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ON DEFECT BASICITY OF THE SYSTEM OF

EIGEN FUNCTIONS OF A SPECTRAL

PARAMETER WITH A SPECTRAL PROBLEM IN

THE BOUNDARY CONDITIONS

Abstract

We consider the spectral problem

−y′′ (x) + q (x) y (x) = λy (x) , x ∈ (0, 1) ,

y′ (0) = (a0λ + b0) y (0) ,

y′ (1) = (a1λ + b1) y (1) ,

where λ is a spectral parameter, q (x) ∈ C [0, 1], q (x) > 0, x ∈ [0, 1], ai, bi, i =
0, 1 are real constants, and a0 < 0, a1 < 0, b0 > 0, b1 < 0.

We study general characteristics of location of eigen values on a real axis,
oscillation properties of eigenfunctions, basis properties in the space Lp (0, 1),
1 < p < ∞ of the subsystems of eigenfunctions of this problem.

Consider the spectral problem

−y′′ (x) + q (x) y (x) = λy (x) , x ∈ (0, 1) , (1)

y′ (0) = (a0λ + b0) y (0) , (2)

y′ (1) = (a1λ + b1) y (1) , (3)

where λ is a spectral parameter, q (x) ∈ C [0, 1], q (x) > 0, x ∈ [0, 1], ai, bi, i = 0, 1
are real constants, and a0 6= 0, a1 6= 0, arising for example while solving by the
method of separation of variables a problem on heat propagation in a bar at the
ends of which the concentrated heat capacities are placed [1,2].

In the case a0 < 0, a1 > 0 problem (1)-(3) was considered in [3], where in
particular it was proved that after removing two any functions of different par-
ity ordinal numbers, the system of functions forms a basis in the space Lp (0, 1),
1 < p < ∞ (i.e. this system forms a defect basis with defect number 2).

The basis properties in the space Lp, 1 < p < ∞, of the system of eigenfunctions
(root functions) of problem (1)-(3) in the case q ≡ 0, a0 < 0, a1 > 0, b0 = b1 = 0 was
studied in [4], in the case q ≡ 0, a0 < 0, a1 > 0, b0 = b1 = 0 in [5]. Necessary and
sufficient conditions of defect basicity (with defect number 2) in Lp (0, 1), 1 < p < ∞
of the system of root functions of this problem was found in these papers.

The present paper is devoted to investigation of basis properties in the space
Lp (0, 1), 1 < p < ∞ of the system of eigenfunctions of problem (1)-(3) in the case
a0 < 0, a1 < 0, b0 > 0, b1 < 0.

Everywhere in the sequel suppose that the following conditions are fulfilled

a0 < 0, a1 < 0, b0 > 0, b1 < 0.
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It is known that [6] there exists a unique solution y (x, λ) of equation (1) satisfying
the initial conditions

y (0, λ) = 1, y′ (0, λ) = (a0λ + b0) , (4)

and the function y (x, λ) for each fixed x ∈ [0, 1] is an entire function λ.
Along with problem (1.1)-(1.3) consider the following boundary value problems:

−y′′ (x) + q (x) y (x) = λy (x) , x ∈ (0, 1) ,

y′ (0) = (a0λ + b0) y (0) , y (1) = 0;

}
(5)

−y′′ (x) + q (x) y (x) = λy (x) , x ∈ (0, 1) ,

y′ (0) = (a0λ + b0) y (0) , y′ (1) = 0.

}
(6)

The eigenvalues of problems (5) and (6) are real, simple and form the infinitely
increasing sequences

µ1 < µ2 < ... < µk < ... and ν1 < ν2 < ... < νk < ...,

respectively; the eigenfunctions ϑk (x) and wk (x), k ∈ N , corresponding to the
eigenvalues µk and νk have exactly k − 1 simple zeros in the interval (0,1) [7].

Note that the eigenvalues µk and νk, k ∈ N of problem (5) and (6) are the zeros
of entire functions y (1, λ) = 1 and y′ (1, λ), respectively.

The function
F (λ) = y′ (1, λ) /y (1, λ)

was determined for the values

λ ∈ D ≡ (C\R) ∪
∞⋃

k=1

(
µk−1, µk

)

and is a meromorphic function of finite order, νk and µk, k ∈ N are zeros and poles
of this function, respectively, where µ0 = −∞.

By lemma 1.3 and theorem 1.1 from [8] the following relations hold:

dF (λ)
dλ

= −

1∫

0

y2 (x, λ) dx− a0

y2 (1, λ)
, λ ∈ D. (7)

lim
λ→−∞

F (λ) = +∞. (8)

Multiplying the both sides of equation (1) by y (x), integrating the obtained
equality from 0 to 1 using integration by parts and taking into account boundary
conditions of problems (5), (6), we get:

1∫

0

{
y′2 (x) + q (x) y2 (x)

}
dx + b0y

2 (0) = λ




1∫

0

y2 (x) dx− a0


 , (9)
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whence it follows that µk > 0 and νk > 0, k ∈ N. From (7) we get that the function
F (λ) is strictly decreasing on the interval (−∞, µ1) and F (ν1) = 0, ν1 ∈ (−∞, µ1).
Consequently, F (0) > 0.

Following the appropriate reasonings carried out by proving supposition 4 from
[9], we see the validity of the following statement.

Lemma1. It holds the representation

F (λ) =
∞∑

k=1

λck

µk (λ− µk)
, (10)

where ck = res
λ=µk

F (λ > 0).

From formula (10) the validity of the following relations holds:

F ′ (λ) = −
∞∑

k=1

ck

(λ− µk)
2 , λ ∈ D, (11)

F ′′ (λ) = 2
∞∑

k=1

ck

(λ− µk)
3 , λ ∈ D. (12)

By (11), we have F ′ (λ) < 0 for λ ∈
∞⋃

k=41

(
µk−1, µk

)
(that also follows from

formula (7)), and by (12), we have F ′′ (λ) < 0 for λ ∈ (−∞, µ1) that means that the
function F (λ) is convex upwards on the interval (−∞, µ1).

It is obvious that the eigen values of problem (1)-(3) are the roots of the equation

F (λ) = (a1λ + b1) . (13)

The following lemmas are valid
Lemma 2. The eigenvalues of boundary value problem (1)-(3) are real, simple

and form no more than countable set, not having finite limit point.
The proof is carried out by the scheme of the proof of lemmas 1.1 and 1.2 from

[6].
Lemma 3. If equation (13) has a solution on the interval

(
µk−1, µk

) ∩ R∓,
k = 1, 2, 3, ..., this solution is unique, where Rν = {µ ∈ R : 0 < νµ ≤ ∞}, ν = ∓.

Proof. Suppose that λ∗ ∈ (µ0, µ1) ∩ R ≡ (−∞, 0) is the solution of equation
(13). Multiplying the both sides of equation by y (x, λ∗), integrating the obtained
equality from 0 to 1, and taking into account boundary conditions (2) and (3), we
get

1∫

0

{
y′2 (x, λ∗) + q (x) y2 (x, λ∗)

}
dx + b0 − b1y

2 (1, λ∗) =

= λ∗




1∫

0

y2 (x, λ∗) dx− a0 + a1y
2 (1, λ∗)


 . (14)
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Since q (x) > 0, x ∈ [0, 1], b0 > 0, b1 > 0, λ∗ < 0, from (14) it follows the validity of
the inequality

1∫

0

y2 (x, λ∗) dx− a0 + a1y
2 (1, λ∗x) < 0. (15)

Taking into account (7), from (15) we get

d

dλ
(F (λ)− (a1λ + b1)) |λ=λ∗ > 0,

that means that only strictly decreasing the function F (λ) − (a1λ + b1) on the
interval (−∞, 0) accepts the value 0. Consequently, equation (13) on the interval
(−∞, 0) has a unique solution λ∗. The case λ∗ ∈ (

µk−1, µk

) ∩ R+, k = 1, 2, ... is
considered similarly. The lemma is proved

Denote by s (λ) the number of zeros of the function y (x, λ) located in the interval
(0, l).

Lemma 4 [8]. If λ ∈ (
µk−1, µk

]
, k ∈ N , then s (λ) = k − 1.

It holds the following oscillation
Theorem 1. The eigen values of problem (1)-(3) form an infinitely increasing

sequence λ1 < λ2 < ...λk < ..., moreover λ1 < 0 and λk > 0 for k ≥ 2. The
eigenfunction y1 (x) corresponding to the eigenvalue λ1 has no zeros in the interval
(0,1), the eigenfunction yk (x), k ≥ 2, corresponding to the eigenvalue λk has exactly
k − 2 simple zeros in the interval (0, 1).

Proof. By (8) and (10) we have

lim
λ→µk−1+0

F (λ) = +∞, lim
λ→µk−0

F (λ) = −∞. (16)

Taking into account the convexity of the function F (λ) in the interval (−∞, 0)
and relations b1 < 0 and F (0) > 0, we get that equation (13) has the solutions
λ = λ1 ∈ (−∞, 0) and λ = λ2 ∈ (0, µ1). Based around lemma 4, the eigenfunctions
y1 (x) = y (x, λ1) and y2 (x) = y (x, λ2) have no zeros in the interval (0, 1).

Let now λ ∈ (
µk−1, µk

)
, k = 2, 3, .... By (7), (16) and lemma 3, equation

(13) has a unique solution λ = λk+1. Again, based on lemma 4, the eigenfunction
y (x) = y (x, λk), k = 3, 4, ..., has k − 2 simple zeros in the interval (0, 1). The
theorem is proved.

Problem (1)-(3) is reduced to the eigenvalue problem for the operator L in Hilbert
space H = L2 (0, 1)⊕ C2 with the scalar product

(ŷ, û) = ({y (x) ,m, n} , {u (x) , s, t}) = (y, u)L2
+ |a0|−1 ms + |a1|−1 nt, (17)

where (·, ·)L2 is a scalar product in L2 (0, 1),

Lŷ = L {y, m, n} =
{−y′′ (x) + q (x) y (x) , y′ (0)− b0y (0) , y′ (1)− b1y (1)

}
,

with domain of definition

D (L) = {{y, m, n} ∈ H : y, y′ ∈ AC [0, 1] , −y′′ + q (x) y (x) ∈ L2 (0, 1) ,
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m = a0y (0) , n = a1y (1)}
everywhere dense in H [10]. It is obvious that the operator L was defined well in H.

Problem (1)-(3) takes the form

Lŷ = λŷ, ŷ ∈ D (L) ,

i.e. the eigenvalues λ of problem (1)-(3) and operator L coincide together with their
multiplicities, and there is a correspondence between eigen and associated functions
[10]

yk (x) ←→ {yk (x) ,mk, nk} , mk = a0yk (0) , nk = a1yk (1) .

Note that the operator L is not self-adjoint in H. Define the operator J : H → H

in the following way: J {y,m, n} = {y,m,−n}. The operator J is unitary and
symmetric in H with a spectrum consisting of two eigen values: -1 with multiplicity
1 and +1 with infinite multiplicity. Consequently, this operator generates Pontryagin
space Π1 = L2 (0, 1)⊕ C2 with inner product (J-metrics) [11]

(ŷ, û)Π1
= [{y, m, n} , {u, s, t}] = (y, u)L2

− a−1
0 ms + a−1

1 nt. (18)

Lemma 5 [12]. The operator L is J-self adjoint in Π1; if L∗ be the adjoint
operator of the operator L in H, then L∗ = JLJ . The system of eigenvectors
{yk (x)}∞k=1, ŷk = {yk (x) ,mk, nk}, of the operator L forms the Riesz basis in H.

Note that each element ŷk = {yk (x) , mk, nk}, k ∈ N , where mk = a0yk (0),
nk = a1yk (1) of the system of eigenvectors {ŷk}∞k=1 of the operator L satisfies the
relation

Lŷk = λkŷk. (19)

The element ϑ̂
∗
k = {ϑ∗k (x) , s∗k, t

∗} of the system of eigenvectors {ϑ∗k}∞k=1 of the
operator L∗ satisfies the equality

L∗ϑ̂
∗
k = λkϑ̂

∗
k. (20)

Based on lemma 5 and relations (19), (20), we have

υ̂∗k = Jŷk, k = 1, 2, .... (21)

Denote
δk = ‖y‖2

L2(0,1) − a−1
0 m2

k + a1n
2
k, k = 1, 2, ... (22)

where ‖·‖L2(0,1) is the norm in the space L2 (0, 1).
From (6) and (7) we have

δk 6= 0, k = 1, 2, .... (23)

Indeed, by lemma 1, the eigenvalues of problem (1)-(3) (of the operator L) are
simple. Consequently,

F ′ (λ)− a1 6= 0. (24)
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Taking into account relations (7), from (24) we get

1∫

0

y2 (x, λk) dx− a0

y2 (1, λk)
+ a1 6= 0,

whence it follows that

1∫

0

y2
k (x) dx− a0 + a1y

2
k (1) 6= 0.

Inequality (23) directly follows from the last inequality.
Since the operator L is J-self-adjoint in Π1, then

(
ŷk, ϑ̂l

)
= (ŷk, Jŷl) = [ŷk, ŷl] = 0, k, l ∈ N, k 6= l. (25)

From (21) and (7) we have
(
ŷk, ϑ̂k

)
= (ŷk, Jŷk) = ({y, mk, nk} , {y,mk,−nk}) =

= ‖y‖2
L2(0,1) − a−1

0 m2
k + a1n

2
k, k ∈ N. (26)

From (23), (25) and (26) we find
(
ŷk, δ

−1
k ϑ̂l

)
= δk,l, (27)

where δk,l is Kronecker’s symbol. Consequently, the element ϑ̂k = {ϑk (x) , sk, tk} of

the system
{

ϑ̂k

}∞
k=1

adjoint to the system {ŷk}∞k=1, ŷk = {yk, mk, nk} is defined by
the equality

ϑ̂k = δ−1
k ϑ∗k, k ∈ N. (28)

Let r, l, r 6= l be arbitrary fixed natural numbers. From theorem 4.2 and remark
4.4 [12], it follows that if

∆r,l =
∣∣∣∣

sr sl

tr tl

∣∣∣∣ 6= 0, (29)

then the system {yk (x)}∞k=1,k 6=r,l forms a basis in the space Lp (0, 1), 1 < p < ∞ (for
p = 2 the Riesz basis), if ∆r,l = 0, then this system is neither complete nor minimal
in Lp (0, 1), 1 < p < ∞.

Taking into account (4) and (28), from (29) we get

∆r,l =
∣∣∣∣

sr sl

tr tl

∣∣∣∣ =
∣∣∣∣

δ−1
r mr δ−1

l ml

−δ−1
r nr − δ−1

l nl

∣∣∣∣ = −δ−1
r δ−1

l

∣∣∣∣
mr ml

nr nl

∣∣∣∣ =

= −δ−1
r δ−1

l

∣∣∣∣
a0yr (0) a0yl (0)
a1yr (1) a1yl (1)

∣∣∣∣ = −a0a1δ
−1
r δ−1

l

∣∣∣∣
1 1

yr (1) yl (1)

∣∣∣∣ . (30)
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From (4) and theorem 1 we have

y1 (1) > 0, (−1)k yk (1) > 0, k = 2, 3, 4.... (31)

Taking into account relation (31), from (30) we get that if l is odd, then ∆1,l 6= 0;
if r, l ≥ 2 and have different parities, then ∆r,l 6= 0.

Thus, we proved the following theorem that gives sufficient conditions of defect
basicity of the system of eigenfunctions of problem (1)-(3).

Theorem 2. Let r, l, r 6= l be arbitrary fixed natural numbers such that if r = 1,
then l is an odd number, and if r, l ≥ 2, then they have different parities. Then the
system of eigen functions {yk (x)}∞k=1,k 6=r,l of problem (1)-(3) forms a basis in the
space Lp (0, 1), 1 < p < ∞, for p = 2 the Riesz basis.
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