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CRITERION FOR INDEPENDENCE OF DATA

Abstract

This publication provides a criterion for the independence of data.

The classical theory of statistical conclusions is based on the concept of sampling.
By the definition, a sample is a random vector where components are the results
of observations of some random variable [3, p.7]. In many cases, we make the
assumption that elements of the sample are independent random variables.

In practice, very important is the fact that our data are independent.
Reproduced in this publication criterion can check independent of dates.
We consider some of the random variable ξ. ξ1, ..., ξn, ... are observations of ξ.

We need to find a subsequence of independent random variables.
Let ξ(n) = (ξ1, ..., ξn) be a sample for this random variable ξ.
Lemma. [2, p. 91-95]. Let ξ0, ξ1, ... be a sequence of independent identically

distributed random variables, β = min
k
{k ∈ N | ξk > ξ0}. Then

P{β = k} =
1

k(k + 1)
, k = 1, 2, ... .

Theorem 1. Let (ξ1, ..., ξn) be a sample, P{ξ1 < x} = F (x) be a continuous
function, (ξ1, ..., ξm) be a subsample (m < n), ξ(1), ..., ξ(m) be a variational series of
subsample.

1. If β = min{k ∈ N : ξm+k > ξ(m)}, then P{β > k} =
m

m + k
.

2. If β = min{k ∈ N : ξm+k > ξ(m−r+1)}, then P{β > k} =
Cr

m

Cr
m+k

and if

r ≥ 2, x > 0 then P{β ≤ mx} → 1− 1
(1+x)r , m →∞.

3. If β = min{k ∈ N : ξm+k ≤ ξ(1)}, then P{β > k} =
m

m + k
.

4. If β = min{k ∈ N : ξm+k < ξ(r)}, then P{β > k} =
Cr

m

Cr
m+k

and if r ≥ 2,

x > 0, P{β ≤ mx} → 1− 1
(1+x)r , m →∞.

Proof. First note that the first statement is a partial case of the second assertion
and the third statement is a partial case of the fourth assertion. So just prove the
second assertion.

With the same reasoning as in Lemma, we get that

{β > k} ⇔ {ξ(r) of the subsample ξ1, ..., ξm+k is ξ(m−r+1) of the sample} ⇔

{ξ(r) of the subsample ξ1, ..., ξm+k match ξ(r) of the subsample ξ1, ..., ξm}.

Among the ξ1, . . . , ξm+k we can choose r values by C
r

m+k ways and among the

ξ1, . . . , ξm we can choose r values by C
r

m ways. Therefore P{β > k} =
C

r

m

C
r

m+k

.
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Let r ≥ 2, then given that β is a discrete random variable that takes only natural
values, we obtain

∀x > 0 P{β ≤ mx} = P{β ≤ [mx]}.
Denote [mx] = k, then

P{β ≤ mx} = P{β ≤ k} = 1− m!
(m− r)!

(m + k − r)!
(m + k)!

.

Using the Stirling formula, we obtain that

P{β ≤ k} = 1− mm

em

√
2πm

2π(m− r)

(
e

m− r

)m−r

×

×
(

m + k − r

e

)m+k−r
√

2π(m + k − r)
2π(m + k)

(
e

m + k

)m+k

=

= 1− mm(m + k − r)m+k−r

(m− r)m−r(m + k)m+k

√
m(m + k − r)

(m− r)(m + k)
=

= 1−
(
1 + k−r

m

)( m
k−r

+1)(k−r)

(
1− r

m

)(m
r

+1)(−r) (
1 + k

m

)(m
k

+1)k

√
m(m + k − r)

(m− r) (m + k)
.

Since m →∞, then

P{β ≤ k} → 1−

(
1 +

k − r

m

)k−r

(
1− r

m

)−r
(

1 +
k

m

)k
= 1−




1 +
k

m
− r

m

1 +
k

m




k 


1− r

m

1 +
k

m
− r

m




r

.

Given that
k

m
=

[mx]
m

= x− {mx}
m

→ x,
r

m
→ 0, we obtain

P{β ≤ mx} → 1− 1
(1 + x)r

, m →∞.

The proof of parts 3 and 4 is completely analogous to that of parts 1 and 2 for
the random variable β = min{k ∈ N : ξm+k < ξ(r)}, which is a symmetrical analog
of the already studied random variable β = min{k ∈ N : ξm+k > ξ(m−r+1)}.

Theorem is proved.
Remarks. Let the absolutely continuous random variable ηr be given by its

distribution function

Fηr
(x) =

{
1− 1

(1+x)r , x > 0;
0, x ≤ 0.

Then according to the proven theorem, for large m, the random variable
β

m
con-

verges to the random variable ηr in distribution. This is equivalent to the following:

∀ a, b ∈ R P

{
a <

β

m
< b

}
→ P {a < ηr < b} , m →∞.
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Practical calculations show that if r ≤ 0.4m, the value is quite precise.
Later we will use the following notation

βm,r = min{k ∈ N : ξm+k > ξ(m−r+1)},

βr
m,r = min{k ∈ N : ξm+k < ξ(r)}.

For the subsample (ξ1, . . . , ξm) the serial statistics are denoted by ξ(1), . . . , ξ(m).
If a sub-samples is not uniquely determined the ordinal statistics will be denoted

by ξ(1)m
, . . . ξ(m)m

.
Theorem 2. The characteristic function of a random variable ηr is equal to

ψr(t) = 1 +
i

r − 1
t + . . . +

ik(r − k − 1)!
(r − 1)!

tk + ... +
ir−1

(r − 1)!
tr−1 + Er(t),

where Er(t) is the remainder term of tr−1 order, i.e.

∀t ∈ R | Er(t) |≤ 2 | t |r−1

(r − 1)!

and

Er(t) =

{
ite−it

(r−1)! (Ci(| t |) + isi(| t |) · sign(t)) tr−1, t 6= 0;
0, t = 0,

where Ci(t) = −
∞∫
1

cos(y)
y

dy, si(t) = −
∞∫
1

sin(y)
y

dy.

Proof. By the definition of the characteristic function,

ψr(t) =

+∞∫

−∞
eitxdFηr

(x) =

∞∫

0

reitx

(1 + x)1+r
dx = re−it

∞∫

1

eitx

xr+1
dx = re−itIr+1(t).

Integrating r times by parts we obtain

ψr(t) = 1+
i

r − 1
t+ . . .+

ik(r − k − 1)!
(r − 1)!

tk + . . .+
ir−1

(r − 1)!
tr−1 +

ire−it

(r − 1)!
I1(t)tr. (1)

That formula proved up to the remainder term. Then when t 6= 0 we obtain

Er(t) =
ire−it

(r − 1)!
I1(t) =

irtre−it

(r − 1)!




∞∫

1

cos(tx)
x

dx + i

∞∫

1

sin(tx)
x

dx


 =

=
ite−it

(r − 1)!
(Ci (|t|) + isi (|t|)) tr−1, (2)

where Ci(t) = −
∞∫

1

cos(y)
y

dy, si(t) = −
∞∫

1

sin(y)
y

dy.

Since ψr(0) = 1 [1, p. 120], we have Er(0) = 0.
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To prove the theorem, it remains to show that the remainder term Er(t) is of
order tr−1, i.e. to prove that

∀t ∈ R | Er(t) |≤ 2 | t |r−1

(r − 1)!
.

When t = 0 the statement is obvious.
Assuming that t 6= 0.
According to (1)

ψ1(t) = 1 + ite−itI1(t). (3)

Substituting (3) in (2), we obtain

Er(t) =
ir−1

(r − 1)!
(−1 + ψ1(t))t

r−1.

Since ∀ t ∈ R | ψ1(t) |≤ 1 we have | Er(t) |≤ 2 | t |r−1

(r − 1)!
.

The theorem is proved.
Corollary 1. The characteristic function of ηr , ∀r > 1, is

ψr(t) = 1 +
i

r − 1
t + ... +

ik
[r]−k−2∏

l=0

(r − k − l − 1)

[r]−2∏

l=0

(r − l − 1)

tk + ...+

+... +
ir−1

[r]−2∏

l=0

(r − l − 1)

tr−1 + Er(t), (4)

where Er(t) is the remaining member of the order tr−1, namely

∀ t ∈ R | Er(t) |≤ 2 | t |r−1

[r]−2∏

l=0

(r − l − 1)

.

Proof. Proof of Corollary can be conducted on a similar scheme as the proof
of the theorem, in view of the difference that the parameter r is real and that the
product does not convolves in the classic definition of factorial.

Therefore,

ψr(t) = 1 +
i

r − 1
t + ... +

ik
[r]−2−k∏

l=0

(r − k − l − 1)

[r]−2∏

l=0

(r − l − 1)

tk + ...
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... +
ir−1

[r]−2∏

l=0

(r − l − 1)

tr−1 +
ire−it

[r]−2∏

l=0

(r − l − 1)

Ir(t).

Then we obtain that

∀ t ∈ R | Er(t) |=

∣∣∣∣∣∣∣∣∣∣∣

ir−1

[r]−2∏

l=0

(r − l − 1)

(−1 + ψ[r](t))t
r−1

∣∣∣∣∣∣∣∣∣∣∣

≤ 2 | t |r−1

[r]−2∏

l=0

(r − l − 1)

.

The result is proved.
Corollary 2. Let ηr1

, ..., ηrs
(∀ j rj ∈ {2, 3, ...}) be independent random

variables, ψΣ be the characteristic function of their sum ηΣ = ηr1
+ ... + ηrs

, p =
1 + 1

sP
j=1

1
rj−1

. Then M
[
ηp

]
= M [ηΣ].

Proof. From the properties of the characteristic function [1] it follows

ψΣ(t) =
(

1 +
i

r1 − 1
t + ... +

ik(r1 − k − 1)!
(r1 − 1)!

tk + ... +
ir1−1

(r1 − 1)!
tr1−1 + Er1 (t)

)
×

×
(

1 +
i

rs − 1
t + ... +

ik(rs− k − 1)!
(rs − 1)!

tk−1 + ... +
ir1−′1

(rs − 1)!
trs−1 + Ers (t)

)
.

Since ∀j rj > 1, the characteristic function of sum has the form

ψΣ(t) = 1 + it
s∑

j=1

1
rj − 1

+ ... .

As ψp(t) has a similar structure and

ψp(t) = 1+
i

p− 1
t+...+

ik
[p]−k−2∏

l=0

(p− k − l − 1)

[p]−2∏

l=0

(p− l − 1)

tk +...+
ip−1

[p]−2∏

l=0

(p− l − 1)

tp−1+Ep(t),

then for equality M
[
ηp

]
= M [ηΣ] necessarily

1
p− 1

=
s∑

j=1

1
rj − 1

, i.e. p = 1 +

1
sP

j=1

1
rj − 1

.

The result is proved.
Theorem 3. Let η

1
, ..., ηrs

, ηp(1)
, ..., ηp(s) (∀ l rl ∈ {2, 3, ...}, p(l) = 1 +

1
l∑

j=1

1
rj−1

) be independent random variables and
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P{ηrj
< x} =





0, x ≤ 0,

1− 1
(1 + x)rj

, x > 0,

P{ηp(j) < x} =





0, x ≤ 0,

1− 1

(1 + x)p(j)
, x > 0.

Then
1
s

s∑
j=1

ηrj

p−→ ηp(s)

s
.

Proof. At the first we consider the random variable ηs =
1
s

s∑
j=1

ηrj
− ηp(s)

s
.

According to (4)

ψηrj
(t) = 1 +

i

rj − 1
t + o(t)

at t → 0. Fixing an arbitrary t, we get that for
ηrj

s

ψ (t) = 1 +
i

rj − 1
t

s
+ o

(
1
s

)

at s →∞.
The characteristic function for the sum

s∑
j=1

ηrj

s
is

ψηrj/s
(t) =

s∏

j=1

(
1 +

i

rj − 1
t

s
+ o

(
1
s

))
= 1 +

it

s

s∑

j=1

1
rj − 1

+ o(1)

at s →∞.
Since

s∑
j=1

ηrj

s
and ηp(s) are independent random variables, the characteristic func-

tion for ηs =
1
s

s∑
j=1

ηrj
− ηp(s)

s
is

ψ(t) =


1 +

it

s

s∑

j=1

1
rj − 1

+ o(1)




(
1− 1

p(s)− 1
t

s
+ o

(
1
s

))
= 1 + o(1)

at s →∞.
The theorem is proved.
From the above facts it follows that can be taken as the statistic criterion the

random variable

Tn =
1

s + s′




s∑

j=1

βmj ,rj

mj
+

s∑

j=1

β
rj
mj ,rj

mj




interval around the expectation

∆n =


 1

s + s′

(
− ε

2
+

(
1 +

1
p− 1

)−p
)− 1

p

− 1
s + s′

;
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1
s + s′

(
ε

2
+

(
1 +

1
p− 1

)−p
)− 1

p

− 1
s + s′




as the decision making region.
There remains the problem of choosing ”optimal” sequences (mj , rj)

s
j=1 and

(mj , rj)
s′
j=1 such that, firstly,

βm1,r1

m1

, . . . ,
βms,rs

ms
,
βr1

m1,r1

m1

,. . . ,
β

rs′
ms′ ,rs′

ms′
be independent

and, secondly, that the value s + s′ be large.
From the above facts it follows that one of the possible sequences of rational

choice (mj , rj)
s
j=1 and (mj , rj)

s′
j=1 is as follows:

For a sequence ξ1, ..., ξn we fix a subsample of length m1, ξ1, ..., ξm1
.

∀r̃j ∈ {2, ..., [0.4 · m1]}we obtain sequences βm1,r̃j or β
r̃j

m1,r̃j
j = 1, s′1 sorted

ascending βm1,r̃j or β
r̃j

m1,r̃j
and in the extent of their values in r̃j .

Then as r1 we take the average value r1 = r̃
1+

"
s1 − 1

2

#, and the corresponding

value of βm1,r̃j or β
r̃j

m1,r̃j
, which is denoted by β1.

The following values m2, r2 can be chosen a similar procedure the sequence
ξm1+β1+1, ..., ξn etc.

Remarks. The independence in total of the sequence of random variables

βm1,r1

m1

, . . . ,
βms,rs

ms
,
βr1

m1,r1

m1

, . . . ,
βrs

ms,rs

ms

is obviously, as they belong to different groups of mutually independent sub-samples
of the sample ξ1, ..., ξn.

The coefficient 0.4 in the choice of r̃j ∈ {2, ..., [0.4 ·m1]} is recommended for
practical application of the criterion, which is caused by approximation of the ran-

dom variable
βm,r1

m
by the random variable ηr.

Conclusion
The constructed criterion is the first attempt at assessing the unknown data

sample for independence. The advantage of it that does not require knowledge of
data distribution. But it is clear that this is a foundation to false conclusions, so
more detailed assessment should be done certain assumptions about the nature of
the data and apply other more narrow criteria of independence, which generally
allows a comprehensive approach to the problem.
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