Galina Yu. MEHDIYEVA, Natavan Q. BAYRAMOVA

ON REMOVABLE SETS FOR DEGENERATED ELLIPTIC EQUATIONS

Abstract

The questions of compact removability for degenerated elliptic equations in classes bounded functions is considered.

Let E_n be *n* dimensional Euclidean space of the points $x = (x_{1...,x_n})$. Dennote the ball $B_R(x^0) = \{x : |x - x^0| < R\}$ for R > 0 and the cylinder $Q_T^R(x^0) = B(x_0) \cup$ (0,T). Later, let for $x^0 \in E_n$, R > 0 and k > 0,

$$\varepsilon_k(x^{0}) = \left\{ x : \sum_{i=1}^n \left(\left(x_i - x_i^0 \right)^2 / R^{ni} \right) < (kR)^2 \right\}$$

be an ellipsoid.

Let D be an bounded domain in E_n , with the boundary of domain ∂D , and $0 \in \partial D$. ε is a such king of ellipsoid that $D \subset \varepsilon$. $B(\varepsilon)$ is a set of all functions, satisfying in $\overline{\varepsilon}$ the uniform Lipchitz condition and having zero near the $\partial \varepsilon$. Denote by (α) the vector (α) = ($a_{1...,a_n}$) and by $W_{2,n}^1(D)$ the Banach space of the functions u(x) given on D with the finite norm

$$\|u\|_{W_{1,2,\alpha}} = \left(\int_{D} \left(u^2 + \sum_{i=1}^{n} \lambda_i(x) u_i^2\right) dx\right)^{1/2}$$
(1)

there, $u_i = \frac{\partial u}{\partial x_i}, i = 1, n$

$$\lambda_i (x) = (|x|_{\lambda})^{\alpha_i}, \ |x|_{\alpha} = \sum_{i=1}^n |x_i|^{\frac{2}{2+\alpha_i}}$$

$$0 \le \alpha_i < \frac{2}{n-1}$$

$$(2)$$

Let $\overset{0}{W}_{2,\alpha}^{1}(D)$ the Banach space of the functions from $C_{0}^{\infty}(D)$ closed by the norm of the space $W_{2,\alpha}^1(D)$.

Denote by M(D) the set of all bounded functions in D.

Let $E \subset D$ be some compact. Denote by $A_{\varepsilon}(D)$ of all functions $u(x) \in C^{\infty}(\overline{D})$ of which there exists some neighborhood of the compact E in which u(x) = 0.

The compact E is called the removable relative to the first boundary value problem for the operator L in the space M(D) if all generalized solution of the equation Lu = 0 in $D \setminus E$ formed in zero on ∂D and belonging to the space M(D) identically equal to zero. We will say that the function $n(x) \in \overset{\circ}{W}{}^{1}_{2,\varepsilon}(\varepsilon)$ if there exists the sequence of the functions $\{u_{(m)}(x)\}, m = 1, 2..., \text{ such that } u_m(x) \in B(\varepsilon), u_m(x) \ge 0$ for $x \in H$ and $\lim_{m \to \infty} \left\| u_{(m)} - u \right\|_{W_{2,\alpha}^1(\varepsilon)} = 0.$

[G.Yu.Mehdiyeva,N.Q.Bayramova] Transactions of NAS of Azerbaijan

The function $u(x) \in W^1_{2,\alpha}(D)$ is nonnegative on ∂D in sense $W^1_{2,\alpha}(D)$ if there exists the sequence of the functions $\{u_{(m)}(x)\}, m = 1, 2...$ such that $u_{(m)}(x) \in C^{1,0}, u_{(m)}(x) \geq 0$ for $x \in \partial D$ and $\lim_{m \to \infty} ||u_{(m)} - u||_{W^{1}_{2,\alpha}(D)} = 0$. It is easy to determine the inequalities $u(x) \geq const, u(x) \geq v(x), u(x) \leq 0$, and also equality u(x) = 1 on the set H in the sense $\tilde{W}^{1}_{2\varepsilon}(\varepsilon)$.

Let $\omega(x)$ be measurable function in D, finite and positive for a.e. $x \in D$. Denote by $L_{p,\omega}(D)$ the Banach space of the functions given on D, with the norm

$$||u||_{L^{p,\omega(D)}} = \left(\int \left(\omega(x)^{p/2} |u|^p \, dx \right)^{1/p} \right), \quad 1
(3)$$

Let $W_{p,\alpha}^1(D)$ be a Banach space of the function given on u(x), with the finite norm D.

$$\|u\|_{W^{1}_{p,\alpha}(D)} = \left(\int_{D} \left(|u|^{P} + \sum_{i=1}^{n} \left(\lambda_{i}(x) \right)^{p/2} |u_{x_{i}}|^{p} \right) dx \right)^{1/p}, \ 1 (4)$$

Analogously to $\overline{W}_{p,\alpha}^{0,1}(D)$, it is introduced the subspace $\overset{0}{W}_{p,\alpha}^{1}(D)$ for 1 .The space conjugated to $\overset{0}{W}_{p,\alpha}^{1}(D)$, we will denote by $\overset{\circ}{\overline{W}}_{p,\alpha}^{1}(D)$.

The questions of compact removability for Laplace equation is studied by Carleson [1]. The compact removability for elliptic and parabolic equations of nonduvergent structure is considererd by Landis [2], Gadjiev, Mamedova [1]. The removability condition of compact in the space of continuous functions in the papers Harvey and Polking [4], Kilpelainen and Zhong [5] is considered. The different questions of qualitative properties of solutions of uniformly degenerated elliptic equations is studied by Chanillo and Weeden [6]. In paper [7] the second order uniform divergent elliptic operator is considered.

We will consider the elliptic operator in the bounded domain $D \subset E_n$

$$L = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{i,j}(x) \frac{\partial}{\partial x_j} \right)$$
(5)

In assumption that $||a_{ij}(x)||$ is a real symmetric matrix with measurable in D elements, more over, for all $\xi \in E_n$ and a.e. $x \in D$, the condition

$$\alpha \sum_{i=1}^{n} \lambda_i(x) \xi_i^2 \le \sum_{i,j=1}^{n} a_{ij}(x) \xi_i \xi_j \le \alpha^{-1} \sum_{i=1}^{n} \lambda_i(x) \xi_1^2$$
(6)

Here $\alpha \in (0, 1]$ is a const.

The function $u(x) \in W^1_{2,\alpha}(D)$ is called the generalized solution of the equation Lu = f(x) in D, if for any function $\eta(x) \in \overset{0}{W} \overset{1}{\overset{1}{_{2,\alpha}}}(D)$ the integral identity

$$\int_{D} \sum_{i,j=1} a_{ij}(x) u_{x_i} \eta_{x_{ij}} dx = \int_{D} f \eta dx \tag{7}$$

[On removable sets for degenerated...]

is fulfilled.

Here f(x) is a given function from $L_2(D)$.

Let $E \subset D$ be some compact. The function $n(x) \in W_{2,\alpha}^1(D)$ is called generalized solution of the equation $L_u = f(x)$ in $D \setminus E$ vanishing on ∂D if integral identity (7) is fulfilled for any function $\eta(x) \in A_E(D)$.

We will assume that the coefficients of the operator Z continued in $E_n \setminus D$ with saving condition (2),(6). For is, it is sufficient, for example, to assume that $a_{ij}(x) = \delta_{ij}\lambda_i(x)$ for $x \in E_n \setminus D$, i, j = 1...n where δ_{ij} is a Croneker symbol.

Let $h(x) \in W^1_{2,\alpha}(D)$, $f^{(0)}(x) \in L_2(D)$, $f^i(x) \in L_{\alpha,\lambda^{-1}}(D)$, i = 1, 2...n, be a given functions. Let us consider the first

$$Lu = f_{(x)}^{(0)} + \sum_{i=1}^{n} \frac{\partial f^{i}(x)}{\partial x_{i}}, \quad x \in D$$
(8)

$$\{u(x) - h(x)\} \in \overset{0}{W}{}^{1}_{2,\alpha}(D)$$

The function $u(x) \in W^1_{2,\alpha}(D)$ we will call generalized solution of problem (8) if for any function $\eta(x) \in W^1_{2,\alpha}(D)$, the integral identity

$$\int_{D} \sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \eta_{x_j} dx = \int_{D} (-f^0 \eta + \sum_{i=1}^{n} f^i \eta_{x_i}) dx$$
(9)

is fulfilled.

Our aim to get the necessary and sufficient condition of compact removability E in the class bounded functions.

Z-capacity potential u(x) is weak solution of the equation $Lu = -\mu$ equaling to zero $\partial \varepsilon$ and can be represented in the following form

$$u(x) = \int\limits_{\varepsilon} g(x,z) d\mu(z)$$

where μ measure on H.

On the other side, there exists the sequence of the functions $\{\eta^{(m)}(x)\}, m = 1, 2..., \text{ such that } \eta^{(m)}(x) \in W^1_{2,\alpha}(\varepsilon), \eta^{(m)}(x) = 1 \text{ for } x \in H \text{ and}$ $\lim_{m \to \infty} \|\eta^{(m)} - u\|_{W^1_{2,\alpha}(\varepsilon)} = 0.$

We conclude that it first is equal to $\mu(H)$ at any natural m, while the left part tends to $cap_L(H)$ as $m \to \infty$. Thus

$$cap_L(H) = \mu(H)$$

Theorem. Let relative to the coefficients of the operator L condition (2)-(6) be fulfilled. Then, for removability of the compact $E \subset D$ relative to the first boundary value problem for the operator L in the space $\mu(D)$, it is necessary and sufficient that

$$cap_L(E) = 0. (10)$$

For proof we used property of capacity $cap_L(E)$ and some auxiliary proposition.

77

[G.Yu.Mehdiyeva,N.Q.Bayramova]

References

[1]. Carleson L. "Removable singularities of continuous harmonic functions R". "Mathematica Scandinavia", vol.12, pp. 15-18, 1963.

[2]. Landis E.M. "In the question on uniqueness of solution of the first boundary problem for elliptic and parabolic equation of second order". VMH, 1978, vol.33, p. 151.

[3]. Gadjiev T.S., Mamedova V.A. "On removable sets of solutions of second order elliptic and parabolic equations in nondivergent form". Ukranian Mathematical Journal, 2009, vol.61, No 11, pp. 1743-1756.

[4]. Harvey R., Polking J. "Removable singularities of solutions of linear partial differential equations". Acta Mathematica, 1970, vol.125, No 1, pp. 39-56.

[5]. Kilpeleinen T., Zhong X. "Removable sets of solutions of linear partial differential equations". Proseeding of the American Mat. Soc., 2002, vol. 130, No 6. pp. 1681-1688.

[6]. Chanillo S., Weeden R. Coomunications in Partial Differential equations, 1986, vol. 11, No 10, pp. 1111-1134.

[7]. Litmann W., Stampakkic G., Weinberger N. Ann. Del. Sc. Norm. Sup. Pisa, 1963, vol. 17, pp. 43-77.

Galina Yu. Mehdiyeva

Baku State University, 23, Z.I. Khalilov str., AZ 1148, Baku, Azerbaijan Tel.: (99412) 539 47 20 (off).

Natavan Q. Bayramova

Ganja State University 187, Sh.I. Xatai str., AZ2000, Ganja Azerbaijan Tel.: (99412) 539 47 20 (off.).

Received January 18, 2012; Revised April 11, 2012.

 78_{-}