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MECHANICS
Mahir A. MEHDIYEV

NONLINEAR PARAMETRIC VIBRATIONS OF A

RIDGE CYLINDRICAL SHELL DYNAMICALLY

CONTACTING WITH MEDIUM

Abstract

In the paper, a problem on parametric vibration of a laterally stiffened cylin-
drical shell dynamically contacting with external viscoelastic medium and sit-
uated under the action of internal pressure is solved in a geometric nonlinear
statement by means of the variation principle. Lateral shift of the shell is taken
into account. Influences of environment have been taken into account by means
of the Pasternak model. Dependencies of dynamical stability area on the con-
struction parameters are given on the plane ”load-frequency”.

Introduction. A great number of works including [1-4] have been devoted to the
solution in linear statement of the problem on parametric vibrations of a cylindrical
shell under the action of axial harmonic load. Recently there is a great interest to
nonlinear problem on parametric vibrations of thin-walled constructions, since the
vibration process may be accompanied by their click. A few number of papers have
been devoted to investigation of nonlinear parametric vibrations of shells [5-10].

The monograph [11] deals with nonlinear deformation of cylindrical shells under
the action of different kind dynamical loads.

The results of investigations on parametric excitable vibrations of a compressed
liquid or gas-filled cylindrical shells are cited in [12].

The mongraph [13] deals with the results on investigation of nonstationary in-
teraction of weak shock waves with structiral elements in compressible liquid and
elastic waves with bodies in an elastic medium.

The monographs [14-16] have been devoted to the investigation of stability vi-
bration and optimization of ridge cylindrical shells.

The results of experimental investigation of the influence of strengthening ribs
and adjoined solids on the frequency and form of free vibrations of thin elastic
structurally infomogeneous shells are cited in [17].

Nonlinear vibrations of a strengthened visco-elastic medium-contacting cylin-
drical shell are investigated in [18-24] in geometrical nonlinear statement by using
variational principle.

In the paper, a problem on parametric vibration of a laterally stiffened cylindrical
shell dynamically contacting with external viscoelastic medium and situated under
the action of internal pressure is solved in a geometric nonlinear statement by means
of the variation principle. Lateral shift of the shell is taken into account. Influences
of environment have been taken into account by means of the Pasternak model.
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Dependencies of dynamical stability area on the construction parameters are given
on the plane ”load-frequency”.

Note that similar problem regardless of lateral shift of the shell was investigated
in [21].

Problem statement. On the base of Ostrogradsky-Hamilton variational princi-
ple we get differential motion equations and natural boundary conditions for laterally
stiffened medium-contacting cylindrical shell with regard to lateral shift.

For applying the mentioned principle, we beforehand write the potential and
kinetic energy of the system.

The potential energy of elastic deformation of a cylindrical shell is of the form
[25]:
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The expressions for potential energy of elastic deformation of the j-th lateral rib
are the followings [14]:

Πj =
1
2

y2∫

y1

[
EjFj

(
∂ϑj

∂y
− wj

R

)2

+ EjJxj

(
∂2wj

∂x2
+

wj

R2

)2

+

+EjJzj

(
∂2ui

∂y2
− ϕkpj

R

)2

+ GjJkpj

(
∂ϕkpj

∂y
+

1
R

∂uj

∂y

)2
]

dy. (2)

In expressions (1) and (2), x1, x2, y1, y2 are the coordinates of curvilinear and
linear edges of the shell; Fj , Jzj , Jxj , Jkpj are square and inertia moments of the
cross-section of the j-th lateral bar with respect to the axis Oz, and the axes parallel
to the axis Ox and passing through the gravity center of cross section, and also its
torsional moment of inertia; Ej , Gj are elasticity and shift modules of the material
of the j-th lateral bar.

The potential energy of the shell under the action of external surface and bound-
ary loads applied to the shell is determined as a work done by these loads while shift-
ing the system from deformed state to initial undeformed one, and is represented in
the form
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The potential energies of external boundary loads applied to the end-faces of the
j-th lateral bar, are determined similarlu by the following expressions (it is accepted
that only boundary loads are applied to the ribs):

Aj = − (
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)∣∣y=y2
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(4)

The total potential energy of the system is equal to the sum of potential energy
of elastic deformations of the shell and ribs, and also potential energies of all external
loads:
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Kinetic energies of the shell and ribs are written in the form:
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where t is a temporary coordinate, t1 = ω0t, ω0 =
√

E
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2

, ρ0, ρj are

densities of materials from which the shell and the j-th lateral bar were made.
The kinetic energy of the ridge shell is determined as follows:

K = K0 +
k2∑

j=1

Kj (8)

Intensity of the load acting on the shell as viewed from the visco-elastic filler,
may be written in the following form:

qz = kcw −
t∫

−∞
Γ (t− τ) w (τ) dτ (9)

where Γ is a relaxation kernel, the coefficient kc is determined by the dependence
kc = q1 + q0∇2 (Pasternak’s model) where ∇2 is Laplace’s two-dimensional operator
on the contact surface, w is the shell’s deflection, q0, q1. are the constants.
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The motion equations of a medium-contactiong ridge stiffened shell are obtained
on the base of Ostrogradsky-Hamilton action stationarity principle

δW = 0 (10)

where W =

t′′∫

t′

Ldt is Hamilton’s action L = K −Π is a Lagrange function, t′ and t′′

are the given arbitrary times.
Taking into account that steadiness of radial deflections on the cross-sectional

heights and also equality of corresponding twist angles following form the condition
of rigid connection of ribs with a shell hold, we write the following relations:

uj(y) = u(xj , y) + hjϕ1(xj , y);

ϑj(y) = ϑ(xj , y) + hjϕ2(xj , y);

wj(y) = w(xj , y);

ϕj(y) = ϕ2(xj , y);

ϕkpj(y) = ϕ1(xj , y), (11)

where hj = 0, 5h + H1
j , h is the shell’s thickness; H1

j is the distance from axes of
the j-th lateral bar to the shell’s surface; (xj , y) are the coordinates of conjugation
lines of ribs and shell; ϕj , ϕkpj are the turning and twisting angles of lateral cross
sections of annular ribs.

Allowing for relations (11), we express the displacement of bars by the displace-
ments of the shell. From the stationarity condition (10) we get a system of nonlinear
algebraic equations for the desired unknowns.

Problem solution. Consider nonlinear parametric vibrations of a laterally
stiffened annular cyindrical shell with regard to lateral shift and under the action
of radial load q = q0 + q1 sinω1t, where q0 is the average or main load. q1 is the
modification amplitude of the load, ω1 is the frequency pressure modification of a
visco-elastic medium-filled shell. Assuming that the edges of the shell are hingely-
supported, i.e. for x = 0; l

Nx = 0; Mx = 0; w = 0; ϑ = 0; ψy. (12)

We approximate the unknown quantities as follows:

u = cos
πx

l
sin (mϕ) (u0 cosωt + u1 sinωt) ,

ϑ = sin
πx

l
cos (mϕ) (ϑ0 cosωt + ϑ1 sinωt) ,
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w = sin
πx
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sin (mϕ) (w0 cosωt + w1 sinωt) ,
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where m is the number of waves in peripheral direction, ω is the frequency of vibra-
tions of desired quantities: u, ϑ, w, Nx, Ny, Nxy,Mx,My,Mxy, ψx, ψy, Qx, Qy. Sub-
stitute approximation (13) in functional L and taking into account x1 = 0, x2 =
l, y1 = 0, y2 = 2π, t′ = 0, t′′ =

π

ω
integrate with respect to x, y and t. Then, in-

stead of function (5) we get a function of desired quantities um, ϑm, wm, Nxm, Nym,

Nxym,Mxm,Mym,Mxym, ψxm, ψym, Qxm, Qym. The stationary value of the obtained
function is determined by the following system:
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Numerical analysis of vibrations. Nonlinear system of equations (14) was
solved by the Newton method under the following input data:

E = Ej = 6, 67 · 109 n

m2
; ν = 0, 3; h = 0, 45 mm; R = 160 mm; l = 800 mm;

ρ0 = 7, 8 g/sm3;
q

q0
= 3;

q

E
= 0, 002; Γ (t) = Ae−Ψt (Ψ = 0, 05; A = 0, 1615) ;

k2 = 4; m = 8; hj = 1, 39 mm; Fj = 5, 75 mm2; Jxj = 19, 9 mm4;
Jzj

2πR3h
= 0, 23·10−6;

Jkpj = 0, 48 mm4; τ0 =
q0

Eh3
= 0, 08; τ1 =

q1

Eh3

The dependence of the dynamical stability zone on the construction’s parameters
on the plane ”load-frequency” represented in the form of a curve, are given in the
fugure.

The curve divides the plane into two domains: for the points of one domain the
vibrations are restricted, for another one they are resticted in time. The shaded
lines correspond to vibrations of laterally stiffened cylindrical shell in visco-elastic
medium, the solid one in an elastic medium. It is seen form she picture that for
visco-elastic medium the change point of the typical curve rises over the frequency
axis. According to the calculation results, the discount of lateral shift in the shell
reduces to contraction of stable areas of the shell.
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Fig. Domains of stable and unstable regions of parametric vibrations of a laterally
stiffened shell.
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