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Rafig A.TEYMUROV

STUDY OF ONE CLASS PROBLEMS MOVING

SOURCES IN SYSTEMS OF OPTIMAL CONTROL

BY WITH THE DISTRIBUTED PARAMETERS

Abstract

For the solution of a problems of optimal control of moving sources which
condition is described by totality of parabolic type equation and systems of the
ordinary differential equations, existence and uniqueness theorems are proved,
sufficient conditions of differentiability of a target functional and an expression
for its gradient are obtained, necessary conditions of optimality in the form of
integral maximum principles are established.

Now, in view of complexity of the solution of a problem of optimum control of
the moving sources which condition is described by the differential equations with
partial derivatives and systems of the ordinary differential equations, are studied
insufficiently [1,5]. For some classes of linear and nonlinear boundary value prob-
lems in which participates pulse functions, questions of existence and uniqueness of
the generalized solution are investigated. In studied work the problem of optimal
control by the moving sources, totality by the parabolic type equation and systems
of the ordinary differential equations is considered under entry and boundary con-
ditions. For this problem theorems of existence and uniqueness of the solution are
proved, sufficient conditions of Frechet differentiability of a target functional and
expression for its gradient are obtained, necessary conditions of optimality in the
form of integral maximum principles are established.

1. Problem statement
Let l > 0, T > 0 are the given numbers Ωt = (0, l) × (0, t), Ω = ΩT . The

functional spaces W 1,0
2 (Ω), W 1,1

2 (Ω), V2(Ω), V 1,0
2 (Ω) used below, are introduced, for

example in [4].
Let the condition of operated process is described by functions u(x, t) and s(t).

Let’s assume that in area Ω function u(x, t) satisfies the following equation parabolic
type

ut = a2uxx +
n∑

k=1

pk(t)δ(x− sk(t)), (1)

with initial and boundary conditions

u(x, o) = ϕ(x), 0 ≤ x ≤ l, (2)

ux |x=0 = 0, ux |x=l = 0, 0 < t ≤ T, (3)

where a > 0 is the given number, ϕ(x) ∈ L2(0, l)is the given function; δ(·) is the
Dirak’s function; p(t) = (p1(t), p2(t), ..., pn(t)) ∈ Ln

2 (0, T ) is the control function.
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Let’s assume also that the functions sk(t) ∈ C [0, T ] , k = 1, n, are the solution
of the following problem of Cauchy:

ṡk(t) = fk(sk(t), ϑ(t), t), 0 < t ≤ T, sk(o) = sk0, k = 1, n, (4)

where sk0 ∈ Rn; ϑ = ϑ(t) = (ϑ1(t), ϑ2(t), ..., ϑr(t)) ∈ Lr
2(0, T ) are the control

function; function f(s, ϑ, t) = (f1(s, ϑ, t), f2(s, ϑ, t), ..., fn(s, ϑ, t)) is continuous, has
continuous with respect to s, ϑ for (s, ϑ, t) ∈ En × Er × [o, T ].

Pair of functions ϑ̄ = (p(t), ϑ(t)) we will call controls. For brevity we denote by
H = Ln

2 (0, T )×Lr
2(0, T ) a Hilbert space of pairs ϑ̄ = (p(t), ϑ(t)) with scalar product

< ϑ̄
1
, ϑ̄

2
>H=

T∫

0

[p1(t)p2(t) + ϑ1(t)ϑ2(t)]dt

and the norm
∥∥ϑ̄

∥∥
H

=
√

(< ϑ̄, ϑ̄ >H) =
√

(‖p‖2
L2

+ ‖ϑ‖2
L2

), where ϑ̄
k = (pk, ϑk), k =

1, 2.

Let’s put

V =
{
(p, ϑ) ∈ H : 0 ≤ pi ≤ Ai, 0 ≤ |ϑj | ≤ Bj , i = 1, n, j = 1, r

}
, (5)

where Ai > 0, i = 1, n, Bj > 0, j = 1, r, are the given numbers and we will consider
a functional

J(ϑ̃) =

l∫

0

T∫

0

[u(x, t)− ũ(x, t)]2dxdt + α1

n∑

k=1

T∫

0

[pk(t)− p̃k(t)]2dt+

+α2

r∑

m=1

T∫

0

[ϑm(t)− ϑ̃m(t)]2dt, (6)

where ϑ̄ = (p(t), ϑ(t)) ∈ H is the control fiunction; α1, α2 ≥ 0, α1 + α2 > 0 are the
given parameters; ũ(x, t)) ∈ L2(Ω), ω = (p̃(t), ϑ̃(t)) ∈ H, p̃(t) = (p̃1(t), p̃2(t), ..., p̃n(t)) ∈
Ln

2 (0, T ), ϑ̃(t) = (ϑ̃1(t), ϑ̃2(t), ..., ϑ̃r(t) ∈ Lr
2(0, T )) are the given functions.

It is required to find such controls ϑ̄ = (p(t), ϑ(t)) from the set V and functions
(u(x, t), s(t)) that the functional (6) accepted the smallest possible value at condi-
tions (1)-(4).

2. Existence and uniqueness of the solution
Definition. A problem on finding the function (u(x, t), s(t)) = (u(x, t; ϑ), s(t;ϑ))

from conditions (1)-(4) for the given control ϑ = (p(t), ϑ(t)) ∈ V is said to be a re-
duced problem. Under the solution of the reduced problem (1)-(4), corresponding
to the control ϑ = (p(t), ϑ(t)) ∈ V we understand the functions (u(x, t), s(t)) from
(V 1,0

2 (Ω), C [0, T ]), where the function u = u(x, t) satisfies the integral identity

l∫

0

T∫

0

[−uηt + a2uxηx]dxdt =

l∫

0

ϕ(x)η(x, 0)dx +
n∑

k=1

T∫

0

pk(t)η(sk(t), t)dt, (7)
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for ∀η = η(x, t) ∈ W 1,1
2 (Ω) and η(x, T ) = 0, the function sk(t) = sk(t;ϑ) satisfies

the integral equation

sk(t) =

t∫

0

fk(sk(τ), ϑ(τ), τ)dτ + sk0, 0 ≤ t ≤ T, k = 1, n. (8)

It follows from results of papers [2],[4] follows that for each fixed ϑ ∈ V the
reduced problem (1) - (4) has a unique solution from (V 1,0

2 (Ω), C [0, T ]). Let the
conditions accepted at the statement of problem (1) - (6) be fulfilled. Then problem
(1) - (6) has at least one solution. It should be noted that the problem (1) - (6) for
αj = 0, j = 1, 2 is incorrect in the classical sense [8]. However it holds

Theorem 1. There exists a dense subset K of the space H such that for any
ω ∈ K for αi > 0, i = 1, 2, problem (1)-(6) has a unique solution.

Proof. Prove continuity of the functional J0(ϑ̃) = ‖u(x, t)− ũ(x, t)‖2
L2(Ω). Let

∆ϑ̄ = (∆p, ∆ϑ) ∈ V be an increment of a control on the element ϑ = (p, ϑ) ∈ V such
that ϑ̄+∆ϑ̄ ∈ V . Denote ∆u ≡ ∆u(x, t) = u(x, t; ϑ̄+∆ϑ̄)−u(x, t, ϑ̄), u ≡ u(x, t; ϑ̄),
∆sk ≡ ∆sk(t) = sk(t; ϑ̄ + ∆ϑ)− sk(t; ϑ), sk ≡ sk(t;ϑ).

It follows from (1)-(4) that function ∆uis generalized solution of the boundary
value problem

∆ut = a2∆uxx +
n∑

k=1

[(pk + ∆pk)δ(x− (sk + ∆sk))− pkδ(x− sk)], (x, t) ∈ Ω, (9)

∆ux|x=0 = ∆ux|x=l = 0, t ∈ [0, T ], (10)

∆u|t=0 = 0, x ∈ [0, l], (11)

and functions ∆sk, k = 1, n is solutions of the Cauchy problem

∆ṡk(t) = ∆fk(sk(t), ϑ(t), t), ∆sk(0) = 0, k = 1, n, (12)

where ∆fk(sk(t), ϑ(t), t) = fk(sk + ∆s, ϑ + ∆ϑ, t)− fk(sk, ϑ, t).
Prove that for the function ∆u(x, t) it holds the estimation

‖∆u‖
V 1,0
2 (Ω)

≤ c1

∥∥∆ϑ̄
∥∥

L2(0,T )
, (13)

where c1 > 0 is a constant.
Multiplying both members of equation (9) on η = η(x, t) and integrating in parts

received equality, we receive estimation:

l∫

0

T∫

0

[∆utη + a2∆uxηx]dxdt =
n∑

k=1

T∫

0

[(pk + ∆pk)η(sk + ∆sk, t)− pkη(sk, t)] dt.

(14)
Let t1, t2 ∈ [0, T ] such that t1 ≤ t2. In identity (14) we will put

η(x, t) =
{

∆u(x, t) , t ∈ (t1, t2],
0, t ∈ [0, t1] ∪ (t2, T ],
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and applying the formula of finite increments for the function ∆u(sk(t) + ∆sk, t) in
the form

∆u(sk + ∆sk, t) = ∆u(sk, t) + ∆ux(s̄k, t)∆sk, s̄k = sk + θ∆sk, θ ∈ [0, 1],

we receive energetic balance equation for problem (9) - (12):

1
2
‖∆u(x, t)‖2

L2(0,l)

∣∣t=t2
t=t1

+ a2 ‖∆ux(x, t)‖2
L2(Ωt)

∣∣t=t2
t=t1

=

=
n∑

k=1

t2∫

t1

[(pk + ∆pk)∆sk∆ux(s̄k, t) + ∆pk∆u(sk, t)]dt, (15)

where s̄k = sk + θ∆sk, θ ∈ [0, 1].
Applying the Cauchy-Bunyakovskii inequality to the right member of equation

(15), we have

1
2
‖∆u(x, t)‖2

L2(0,l)

∣∣t=t2
t=t1

+ a2 ‖∆ux(x, t)‖2
L2(Ωt)

∣∣t=t2
t=t1

≤

n∑

k=1

(
‖pk‖L2(t1,t2) + ‖∆pk‖L2(t1,t2)

)
max

t1≤t≤t2
|∆sk(t)| ‖∆ux(sk, t)‖L2(t1,t2) +

+ ‖∆pk‖L2(t1,t2) ‖∆u(sk, t)‖L2(t1,t2)

]
. (16)

As function ∆s(t) is the solution of a problem of Cauchy (12), from properties
of function f(s, ϑ, t) as rather small ε = t2 − t1 we have

max
t1≤t≤t2

|∆sk(t)| ≤ C2 ‖∆ϑ‖L2(t1,t2) ,∀k, 1 ≤ k ≤ n,

and besides, it is simple to show that inequalities are true:

‖∆u(sk, t)‖L2(t1,t2) ≤ c3 ‖∆u‖
V 1,0
2 (Ω)

,

‖∆ux(s̄k, t)‖L2(t1,t2) ≤ c4 ‖∆u‖
V 1,0
2 (Ω)

,

where c3 > 0, c4 > 0 are some constants.
But, then we majorize the right hand side inequality (16) from above as follows

1
2
‖∆u(x, t)‖2

L2(0,l)

∣∣t2
t1

+ a2 ‖∆ux(x, t)‖2
L2(ΩT )

∣∣t2
t1
≤ c5

∥∥∆ϑ
∥∥

H
‖∆u‖

V 1,0
2 (Ω)

, (17)

as
∥∥∆ϑ

∥∥
L2(t1,t2)

→ 0,where c5 > 0 is some constant. As well as in work [2, pp.
166-168], for the any t ∈ [0, T ] we will break a segment [0, t] into final number sub-
segments, on each of which the inequality (17) is carried out. Then, having combined
the received inequalities for everyone sub-segments, we have estimation

1
2
‖∆u(x, t)‖2

L2(0,l) + a2 ‖∆ux(x, t)‖2
L2(ΩT ) ≤ C5

∥∥∆ϑ
∥∥

H
‖∆u‖

V 1,0
2 (Ω)

,
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from where the inequality (13) follows. Then ‖∆u‖
V 1,0
2 (Ω)

→ 0 as
∥∥∆ϑ̄

∥∥
H
→ 0.

Hence and from the trace theorem [8,p.161] we get ‖∆u(x, t)‖L2(Ω) → 0 as
∥∥∆ϑ̄

∥∥
H
→

0.
Increment of a functional J0(ϑ̄) representable in a look

J0(ϑ̄ + ∆ϑ̄)− J0(ϑ̄) = 2

l∫

0

T∫

0

[u(x, t)− ũ(x, t)]∆u(x, t)dxdt + ‖∆u(x, t)‖2
L2(Ω) .

Hence and the fact ‖∆u(x, t)‖L2(Ω) → 0 as
∥∥∆ϑ̄

∥∥
H
→ 0, it follows continuity of

the functional J0(ϑ̄).
The functional J0(ϑ̄) from below is bounded and owing to proved is continuous

in V . Besides, H- evenly convex and is reflective Banakh’s space [7]. Then from
Bidou’s theorem provided in work [9], existence of a dense subset K of space H such
follows that for any ω = (p̃(t), ϑ̃(t)) ∈ H as αi > 0, i = 1, 2 a problem (1) - (6) has
the unique solution. The theorem is proved.

3. Necessary conditions of optimality
Let ψ = ψ(x, t)is a solution from V 1,0

2 (Ω) of the conjugated to (1)-(3) problem

ψt + a2ψxx = −2[u(x, t)− ũ(x, t)], (x, t) ∈ Ω, (18)

ψx |x=0 = 0, ψx |x=l = 0, 0 ≤ t < T, (19)

ψ(x, T ) = 0, 0 ≤ x ≤ l, (20)

and qk(t)−is a solution from C [0, T ] of the conjugated to (4) problem

q̇k(t) = −∂fk

∂sk
qk(t) + pk(t)ψx(sk(t), t), 0 ≤ t < T, qk(T ) = 0, k = 1, n. (21)

Integrating in parts identity
∫

Ω

(
ψt + a2ψxx + 2[u(x, t)− ũ(x, t)]

)
η1(x, t)dΩ = 0

the function ψ = ψ(x, t) satisfies the integral identity

l∫

0

T∫

0

[ψη1t + a2ψxη1x]dxdt = 2

l∫

0

T∫

0

[u(x, t)− ũ(x, t)]η1(x, t)dxdt, (22)

for ∀η1 = η1(x, t) ∈ W 1,1
2 (Ω) and η1(x, 0) = 0, function qk(t) satisfies the integral

equation

qk(t) =

T∫

t

[
∂fk

∂sk
qk(τ)− pk(τ)ψx(sk(τ), τ)

]
dτ, 0 ≤ t ≤ T, k = 1, n. (23)

The conjugated problem (9) - (12) is the mixed problem for the linear parabolic
equation. If in relations (9) - (12), instead of a variable t we take a new independent
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variable τ = T − t, we get a boundary value problem of the same type as (1) -
(4). Therefore, it follows from the facts established for problem (1) - (4) that for
each given ϑ = (p(t), ϑ(t)) ∈ V problem (9) - (12) has a unique solution from
(V 1,0

2 (Ω), C [0, T ]).
The function

H(t, s, ψ, q, ϑ) = −
{

n∑

k=1

[−fk(sk(t), ϑ(t), t)qk(t) + ψ(sk(t), t)pk(t)+

α1 (pk(t)− p̃k(t))
2
]

+ α2

r∑

m=1

(
ϑm(t)− ϑ̃m(t)

)2
}

, (24)

is said to be Hamilton-Pontryagin function of problem (1) - (6).
Theorem 2. Let:

1) functions fk(sk, ϑ, t), k = 1, n, be continuous in totality of all its arguments
together with all its partial derivatives wit respect to variables s and ϑ as (s, ϑ, t) ∈
Rn ×Rr × [0, T ];

2) functions fk(sk, ϑ, t), fks =
∂fk(sk, ϑ, t)

∂s
, fkϑ =

∂fk(sk, ϑ, t)
∂ϑ

, k = 1, n , sat-
isfy to Lipshits’s condition on s and ϑ, i.e.

|fk(sk + ∆sk, ϑ + ∆ϑ, t)− fk(sk, ϑ, t)| ≤ L(|∆sk|+ |∆ϑ|),
|fks(sk + ∆sk, ϑ + ∆ϑ, t)− fks(sk, ϑ, t)| ≤ L(|∆sk|+ |∆ϑ|),
|fkϑ(sk + ∆sk, ϑ + ∆ϑ, t)− fkϑ(sk, ϑ, t)| ≤ L(|∆sk|+ |∆ϑ|),

Be fulfilled for all (sk + ∆sk, ϑ + ∆ϑ, t), (sk, ϑ, t) ∈ En × Er × [0, T ], where L =
const ≥ 0.

Then, if (ψ(x, t), q(t))- the solution of the conjugated problem (9) - (12), the
functional (6) is Frechet differentiable and the expression

J ′(ϑ̄) =

(
∂J(ϑ)

∂p
,
∂J(ϑ)

∂ϑ

)
=

(
−∂H

∂p
,−∂H

∂ϑ

)
. (25)

is valid for its gradient.
Proof. Consider the increment of the functional

∆J ≡ J(ϑ̄+∆ϑ̄)−J(ϑ̄) = 2

l∫

0

T∫

0

[u(x, t)−ũ(x, t)]∆u(x, t)dxdt+

l∫

0

T∫

0

|∆u(x, t)|2 dxdt+

+
n∑

k=1



2α1

T∫

0

[pk(t)− p̃k(t)] ∆pk(t)dt + α1

T∫

0

|∆pk(t)|2 dt



+

+
r∑

m=1



2α2

T∫

0

[
ϑm(t)− ϑ̃m(t)

]
·∆ϑm(t)dt + α2

T∫

0

|∆ϑm(t)|2 dt



 (26)
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where ϑ̄ = (p, ϑ) ∈ V, ϑ̄ + ∆ϑ̄ ∈ V, ∆u(x, t) ≡ u(x, t; ϑ̄ + ∆ϑ̄) − u(x, t; ϑ̄), u ≡
u(x, t; ϑ̄).

If in (22) we set η1 = ∆u(x, t), in (14) η = ψ(x, t) and we will subtract the
obtained relations, we have

2

l∫

0

T∫

0

[u(x, t)−ũ(x, t)]∆u(x, t)dxdt =
n∑

k=1

T∫

0

[(pk+∆pk)ψ(sk+∆sk, t)−pkψ(sk, t)]dt.

(27)
It follows from (12) that the function ∆sk(t) satisfies the integral identity:

T∫

0

[
∆sk(t)θ̇k(t) + ∆fk(sk(t), ϑ(t), t)θk(t)

]
dt = 0, (28)

for ∀θk(t) ∈ C [0, T ] , θk(T ) = 0, k = 1, n .
It follows from (21) that the function qk(t) satisfies the integral identity:

T∫

0

[
qk(t)θ̇1k(t)−

(
∂fk

∂sk
qk(t)− pk(t)ψx(sk(t), t)

)
θ1k(t)

]
dt = 0, (29)

for ∀θ1k(t) ∈ C [0, T ] , θ1k(0) = 0, k = 1, n.
In the same way, if in (29) we set θ1k(t) = ∆sk(t), in (28) θk(t) = qk(t) and

summing the obtained relations, we have:

[∆sk(t)qk(t)]
∣∣T
0 =

T∫

0

[(
∂fk

∂sk
qk(t)− pk(t)ψx(sk(t), t)

)
∆sk(t)−∆fkqk(t)

]
dt.

Considering the theorem’s condition, we can represent the function ∆fk =
∆fk(sk(t), ϑ(t), t) in the form

∆fk =
∂fk

∂sk
∆sk +

r∑

m=1

∂fk

∂ϑm
∆ϑm + R1,

where R1 = o
(√

‖∆s‖2
L2(0,T ) + ‖∆ϑ‖2

L2(0,T )

)
. Then from the last equality we have:

[∆sk(t)qk(t)]
∣∣T
0 =

T∫

0

(
∂fk

∂sk
qk(t)− pk(t)ψx(sk(t), t))

)
∆sk(t)−

r∑

m=1

∂fk

∂ϑm
∆ϑm(t)qk(t)− ∂fk

∂sk
∆sk(t)qk(t)

]
dt + R1

on considering (12) and (21) we get

T∫

0

pk(t)ψx(sk(t), t)∆sk(t)dt = −
r∑

m=1

T∫

0

∂fk

∂ϑm
∆ϑm(t)qk(t)dt + R1. (30)
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It is clear that under the assumptions made above, on Taylor’s formula fairly de-
composition:

ψ(sk + ∆sk, t) = ψ(sk, t) + ψx(sk, t)∆sk + o(‖∆sk‖).

Considering this formula in (27), we get

2

l∫

0

T∫

0

[u(x, t)− ũ(x, t)]∆u(x, t)dxdt =
n∑

k=1

T∫

0

[(pk(t)ψx(sk(t), t)∆sk(t)+

+ψ(sk(t), t)∆pk(t) + ψx(sk(t), t)∆pk(t)∆sk(t) + o(‖∆sk‖)]dt.

As relation (30) is fulfilled, from the last equality we have

`∫

0

T∫

0

[u(x, t)− ũ(x, t)]∆u(x, t)dxdt =
n∑

k=1

T∫

0

[
−

r∑

m=1

∂fk

∂ϑm
qk(t)∆ϑm(t)+

+ψ(sk, t)∆pk] dt + R2, (31)

where R2 =
n∑

k=1

T∫
0

[ψx(sk(t), t)∆pk(t)∆sk(t) + o(‖∆sk‖)] dt + R1.

According to the usual scheme (see, for example, [2]) it is possible to prove justice
of an assessment

‖∆s‖C[0,T ] ≤ c5 ‖∆ϑ‖L2(0,T ) , (32)

where c5 > 0 is some constant.
From here we get R2 = o(

∥∥∆ϑ̄
∥∥

H
). On the other hand, it follows from estimation

(13) that
‖∆u(x, t)‖L2(Ω) = O

(∥∥∆ϑ̄
∥∥

H

)
.

Considering these estimations in expressions (26) and (31), we have:

∆J =
n∑

k=1

(
J1(k) +

r∑

m=1

J2(k,m)

)
+ o(

∥∥∆ϑ̄
∥∥

H
),

where

J1(k) =

T∫

0

[ψ(sk(t), t) + 2α1 (pk(t)− p̃k(t))]∆pk(t)dt,

J2(k, m) =

T∫

0

[
−∂fk(sk(t), ϑ(t), t)

∂ϑm
qk(t) + 2α2

(
ϑm(t)− ϑ̃m(t)

)]
∆ϑm(t)dt.

Hence, allowing for expression of Hamilton-Pontryagin function, we get

∆J =
(
−∂H

∂ϑ̄
, ∆ϑ̄

)

H

+ o(
∥∥∆ϑ̄

∥∥
H

),

that shows Frechet differentiability of functional (1) and validity of formula (25).
The theorem is proved.
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Theorem 3. Let all conditions of theorem 2 be fulfilled and (u∗(x, t), s∗(t)),
(ψ∗(x, t), q∗(t)) be solutions of problems (1) - (4) and (18) - (21), re-spectively for
ϑ = ϑ

∗ ∈ V . Then for optimality of the control ϑ
∗ = (p∗(t),ϑ∗(t))the condition

H(t, s∗, ψ∗, q∗, ϑ∗) = max
ϑ∈V

H(t, s∗, ψ∗, q∗, ϑ), ∀(x, t) ∈ Ω. (33)

should be fulfilled.
Proof. Assume that ϑ

∗ = (p∗(t),ϑ*(t)) is an optimal control. Assume the
contrary, i.e. there will be found such control ϑ̃ = ϑ̄

∗ + h∆ϑ̄ ∈ V and the number
β > 0, for which

H(t, s∗, ψ∗, q∗, ϑ̃)−H(t, s∗, ψ∗, q∗, ϑ̄∗) ≥ β > 0, (34)

where h > 0 is some number, ϑ̃ ≡ (p∗ + h∆p, ϑ∗ + h∆ϑ), ∆ϑ = (∆p,∆ϑ).
If in (34) we take into account formula (24), we get

h
(
J ′(ϑ̆), ∆ϑ̄

)
H
≤ −β < 0,

where ϑ̆ = hθ1∆ϑ̄ ≡ hθ1(∆p,∆ϑ) ∈ V, θ1 ∈ (0, 1) are some numbers. Hence and
from the finite increment formula we have:

J(ϑ̃)− J(ϑ̄∗) = h
(
J ′(ϑ̂), ∆ϑ̄

)
H

= h
(
J ′(ϑ̆), ∆ϑ̄

)
H

+ h
(
J ′(ϑ̂)− J ′(ϑ̆), ∆ϑ̄

)
H
≤

≤ −β + h0(
∥∥∆ϑ̄

∥∥
H

), (35)

where ϑ̂ = hθ2∆ϑ̄ ≡ hθ2(∆p,∆ϑ) ∈ V, θ2 ∈ (0, 1)are some numbers.

Let 0 < h1 < h be such a number that −β + h10(
∥∥∆ϑ̄

∥∥
H

) < 0. Assume
≈
ϑ =

ϑ
∗ + h1∆ϑ. Reasoning as in the proof of inequality (35), we get

J(
≈
ϑ)− J(ϑ̄∗) ≤ −β + h10(

∥∥∆ϑ̄
∥∥

H
) < 0

This contradicts optimality of the control ϑ̄
∗. Hence we get validity of relation (33).

The theorem is proved.
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