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MATHEMATICA

Arzu G.ALIYEVA

INVESTIGATION OF GENERALIZED SOLUTION
OF ONE-DIMENSIONAL MIXED PROBLEM FOR A

CLASS OF FOURTH ORDER SEMI-LINEAR
EQUATIONS OF SOBOLEV TYPE. I.

Abstract

The paper deals with the existence and uniqueness of the generalized solution
of one-dimensional mixed problem with Rickier type conditions for fourth order
semi-linear equations of Sobolev type. The notion of the generalized solution
of the mixed problem under consideration is introduced. After applying the
Fourier method, the solution of the input problem is reduced to the solution of
some denumerable system of nonlinear integral equations with respect to Fourier
unknown coefficients of the desired solution. Then the global uniqueness, small
existence and global existence theorems of the generalized solution of the mixed
problem under consideration are proved.

In the paper we study the existence and uniqueness of the generalized solution
of the following one-dimensional mixed problem:

utxx(t, x)− αuxxxx(t, x) = F (t, x, u(t, x), ux(t, x), uxx(t, x), uxxx(t, x))
(0 ≤ t ≤ T, 0 ≤ x ≤ π), (1)

u(0, x) = ϕ(x) (0 ≤ x ≤ π), (2)

u(t, 0) = u(t, π) = uxx(t, 0) = uxx(t, π) = 0 (0 ≤ t ≤ T ), (3)

where α > 0 is a fixed number; 0 < T < +∞; F, ϕ are the given functions, u(t, x)
is a desired function, and under the generalized solution of problem (1)-(3) we un-
derstand the following:

Definition. Under the generalized solution of problem (1)-(3) we understand
the function u(t, x) having the following properties:

a) u(t, x), ux(t, x), uxx(t, x), ut(t, x) ∈ C ([0, T ]× [0, π]) ;
uxxx(t, x), utx(t, x) ∈ C ([0, T ] ;L2(0, π)) ;

b) all the conditions of (2) and (3) are satisfied in the ordinary sense;
c) the integral identity

T∫

0

π∫

0

{utx(t, x)Vx(t, x)− αuxxx(t, x)Vx(t, x) + F (u(t, x))V (t, x)} dxdt = 0 (4)

is fulfilled for any function V (t, x) having the properties

V (t, x) ∈ C ([0, T ]× [0, π]) , V (t, 0) = V (t, π) = 0 (0 ≤ t ≤ T ),

Vx(t, x) ∈ L([0, T ];L2(0, π)), (5)

where
F (u(t, x)) ≡ F (t, x, (t, x), ux(t, x), uxx(t, x), uxxx(t, x)). (6)
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1. Auxiliary facts
For investigating the generalized solution of problem (1)-(3), we cite some known

facts and set up a number of new auxiliary facts.

1. Since the system {sinnx}∞n=1 forms a basis in the space L2(0, π), then it is
obvious that each generalized solution u(t, x) of problem (1)-(3) has the form:

u(t, x) =
∞∑

n=1

un(t) sin nx, (7)

where

un(t) =
2
π

π∫

0

u(t, x) sinnxdx (n = 1, 2, ...; t ∈ [0, T ]). (8)

Then after applying the formal scheme of the Fourier method, the finding of the
functions un(t) (n = 1, 2, ...) is reduced the solution of the following denumerable
system of nonlinear integral equations:

un(t) = ϕne−αn2t− 2
πn2

t∫

0

π∫

0

F (u(τ , x)) sin nxe−αn2(t−τ)dxdτ (n = 1, 2, ...; t ∈ [0, T ]).

(9)
where

ϕn ≡
2
π

π∫

0

ϕ(x) sin nxdx (n = 1, 2, ...), (10)

F (u(t, x)) ≡ F (t, x, u(t, x), ux(t, x), uxx(t, x), uxxx(t, x)). (11)

2. Proceeding from the definition of the generalized solution of problem (1)-(3),
we easily prove the following lemma.

Lemma. If u(t, x) =
∞∑

n=1

un(t) sin nx is any generalized solution of problem (1)-

(3), then the functions un(t) (n = 1, 2, ...) satisfy system (9).

3. Denote by Bα0,...,αl
β0,...,βl,T

the totality of all the functions u(t, x) of the form (7),
considered in [0, T ]× [0, π], for which all the functions un(t) ∈ C(l)([0, T ]) and

JT (u) ≡
l∑

i=0

{ ∞∑

n=1

(
nαi max

0≤t≤T

∣∣∣u(i)
n (t)

∣∣∣
)βi

} 1
βi

< +∞,

where l ≥ 0 is an integer, αi ≥ 0 (i = 0, l ), 1 ≤ βi ≤ 2 (i = 0, l). We define the
norm in this set as follows: ‖u‖ = JT (u). It is known (see [1]) that all these spaces
are Banach.

In the sequel, for the functions u(t, x) ∈ Bα0,...,αl
β0,...,βl,T

we’ll use the denotation:

‖u‖B
α0,...,αl
β0,...,βl,t

≡
l∑

i=0

{ ∞∑

n=1

(
nαi max

0≤τ≤t

∣∣∣u(i)
n (τ)

∣∣∣
)βi

} 1
βi

(0 ≤ t ≤ T ). (12)
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4. For the function u(t, x) ≡
∞∑

n=1

un(t) sin nx ∈ Bα0,...,αl
β0,...,βl,T

, call the function

un(t) its n-th component. Let M be any non-empty set from the space Bα0,...,αl
β0,...,βl,T

.
The totality of n-th components of all the functions from M denote by Mn. The
following theorem (see[1]) is valid.

Theorem 1. For compactness of the set M ⊂ Bα0,...,αl
β0,...,βl,T

in Bα0,...,αl
β0,...,βl,T

it is
necessary and sufficient that the following two conditions to be fulfilled:

a) for each fixed n(n = 1, 2, ...) the set Mn is compact in C(l)([0, T ]);
b) for any ε > 0 there exists the number nε one and the same for all u(t, x) =

∞∑

n=1

un(t) sinnx ∈ M such that

l∑

i=0

{ ∞∑
n=nε

(
nαi max

0≤t≤T

∣∣∣u(i)
n (t)

∣∣∣
)βi

} 1
βi

< ε ∀u ∈M.

5. It is obvious that if u(t, x) =
∞∑

n=1

un(t) sinnx ∈ Bk
2,T (k ≥ 1 is an integer),

then ∀t ∈ [0, T ] :

‖u‖Bk−1
1,t

≡
∞∑

n=1

nk−1 max
0≤τ≤t

|un(τ)| ≤
( ∞∑

n=1

1
n2

) 1
2

×

×
{ ∞∑

n=1

(
nk max

0≤τ≤t
|un(τ)|

)2
} 1

2

=
π√
6
‖u‖Bk

2,t
. (13)

6. Let u(t, x) ≡
∞∑

n=1

un(t) sin nx ∈ B3
2,T . Then using estimation (13), for k =

3, ∀t ∈ [0, T ] and x ∈ [0, π] we have:
∣∣∣∣
∂iu(t, x)

∂xi

∣∣∣∣ ≤
∞∑

n=1

ni |un(t)| ≤
∞∑

n=1

ni max
0≤τ≤t

|un(τ)| ≤

≤
∞∑

n=1

n2 max
0≤τ≤t

|un(τ)| = ‖u‖B2
1,t
≤ π√

6
‖u‖B3

2,t
(i = 0, 2). (14)

From estimation (14) and the structure of the space B3
2,T it follows that

u(t, x), ux(t, x), uxx(t, x) ∈ C([0, T ]× [0, π]). (15)

Besides, obviously, ∀t ∈ [0, T ] :

π∫

0

u2
xxx(t, x)dx =

π

2

∞∑

n=1

(n3un(t))2 ≤ π

2

∞∑

n=1

(n3 max
0≤τ≤t

un(τ))2 =
π

2
‖u‖2

B3
2,t

. (16)

Hence, from the structure of the space B3
2,T it follows that

uxxx(t, x) ∈ C([0, T ]; L2(0, π)). (17)
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Further, using relations (14)-(17) and the known properties of Nemytsky opera-
tor, we prove the following

Theorem 2. Let
1. F (t, x, u1, ..., u4) ∈ C([0, T ]× [0, π]× (−∞,∞)4).
2) ∀R > 0 in [0, T ]× [0, π]× [−R,R]3 × (−∞,∞)

|F (t, x, u1, ..., u4)| ≤ CR(1 + |u4|), (18)

where CR > 0 is a constant.
Then:
a)

∀u ∈ B3
2,T F (t, x, u(t, x), ux(t, x), uxx(t, x), uxxx(t, x)) ≡

≡ F (u(t, x)) ∈ C([0, T ]; L2(0, π));
(19)

b)

∀u ∈ B3
1,T , V ∈ B3

2,T F (t, x, u(t, x), ux(t, x), uxx(t, x), Vxxx(t, x)) ≡
≡ Fu(V (t, x)) ∈ C([0, T ];L2(0, π)).

(20)

7. Let for a natural number k:

ϕ(x) ∈ C(k−1) ([0, π]) , ϕk(x) ∈ L2(0, π), ϕ(2s)(0) =

= ϕ(2s)(π) = 0

(
s = 0,

[
k − 1

2

])
. (21)

Then with the help of integration by parts, using the Bessel inequality (for an
off k) and the Parseval equality (for an odd k), we easily prove that

∞∑

n=1

(nkϕn)2 ≤ 2
π

∥∥∥ϕ(k)(x)
∥∥∥

2

L2(0,π)
, (22)

where the numbers ϕn (n = 1, 2, ...) are defined by relation (10), moreover it is
obvious that estimation (22) is valid for k = 0 as well, if ϕ(x) ∈ L2(0, π).

8. In the end of the section, let as agree all the quantities to be real, the func-
tions real-valued, and everywhere to understand the integrals in Lebesgues’s sense.

2. Investigation of uniqueness of
generalized solution of problem (1)-(3)
With the help of Bellman’s inequality we prove the following global uniqueness

theorem of the generalized solution of problem (1)-(3).
Theorem 3. Let
1. F (t, x, u1, ..., u4) ∈ C([0, T ]× [0, π]× (−∞,∞)4).
2. ∀R > 0 in [0, T ]× [0, π]× [−R, R]3 × (−∞,∞)

|F (t, x, u1, ..., u4)− F (t, x, ũ1, ..., ũ4)| ≤ CR

4∑

i=1

|ui − ũi| , (23)

where CR > 0 is a constant.
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Then problem (1)-(3) may have at most one generalized solution.

3. Investigation of the small existence of
the generalized solution of problem (1)-(3).
In this section, by combining the generalized principle of contracted mappings

with Schauder principle on a fixed point, we prove the following small existence
theorem (i.e. valid for rather small values of T ) of the generalized solution of problem
(1)-(3).

Theorem 4. Let
1. ϕ(x) ∈ C(2)([0, π]), ϕ′′′(x) ∈ L2(0, π) and ϕ(0) = ϕ(π) = ϕ′′(0) = ϕ′′(π) = 0.
2. F (t, x, u1, ..., u4) ∈ C([0, T ]× [0, π]× (−∞,∞)4).
3. ∀R > 0 in [0, T ]× [0, π]× [−R, R]3 × (−∞,∞)

|F (t, x, u1, u2, u3, u4)− F (t, x, u1, u2, u3, ũ4)| ≤ CR |u4 − ũ4| , (24)

where CR > 0−is a constant.
Then there exists a small generalized solution of problem (1)-(3).
Proof. For each fixed u ∈ B2

1,T define in B3
2,T the operator (with respect to V )

Pu:

Pu(V (t, x)) = Ṽ (t, x) ≡
∞∑

n=1

Ṽn(t) sin nx, (25)

where

Ṽn(t) = ϕne−αn2t − 2
πn2

t∫

0

π∫

0

Fu(V (τ , x)) sinnxe−αn2(t−τ)dxdτ

(n = 1, 2, ...; t ∈ [0, T ]), (26)

the numbers of ϕn (n = 1, 2, ...) were determined by relation (10) and

Fu(V (t, x)) ≡ F (t, x, u(t, x), ux(t, x), uxx(t, x), Vxxx(t, x)). (27)

Obviously,
∀u ∈ B3

2,T Fu(u(t, x)) = F (u(t, x)), (28)

where the operator F was determined by relation (6).
From (26) we get that for each fixed u ∈ B2

1,T ∀V ∈ B3
2,T :

‖Pu(V )‖2
B3

2,T
=

∥∥∥Ṽ
∥∥∥

2

B3
2,T

≤ a0 +
2

απ

T∫

0

π∫

0

{Fu(V (τ , x))}2 dxdτ, (29)

where

a0 ≡ 2
∞∑

n=1

(n3ϕn)2, (30)

and the finiteness of a0 follows from (22) for k = 3.
Since by theorem 2, Fu(V (t, x)) ∈ C([0, T ]; L2(0, π)), then from (29) it follows

that for any fixed u ∈ B2
1,T , the operators Pu acts in the space B3

2,T .
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Further, from estimations (14), ∀u ∈ B2
1,T there exists a number Ru > 0 such

that ∀t ∈ [0, T ] and x ∈ [0, π] :

−Ru ≤ u(t, x), ux(t, x), uxx(t, x) ≤ Ru. (31)

Now, using relations (25)-(27) allowing for (31), using inequalities (24) for
R = Ru and estimation (16) for u = V1 − V2, similar to (29) we get that for any
fixed u ∈ B2

1,T ∀V1, V2 ∈ B3
2,T and t ∈ [0, T ]:

‖Pu(V1)−Pu(V2)‖2
B3

2,t
≤ 2

απ

t∫

0

π∫

0

{Fu(V (τ , x))− Fu(V2(τ , x))}2 dxdτ ≤

≤ 2
απ

C2
Ru

t∫

0

π∫

0

{V1,xxx(τ , x)− V2,xxx(τ , x)}2 dxdτ ≤

≤ 2
απ

C2
Ru

π

2

t∫

0

‖V1 − V2‖2
B3

2,τ
dτ ≤ 1

α
C2

Ru
‖V1 − V2‖2

B3
2,T
· t,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··
∥∥∥Pk

u(V1)−Pk
u(V2)

∥∥∥
B3

2,T

≤
(

1
α

C2
Ru

)k

‖V1 − V2‖2
B3

2,T

tk

k!
, (32)

where k is any natural number.
Thus, for any fixed u ∈ B2

1,T ∀V1, V2 ∈ B3
2,T :

∥∥∥Pk
u(V1)−Pk

u(V2)
∥∥∥

B3
2,T

≤ qk(u) ‖V1 − V2‖B3
2,T

, (33)

where

qk(u) ≡ 1√
k!

(
1
α

C2
Ru

T

) k
2

. (34)

Obviously, for rather large k = ku : qk(u) < 1. For such k the operator Pk
u turns

out to be contractive in the space B3
2,T . Then, by the generalized principle of

contracted mappings, a fixed point V of the operator Pk
u unique in B3

2,T , is also a
unique fixed point of the operator Pu:

V = Pu(V ), V ∈ B3
2,T . (35)

Take to each u ∈ B2
1,T a fixed point B3

2,T of the operator V unique in Pu, and
generate an operator H:

H(u) = V = Pu(V ), (36)

acting from B2
1,T to B3

2,T .

Then we show that the operator H acts from B2
1,T to B3

2,T continuously, and all
the more in B2

1,T it acts continuously.
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Now show the compactness of the operator H in B2
1,T . Let K = KR be any closed

ball of the space B2
1,T of radius R and centered at zero. Then from (14) it is obvious

that for any u ∈ KR ∀t ∈ [0, T ] and x ∈ [0, π] :

−R ≤ u(t, x), ux(t, x), uxx(t, x) ≤ R. (37)

Then using inequality (24) and estimation (16) for u = V , similar to (29) we get
that for any u ∈ KR ∀t ∈ [0, T ]:

‖H(u)‖2
B3

2,t
≡ ‖V ‖2

B3
2,t
≡ ‖Pu(V )‖2

B3
2,t
≤ a0 +

2
απ

t∫

0

π∫

0

{Fu(V (τ , x))}2 dxdτ ≤

≤ a0 +
4

απ

t∫

0

π∫

0

{
[Fu(V (τ , x))− Fu(0)]2 + [Fu(0)]2

}
dxdτ ≤

≤ a0 +
4

απ
C2

R

t∫

0

π∫

0

V 2
xxx(τ , x)dxdτ +

4
απ

‖Fu(0)‖2
C(QT ) · πt ≤

≤ a0 +
4T

α
A2

R +
4

απ
C2

R

π

2

t∫

0

‖V ‖2
B3

2,τ
dτ, (38)

where the number a0 is determined by relation (30), QT ≡ [0, T ]× [0, π], AR is the
maximum of the function |F (t, x, u1, u2, u3, 0| in the closed domain 0 ≤ t ≤ T, 0 ≤
x ≤ π, −R ≤ u1, u2, u3 ≤ R.

Having applied the Belleman inequality, from (38) we get ∀u ∈ KR:

‖H(u)‖2
B3

2,T
≡ ‖V ‖2

B3
2,T
≤

(
a0 +

4T

α
A2

R

)
exp

(
2
α

C2
R · T

)
≡ a2

R. (39)

Consequently, the set H(KR) is bounded in B3
2,T .

Further, we show that ∀u ∈ KR :

max
0≤t≤T

∣∣∣∣∣∣

π∫

0

Fu(V (t, x)) sin dx

∣∣∣∣∣∣
≤ π

(
C2

Ra2
R + 2A2

R

) 1
2 ≡ bR (n = 1, 2, ...), (40)

T∫

0

π∫

0

{Fu(V (τ , x))}2 dxdτ ≤ πT
(
C2

Ra2
R + 2A2

R

) 1
2 ≡ c2

R, (41)

‖(H(u))t‖2
B1

2,T
≡ ‖Vt‖2

B1
2,T
≡

∥∥∥∥∥
∞∑

n=1

V ′
n(t) sin nx

∥∥∥∥∥
2

B1
2,T

≤
∞∑

n=1

(n max
0≤t≤T

∣∣V ′
n(t)

∣∣)2 ≤

≤ 3α2
∞∑

n=1

(
n5ϕn

)2 + 2b2
R +

3α

π
c2
R ≡ d2

R. (42)
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Thus, it follows from (39) and (42) that

∀u ∈ KR ‖H(u)‖
B3,1

2,2,T
≡ ‖V ‖

B3,1
2,2,T

= ‖V ‖B3
2,T

+ ‖Vt‖B1
2,T
≤ aR + dR ≡ cR. (43)

Consequently, the set H(KR) is bounded in B3,1
2,2,T . Hence, from theorem 1 it

follows that the set H(KR) considered as a subset of the space B2
1,T is compact in

B2
1,T . Thus, the operator H acts in B2

1,T compactly. Since the operator H acts in
B2

1,T continuously as well, then it acts in B2
1,T completely continuously. From (13)

for k = 3 and (39), ∀u ∈ KR we have:

‖H(u)‖B2
1,T
≤ π√

6
‖H(u)‖B3

2,T
≤ π√

6
a6 =

π√
6

(
a0 +

4
α
A2

RT

) 1
2

exp
{

1
α

C2
RT

}
.

(44)
It is seen from (44) that if the number

R >
π√
6
√

a0 (45)

is fixed, then for rather small values of T

∀u ∈ KR ‖H(u)‖B2
1,T
≤ R,

i.e. H(KR) ⊂ KR.
Thus, for any fixed R satisfying condition (45), for rather small values of T , the

operator H transforms the ball KR into itself completely continuously. Consequently,
from the Schauder’s principle on a fixed point, for rather small values of T the
operator H has in KR at least one fixed point u : u = H(u). Since u = H(u) =
V = Pu(V ), then u = V , and consequently, u = H(u) = Pu(u), moreover by (43),
u(t, x) ∈ B3,1

2,2,T .

Further, by u = V and (28), for the found fixed point u(t, x) =
∞∑

n=1

un(t) sinnx,

the functions un(t) (n = 1, 2, ...) satisfy system (9).
Using this fact, we show that the function

u(t, x) =
∞∑

n=1

un(t) sinnx ∈ B3,1
2,2,T (46)

is the generalized solution of problem (1)-(3). The theorem is proved.
Remark 1. It should be noted that condition 1 of theorem 4 imposed on the

input function ϕ(x), is not only sufficient but also necessary for the existence of the
generalized solution of problem (1)-(3).

4. Investigation of global existence of
generalized solution of problem (1)-(3)
In this section, by means of Schauder’s strong principle on a fixed point, we

prove a theorem on global existence of a generalized solution of problem (1)-(3).
Theorem 5. Let
1) all the conditions of theorem 4 be fulfilled.
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2) In [0, T ]× [0, π]× (−∞,∞)4

|F (t, x, u1, ..., u4)| ≤ C(1 + |u1|+ ... + |u4|), (47)

where C > 0 is a constant.
Then there exists a generalized solution of problem (1)-(3).
Proof. For proving the given theorem, it suffices to make some changes and

additions in the proof of theorem 4. More exactly, let H be an operator introduced
in the process of proof of theorem 4. As it was shown in the process of proof of
theorem 4, the operator H acts in the space B2

1,T completely continuously, it even
moves from B2

1,T to B3
2,T .

By definition of the operator H:

∀u ∈ B2
1,T H(u) = V = Pu(V ),

where the operator Pu was determined by relations (25)-(27).
Now, let’s consider in B2

1,T the equations

u = λH(u), 0 ≤ λ ≤ 1, (48)

and a priori estimate their all possible solutions in B2
1,T . Since

u = λH(u) = λV = λPu(V ),

then similar to (29) and (38), we get ∀t ∈ [0, T ]:

‖u‖2
B3

2,t
≡ ‖λH(u)‖2

B3
2,t
≡ ‖λV ‖2

B3
2,t
≡ ‖λPu(V )‖2

B3
2,t
≤ λ2a0+

+λ2 2
απ

t∫

0

π∫

0

{Fu(V (τ , x))}2 dxdτ ≤ a0 +
2

απ
λ2

t∫

0

π∫

0

{Fu(V (τ , x))}2 dxdτ, (49)

where the number a0 is determined from relation (30).
Hence, using inequality (47), relation λV = u and estimations (14),(16) and (13)

for k = 3 we get ∀t ∈ [0, T ]:

‖u‖2
B3

2,t
≤ a0 +

2
απ

λ25C2

t∫

0



π +

π∫

0

u2(τ , x)dx +

π∫

0

u2
x(τ , x)dx+

+

π∫

0

u2
xx(τ , x)dx +

π∫

0

V 2
xxx (τ , x) dx



 dτ ≤ a0 +

10
α

C2T+

+
10
απ

C2

t∫

0





π∫

0

u2(τ , x)dx +

π∫

0

u2
x(τ , x)dx +

π∫

0

u2
xx(τ , x)dx +

π∫

0

λ2V 2
xxx(τ , x)dx



 dτ =

= a0 +
10T
α

C2 +
10
απ

C2

t∫

0





π∫

0

u2(τ , x)dx +

π∫

0

u2
x(τ , x)dx+
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+

π∫

0

u2
xx(τ , x)dx +

π∫

0

u2
xxx(τ , x)dx



 dτ ≤ a0 +

10T

α
C2+

+
10
απ

C2

t∫

0

{
3 ‖u‖2

B2
1,τ

+
π

2
‖u‖2

B3
2,τ

}
dτ ≤ a0 +

10T

α
C2+

+
10
απ

C2

t∫

0

{
3
π2

6
‖u‖2

B3
2,τ

+
π

2
‖u‖2

B3
2,τ

}
dτ =

= a0 +
10T
α

C2 +
5(π + 1)

α
C2

t∫

0

‖u‖2
B3

2,τ
dτ. (50)

Having applied the Bellman inequality, from (50) we get:

‖u‖2
B3

2,τ
≤

(
a0 +

10T

α
C2

)
exp

{
5(π + 1)

α
C2T

}
≡ C2

0 . (51)

Thus, all possible solutions u of equations (48) in B2
1,T are a priori bounded in

B3
2,T , and all the more in B2

1,T , since by (13) for k = 3, ‖u‖B2
1,T

≤ π√
6
‖u‖B3

2,T
.

Then, by Schauder’s strong principle on a fixed point in H the operator B2
1,T has

a fixed point u that belongs to the space B3,1
2,2,T and is a generalized solution of

problem (1)-(3).
The theorem is proved.
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