d_{1}\right) \lambda^{2}+\left(d_{1}^{2}+2 a_{1} b_{1}\right) \lambda+b_{1}^{2}\right)- \\
\times\left(c_{0}^{2} \lambda^{3}+\left(a_{0}^{2}+2 c_{0} d_{0}\right) \lambda^{2}+\left(d_{0}^{2}+2 a_{0} b_{0}\right) \lambda+b_{0}^{2}\right) \times \\
\left.\times\left(3 c_{1}^{2} \lambda^{2}+2\left(a_{1}^{2}+2 c_{1} d_{1}\right) \lambda+\left(d_{1}^{2}+2 a_{1} b_{1}\right)\right)\right\}= \\
=(1 / 2)(F(\lambda))^{-\frac{1}{2}}\left\{c_{1}^{2} \lambda^{3}+\left(a_{1}^{2}+2 c_{1} d_{1}\right) \lambda^{2}+\left(d_{1}^{2}+2 a_{1} b_{1}\right) \lambda+b_{1}^{2}\right\}^{-2} \times \\
\times\left\{c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right)\right\} \lambda^{4}+2\left\{c_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-\right. \\
\left.-c_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)\right\} \lambda^{3}+\left\{3\left(c_{0}^{2} b_{1}^{2}-c_{1}^{2} b_{0}^{2}\right)+\left(a_{0}^{2}+2 c_{0} d_{0}\right)\left(d_{1}^{2}+2 a_{1} b_{1}\right)-\right. \\
\left.-\left(a_{1}^{2}+2 c_{1} d_{1}\right)\left(d_{0}^{2}+2 c_{1} d_{1}\right)\left(d_{0}^{2}+2 a_{0} b_{0}\right)\right\} \lambda^{2}+ \\
+2\left\{b_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right)-b_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)\right\}+ \\
\left.+b_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)-b_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)\right\} . \tag{18}
\end{gather*}
$$

It follows from formula (18) that either

1) $c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right) \neq 0 ;$
or
2) $c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right)=0, c_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-c_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right) \neq 0$;
or
3) $c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right)=0, c_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-c_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)=0$, $c_{0}^{2} b_{1}^{2}-c_{1}^{2} b_{0}^{2}=0$, then there exists $\lambda^{*} \in R$ such that $F^{\prime}(\lambda) \neq 0$ for $\lambda \geq \lambda^{*}$, i.e. the function $F(\lambda)$ is strongly monotone for $\lambda \geq \lambda^{*}$. Consequently, there exists an entire non-negative number k^{*} such that for $r, l \geq k^{*}$ we'll have $\Delta(r, l)=\Delta_{1}(r, l) \neq 0$ from (16) and (17), i.e. condition (5) is fulfilled. Then on the base of theorem A, the system of eigen functions $\left\{y_{k}(x)\right\}_{k=0, k \neq r, l}^{\infty}, r, l \geq k^{*}$ of problem (1)-(3) for $q \equiv 0$ forms the Riesz basis in the space $L_{p}(0,1), 1<p<\infty$, for $p=2$ the Riesz basis.

And if
4) $c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right)=0, c_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-c_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)=0$, $c_{0}^{2} b_{1}^{2}-c_{1}^{2} b_{0}^{2}=0$, then $F^{\prime}(\lambda)=0$ for all $\lambda \in R$, i.e. $F(\lambda) \equiv$ const. Consequently, from (16), (17) we'll have $\Delta(r, l)=\Delta_{1}(r, l)=0$. Then on the base of theorem A the system of eigenfunctions $\left\{y_{k}(x)\right\}_{k=0, k \neq r, l}^{\infty}$ of problem (1)-(3) for $q \equiv 0$ is neither complete nor minimal in the space $L_{p}(0,1), 1<p<\infty$.

Now let $c_{0}=c_{1}=0$. Then from formula (10) we get

$$
\begin{equation*}
y_{k}(1)=(-1)^{k} d_{1}\left(\frac{\left(a_{0} \lambda+b_{0}\right)^{2}+d_{0}^{2} \lambda_{k}}{\left(a_{1} \lambda+b_{1}\right)^{2}+d_{1}^{2} \lambda_{k}}\right)^{1 / 2} . \tag{19}
\end{equation*}
$$

Consider the function

$$
\begin{equation*}
F(\lambda)=\left(\frac{\left(a_{0} \lambda+b_{0}\right)^{2}+d_{0}^{2} \lambda}{\left(a_{1} \lambda+b_{1}\right)^{2}+d_{1}^{2} \lambda}\right)^{1 / 2} . \tag{20}
\end{equation*}
$$

We rewrite the function $F(\lambda)$ in the following form:

$$
\begin{equation*}
F(\lambda)=\left(\frac{\left(a_{0} \lambda+b_{0}\right)^{2}+d_{0}^{2} \lambda}{\left(a_{1} \lambda+b_{1}\right)^{2}+d_{1}^{2} \lambda}\right)^{1 / 2}=\left(\frac{a_{0}^{2} \lambda^{2}+\left(2 a_{0} b_{0}+d_{0}^{2}\right) \lambda+b_{0}^{2}}{a_{1}^{2} \lambda^{2}+\left(2 a_{1} b_{1}+d_{1}^{2}\right) \lambda+b_{1}^{2}}\right)^{1 / 2} . \tag{21}
\end{equation*}
$$

From (21) we get

$$
\begin{gather*}
F^{\prime}(\lambda)=\frac{1}{2}(F(\lambda))^{-1 / 2}\left\{a_{1}^{2} \lambda+\left(d_{1}^{2}+2 a_{1} b_{1}\right) \lambda+b_{1}^{2}\right\}^{-2} \\
\times\left\{\left(2 a_{0}^{2} \lambda+\left(d_{0}^{2}+2 a_{0} b_{0}\right)\right)\left(a_{1}^{2} \lambda^{2}+\left(d_{1}^{2}+2 a_{1} b_{1}\right) \lambda+b_{1}^{2}\right)-\right. \\
\left.-\left(a_{0}^{2} \lambda^{2}+\left(d_{0}^{2}+2 a_{0} b_{0}\right) \lambda+b_{0}^{2}\right)\left(2 a_{1}^{2} \lambda+\left(d_{1}^{2}+2 a_{1} b_{1}\right)\right)\right\}= \\
=(1 / 2)(F(\lambda))^{-1 / 2} \times\left\{a_{1}^{2} \lambda+\left(d_{1}^{2}+2 a_{1} b_{1}\right) \lambda+b_{1}^{2}\right\}^{-2} \times \\
\quad \times\left\{\left\{a_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-a_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)\right\} \lambda^{2}+\right. \\
+2\left(a_{0}^{2} b_{1}^{2}-a_{1}^{2} b_{0}^{2}\right) \lambda+\left\{b_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)-b_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)\right\} . \tag{22}
\end{gather*}
$$

From (22) it follows that either

1) $a_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-a_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right) \neq 0$;
or
2) $a_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-a_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)=0, a_{0}^{2} b_{1}^{2}-a_{1}^{2} b_{0}^{2} \neq 0$, then there exists $\lambda^{* *} \in R$ such that $F^{\prime}(\lambda) \neq 0$ for $\lambda \geq \lambda^{* *}$, i.e. the function $F(\lambda)$ is a strictly monotone for $\lambda \geq \lambda^{* *}$. Consequently, there exists an entire non-negative number $k^{* *}$ such that for $r, l \geq k^{* *}$ we'll have $\Delta(r, l)=\Delta_{1}(r, l) \neq 0$, from (16), (17). Then on the base of theorem A the system of eigen functions $\left\{y_{k}(x)\right\}_{k=0, k \neq r, l}^{\infty}, r, l \geq k^{* *}$ of problem (1)-(3) for $q \equiv 0$ forms a basis in the space $L_{p}(0,1), 1<p<\infty$, for $p=2$ the Riesz basis.

And if
3) $a_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-a_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)=0, a_{0}^{2} b_{1}^{2}-a_{1}^{2} b_{0}^{2}=0$, then $F^{\prime}(\lambda)=0$ for all $\lambda \in R$ i.e. $F^{\prime}(\lambda)=$ const. Consequently, from (16), (17) we'll have $\Delta(r, l)=$ $\Delta_{1}(r, l)=0$. Then again on the base of theorem A, the system of eigenfunctions $\left\{y_{k}(x)\right\}_{k=0, k \neq r, l}^{\infty}$, of problem (1)-(3) for $q \equiv 0$ is neither complete nor minimal in the space $L_{p}(0,1), 1<p<\infty$.

So, we proved the following
Theorem 2. Let r and l be entire non-negative numbers of the same parity. Then there exists such an entire non-negative number $\bar{k}\left(\bar{k}=\max \left\{k^{*}, k^{* *}\right\}\right)$, that for $r, l \geq \bar{k}$ the system of eigen functions $\left\{y_{k}(x)\right\}_{k=0, k \neq r, l}^{\infty}$ of problem (1)-(3) for $q \equiv 0$ in the cases
a) $c_{0}^{2}+c_{1}^{2}>0$ and either

1) $c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right) \neq 0$, or
2) $c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right)=0, c_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-c_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right) \neq 0$
or
3) $c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right)=0, c_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-c_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)=0$, $c_{0}^{2} b_{1}^{2}-c_{1}^{2} b_{0}^{2} \neq 0$,
b) $c_{0}=c_{1}=0$ and either
4) $a_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-a_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right) \neq 0$; or
5) $a_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-a_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)=0, a_{0}^{2} b_{1}^{2}-a_{1}^{2} b_{0}^{2} \neq 0$ forms a basis in the spaces $L_{p}(0,1), 1<p<\infty$, for $p=2$ the Riesz basis. In the cases
c) $c_{0}^{2}+c_{1}^{2}>0$ and $c_{0}^{2}\left(a_{1}^{2}+2 c_{1} d_{1}\right)-c_{1}^{2}\left(a_{0}^{2}+2 c_{0} d_{0}\right)=0$,
$c_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-c_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)=0, c_{0}^{2} b_{1}^{2}-c_{1}^{2} b_{0}^{2}=0 ;$
[R.G.Poladov]
d) $c_{0}=c_{1}=0$ and $a_{0}^{2}\left(d_{1}^{2}+2 a_{1} b_{1}\right)-a_{1}^{2}\left(d_{0}^{2}+2 a_{0} b_{0}\right)=0, a_{0}^{2} b_{1}^{2}-a_{1}^{2} b_{0}^{2}=0$, the system of eigenfunctions $\left\{y_{k}(x)\right\}_{k=0, k \neq r, l}^{\infty}$ is neither complete nor minimal in the space $L_{p}(0,1), 1<p<+\infty$.

Note that in the case $c_{0}=c_{1}=0$ and $b_{0}=b_{1}=0$

$$
\begin{gathered}
F(\lambda)=\left(\frac{\left(a_{0}^{2} \lambda+d_{0}^{2}\right.}{\left(a_{1}^{2} \lambda+d_{1}^{2}\right.}\right)^{1 / 2} \\
F^{\prime}(\lambda)=\frac{1}{2}\left(\frac{\left(a_{1}^{2} \lambda+d_{1}^{2}\right.}{\left(a_{0}^{2} \lambda+d_{0}^{2}\right.}\right)^{1 / 2} \frac{\left(a_{0}^{2} d_{1}^{2}-a_{1}^{2} d_{0}^{2}\right) \lambda^{2}}{\left(a_{1}^{2} \lambda+d_{1}^{2}\right)^{2}}
\end{gathered}
$$

Hence it follows that if $a_{0}^{2} d_{1}^{2}-a_{1}^{2} d_{0}^{2} \neq 0$, then $F^{\prime}(\lambda) \neq 0$ for $\lambda \in R \backslash\{0\}$ and consequently the function $F(\lambda)$ is strongly monotone in R. From (16) and (17) we'll have $\Delta(r, l)=\Delta_{5}(r, l) \neq 0$. Then on the base of theorem A, the system of eigenfunctions $\left\{y_{k}(x)\right\}_{k=0, k \neq r, l}^{\infty}$ of problem (1)-(3) for $q \equiv 0$ forms a basis in the space $L_{p}(0,1), 1<p<\infty$, for $p=2$ the Riesz basis. But if $a_{0}^{2} d_{1}^{2}-a_{1}^{2} d_{0}^{2}=0$, then this system is neither complete nor minimal in the space $L_{p}(0,1), 1<p<+\infty$. Recall that in the case $d_{0}=-1, d_{1}=1$ this result was obtained by N.Yu. Kapustin [5].

References

[1]. Tikhonov A.N., Samarsky A.A. Equations of mathematical physics. M.: Nauka 1972 (Russian).
[2]. Vladimirov V.S. Collection of problems on mathematical physics equations.// M.Nauka, 1982 (Russian).
[3]. Kerimov N.B., Poladov R.G. Basis properties of the system of eigen functions of Sturm-Liouville problem with a spectral parameter in boundary conditions. Dokl. RAN, 2012, vol. 442, No 1, pp. 583-586 (Russian).
[4]. Aliyev Z.S., Poladov R.G. Basis properties of eigen functions of StrumLioville problem with a spectral parameter in boundary conditions// Vestnik Bakinskogo Universiteta, ser. fiz. mat Nauka 2012, No 1, pp. 55-61 (Russian).
[5]. Kapustin N. Yu. On spectral problem from mathematical model of the process of vibrations of end pulley bar // Diff. uravn, 2005, vol. 41, No 10, pp. 1413-1315 (Russian).
[6]. Aliyev Z.S. Basis properties of the root functions of a spectral problem with a spectral parameter in boundary conditions // Dokl. RAN, 2010, vol. 443, No 5, pp. 583-586 (Russian).

Rovshan G. Poladov

Baku State University,
23, Z.I. Khalilov str., AZ 1148, Baku, Azerbaijan
Tel.: (99412) 5394720 (off).
Received February 07, 2012; Revised April 30, 2012.

