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ASYMPTOTICS OF EIGENVALUE DISTRIBUTION
AND TRACE FORMULA OF ONE SINGULAR

Abstract

The spectrum and eigenvalue aysmptotics of boundary problem wvalue for
differential operator equation on semiaxis is studied. Trace formula for operator
associated with this problem is established.

Let H be separable Hilbert space with scalar product (-.-) and norm ||-|| . Consider

in space Lo ((0,00), H) the problem
Iyl = —y"(t) + ty(t) + Ay(t) + a(O)y(t) = Ay(t), (1)
y'(0) + Ay(0) = 0, (2)

where A = A*, A > E, E an identity operator in H, A™' € o,,. Denote eigen-
values and orthonormal eigen-vectors of operator A by v; < v, < ... and ¢, ¥9,...
respectively.

Suppose ¢(t) is weakly measurable, ||q(t)|| < const, ¢*(t) = q(t), Vt € [0, 00) and
the following conditions are held:

1. Z/| t)ew, i) dt < const, Yt € [0, 00);
t( ) = (a(t )('ik’sok) is summable on /(‘”g =0, Vk =1, 00;
0

1

/ Vk =1, 0.

0
Introduce the space Lo = Lo((0,00), H) @ H with scalar product for elements

[e.o]

Y = (y(t),90) € L2, Z=(2(t),20) €La: (Y, 2)L, = /(y(t),z(t))dt+ (0, 20)-
0

Define in Lo operator Ly for case ¢(t) = 0
D(Lo) ={Y € La/lly] € L2(0,00), H), yo = y(0)},

LoY = {i(y),—y/(0)}.

One could show, that Lg is selfadjoint operator in Ls.

Denote operator, corresponding to case q(t) # 0, by L : L = Ly + @ where
Q: QY ={q(t)y(t),0} is bounded selfadjoint operator in L.

In the paper the eigenvalue asymptotics of problem (1), (2) is studied. Also trace
formula for operator L is established.

The asymptotics of eigenvalue distributions of problems for differential operator
equations with parameter dependent boundary conditions are investigated in [1], [2],
[3] and others, in [3], [4] also trace formulas for appropriate operators are established.
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1. The asymptotics of eigenvalues. Begin with studding of the spectrum
operator Ly.
Condition A > FE yields positive-definiteness of Ly in Lo. Let yi(t) = (y(t ) &)

o0
Since the system of vectors {¢,} are basis in H, then ( Z |y ,
k=1
[e.e]
(tE + A)y =S+ ) () (L.1)
k=1

Theorem 1.1. If A~ is compact operator in H, then spectrum of L is dis-
crete.

Proof. Since Ly is positive-definite, by Rellich’s (see [5, p.386) it is enough to
show precompactness of the set of vectors

V ={Y € D(Lo)/(LoY,Y) =

= [ [y @1+ @5 + Aoy, o] ar < 12)
0

in L.

To proof this theorem the following two lemma are usefull.

Lemma 1.1. For any given number € > 0 we can find N = N(e) such that all
Y €V satisfy

00
o0yt < . (1.3)
N
Proof. Consider partition of semiaxis (/V,00) into subintervals € of the same
length Z The mean value theorem yields, there is a point ¢; in each subinterval €2,
such that

/WE+AM@w@ﬁ

(vt y(t) <™
/tdt
Q
Chose a number N = N(e) as large so that for all Q; C (N,00) to hold the
inequality / tdt > 1.

Qp
Hence,

(1.4)

@ = el <2 [ 16O, ®) + @+ Doyl de (15)

Qp

(1.4) and (1.5) yield

[P a < [+ ap.oes
Q Qp
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+5 [0/ 0) + (5 + 0, 5(0)] ar. (16)
Q
Summing (1.6) over all £ and using Y € V' we get /(y(t),ty(y))dt < &, which
N

proves the lemma.
Lemma 1.2. If given any € > 0 there is R = R(e), such that

N
[ 3 mras 3 o <= (1.7)
0 k=R+1 k=R+1
Proof. For Y € V,
N N
1 1
[ > il — [eayo.va < —. (1.8)
S k=Rt TR 5 TR
On the other hand
> mOF = > [y <
k=R+1 k=R+17)
1 1
0o 0 2 0o 0 2 9
<2 > [opwra) 2 S [wmere) < a9
k=R+1 k=R+1 TR
Since YR — 0o, whenever R — oo, then Ve > 0, 4R, —— < e.

VIR

The last relation with (1.8) and (1.9) proves the assertion of lemma.

Denote by Er(N) the set of all vector functions Y = {91, ..-,YRr}, where y; =
{yr(t),yx(0)} (¢t < N). Define the functions yy(t) as yi(t) = 0 for ¢ > N. The
lemma 1.1. and 1.2. yield, that the set Er(N) is e—net in Lo for V. Since |yx(0)] <
const, (k =1, R) and one could apply criteria of precompactness to y(t) in Ly(0, N)
([6], p- 291), then Er(N) is precompact in L. That is why, V' also precompact,
which completes the proof of discreteness of spectrum of L.

From the following relations for resolvents of operators Ly and L

RA(L) = Rx(Lo) — Rx(Lo)QRA(L),

where @) is bounded operator, we get discreteness of psectrum of L. Denote eigen-
values of operators Ly and L by A; < A < ... and py < pg < ..., respectively.
Now turn to study of eigenvalue asymptotics of operator Lg.
Suppose 7v;, ~ ak®, k — 00, a >0, a > 0. By virtue of spectral expansion of A
we get the following problem for coefficients yi(t) = (y(¢), ©1)

—yi (t) + ty(t) +veue(t) = Aye(t)  t € (0,00) (1.10)

Y1 (0) + Ay (0) = 0. (1.11)
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The solution of problem (1.10), (1.11) from L9(0,00) in case t + v > A is
0(t. ) = Vi { S - i
But in case t + v, < A one could write it as function of real argument like
W, \) = %MX
} . (1.13)

X {Jé (g()\—'yk—t>g}+<] {(g(A—'yk—t)
F— {J; @(A—w)g I @(A—wk)g} T

To satisfy (1.11) it is necessary and sufficient to hold
R 2 : 2 :

njw

W=

[ V][V

3

at last for one v, (A # v4). Therefore, the spectrum of Ly consists of those real
A # v, which satisfy equation (1.14) at last for one k.
Denote z = /A — ;. Then equation on becomes like

2 {Jg <§z3) —J2 (223) } +
+(z% + ) {Jé (;z?’> +J_1 <§z3> } =0. (1.15)

Find the asymptotics of those solutions of equation (1.14) which greater than
vy, other words real roots of (1.15).
In virtue of (7], p. 973) the asymptotics

Jo(z) = \/Zcos (z—%—%) <1+0<i>>,

for large |z|, we get the following equation equivalent to (1.15)

4.3 _ 7
cos<3z 2>+O<1>—0,
2 z
from which

1
9r  3m™m 1 3T 3 11 1
_ 37T — )= (22 - — . 1.1
z 8—1-72 -I-O(m) <2m) +4m§+0<mg) (1.16)

Find the asymptotics of eigenvalues of Ly, which are less that v,. These eigen-
values corresponds to imaginary roots of (1.15). Taking /A — vy, = iy(y > 0) we

get
, 2. 4 2. 4
w1 (5 - ()
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+ (v —9%) {Jé (—iigﬁ) +J_ <—§iy3>} = 0. (1.17)

By using relations ([7], p. 981)
2J ()0 (2) = 2Jy-1(2), (1.18)
20 (t) — vy (2) = —2Jp11(2), (1.19)

in (1.17), we get the following equivalent equation

and

1
92+y—7k+0<yg> =0,

[T 1
Y Tk 49
. 1 1
A=+ (@) ~ it - 5 (1.21)

We come to the following assertion.
Lemma 1.3. Figenvalues of Lo form two sequences

1 1
)\kN\/'Yk"i‘Z_i; )\m,k:’m*‘z%m

where z, = clm% + O ( 12> .
m3

Obviously, beginning with some large K (1.15) has one imaginary root, and for
k < K the number of imaginary roots (if they exist) is finite.

Denote the imaginary roots of (1.15) by z, r, where m = My, 00, and the real
ro0ts Ty, k, where m = My, oo ( after some sufficiently large k My = 1).

It is easy to prove the following two lemmas, which we will use later.

Lemma 1.4. Equation (1.15) has no complex roots with exception imaginary
T001S.

For large |z| consider the rectangular contour [ with vectors at points Ay +iB,

4/3TN 15
where B > 2,5, (m = 0, M}, —1). For every fixed k take Ay = Y % + ?ﬂ

According to (1.16) Axy—1 < xnx < Ay for great N.
Lemma 1.5.
Denote by N (A, Lo) the distribution function of Lo

N\ Lo)= Y =N+ Ny,
Ae(Lo)<A

and

Thus,

where Ni(A) = Z 1, Na(A) = Z 1. Since v, ~ ak®, a > 0, a > 0, then
A <A Am7k<A

Mo ~ /A ~ constk?. So, Ny(\) ~ cola .
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No(N) is the number of pairs of positive whole number (m,k) for which holds
a2 e <A
In virtue of lemma 1.3. for large m

(c— e)mg < xfnk <(ec— a)m%

Also from asymptotics 7, we have (a — €)k® < v, < (a+€)k® (¢ < 0 is quite
small). So, according to lemmas 1.4. and 1.5.

Nz () = 0(1) < No(3) < N3(A) = O(1),
where NJ(A) is the number of positive whole pairs (m, k) satisfying
(c— s)m% + (a—e)k® <A,
and NJ(A) the number of pairs (m, k) satisfying~
(a —e)k* + (¢ — s)m% <A

Then, by the same way as in ([8], lemma 2) we get the following lemma.
Lemma 1.6. If v, ~ ak®,(a > 0,a > 0) then pu, ~ A, ~ dn® where

2 c 02
o 2
2+ 3a’ "3

2
= & S 2 (1.22)
2’ “73
1 2
- a=2
’ 3

2. Trace formula.
The following lemma is valid.

2
Lemma 2.1. Let the conditions of lemma 1.6. be hold. Then for a > 3’ there

is subsequence {n.,} of natural numbers, such that

o

)\k—)\nng(k%—n%>, k=nm, o+ 1.

2
Proof. According to lemma 1.6. for o > 3

A
lim —= =d,
n—oon72
which yields, that lim [ wx,, — 571% = oo. That is why one could chose such a
n—oo

subsequences that nqy < ng < ... < ngy,..., for all k > n,,

S
1+

Hp — 5”5 > M — 5”72ﬂ7
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or d

The lemma is proved.

Nm
Call lim Z(Mn — A\n) regularized trace of operator L. As it will be shown below
n—oo
n=1

this limit independent of choice sequence {n,,} satisfying the hypothesis of lemma
2.1.

Let Ry(A) and R(\) be resolvents of operators Lo and L. From (1.22) it is clear
that, they are trace class operators for a > 2.

In virtue of lemma 2.1. for a > 2 the following assertion is valid.

Lemma 2.2. If ||q(t)|| < const on interval [0,00), and the conditions of lemma
1.6 hold. Then for a > 2 the following relation is true

Bim > (1, = An = (Qt0,)) = 0
n=1

The proof of this lemma is analogous to proofs of lemma 2 and theorem 2 form
[9], so we don’t derive it here.
The eigen-vectors of Lg in Lo are

s = {0t 20, 1) ¥(0, 20, 1 )0k | -

Calculate their norms. We have

= /wz(tvxgn,k)dt +¢2(07$$n,k)'
0

Let 22 = a2 and 22 = % in equation —y}/(t) + tyx(t) = 2%yk(t). So, appropri-
ate solutions are 9 (t, ), ¥(t, 5%). Multiplying the first of considered equations by
Y(t, %) and the second one by ¥ (t,a?) and subtracting the second one form the
first one, we get

0/ it 02, h(t, B2)dt =

(2.1)

Going to limit as o — § we obtain

7w2 t,6%)dt = ?4 < L < ﬂ3> +J 1 <§53>)2 (1+W> . (22)
0
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So ) w222 9 9 2
me,kHLQ = T <J§ <3 ?qu) +J_% <3 %k)) X

X (at%%k +1+ (a:?mk + 'yk)Q) ) (2.2))

So orthonormal eigen-vectors of operator Lg are

\/5(1#(963,1,;@7 )Pk w(l’?n,ka 0)¢r) .
o (73 (3) + 74 (32s)) Y b1+ (s 0)’

Lemma 2.3. If operator-valued function q(t) satisfies condition 1 and o > 2,
then

wm,k =

Qk(t)¢2(33(2),k7 t)dt

) ok (‘]1 ( xo’f) +Jg ( mgk» (mg”“+1+ <$g”“+7k)2>

where x are imaginary, Tm g,k = 1,00, m = My, 00 are real roots of equation
(1.15).

Proof. Consider the first series in (2.3). Let € > 0 is sufficiently small number.
Take t € (O,xfmk—xfmk) then z = a2 mk —tE (22 To s T i) At € (22, £ T

0} U(0, x5 ;) and ﬁnally, fort € (a:mk +7, x+00)

dt < oo,

mk

'y Ym,k

2
xm’k+xfn’k), we have z € ( L5 ko

we will have z € (—o0, —a7, ;). Therefore, since for z € (22 k> T )

2 3 2 3\ e ivE
2 /
w(xm7kat) = x%%k —t <J§ (3 x%n,k —t )) + J*% <3 xfﬂ,k’ —t > ~ P

then



Transactions of NAS of Azerbaijan 17
[Asymptotics of eigenvalue distribution ...

—xf

m m,k 6_2\/33
/ —Z ¢2( )dZ+ / (I]g(x,?.mk—Z)TdZ <
00 _xfn,k %)
< [la@ldz+ [ la@di-2w@lds [n@le e
0 o5k 0
For ¢ — 0, we get
_Ifn,k 1
lin%) / ‘qk( — ) (2 )| dz| = /}qk(x — 2)?(z )| dz| <
xfmk 1

1 1
¢ / ar(2)] d= < / gu(2)) dz. (2.5)
] 1

In virtue of asymptotics @,  ~ em3 with (2.4) and (2.5) and condition 1) we obtain

o0
2
k=l m=0;, "% xm, J1 % ilk)—kJ_% (%xf’nk» ($3n,k+1+( k+’Yk> )

(o) o0 1
< Z / g |dt — < 0.
k=1 0 m= Mk m3

Convergence of the second series in (2.3) follows from the following asymptotics
at large k (zo ) = ty,y > 0)

V(a1 il

92 92 2 2R
ENENE)

and from condition 1.

The lemma is proved.

Prove the following theorem by usin lemma 2.3.

Theorem 2.1. Let the conditions of lemma 1.6. be held. If operator valued
function q(t) satisfies conditions 1-3, then

Y~V Nak%,a > 2

Nm

Jim Y (A — p,) =0,

n=1

Proof. According to lemma 2.1

Nm,
A, > O
n—
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2
h=tm=lp g <J1 <3$§nk> +J1 (%xgnk)) ( 1t < pt ’Yk)
(2.6)

Calculate the first series in (2.6).

Denote

N 202
3 w (1’ k;at)
H=2. = =

7 et (0 () - (3) (s 1+ (e )')

Show the m-th term of the sum Ty (t) as a residue at point x,, j of some function
of complex variable z having poles at points g, ..., TN k-
Consider the following function

6u(2%,1)?

CE ="y

where

sl G NG () o

Denote the factor in brackets in (2.8) by F(z). The function G(z) has simple

c.o\»—A

poles at points x,, ; and at zeros of function J1 < > J_ 1 <z > . Zeros of latter
3

one denote by a;y,.

Find the residue at x,, . By virtue of recurrent formulas (1.18) and (1.19) we
have

So, from the latter relations by virtue of (1.15) we get

2 2
Fams) = 2omalad+ 1+ @200 (93 () + 0y (5ate) ).
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According to (2,2") F'(zm,x) # 0 since 1, , is nontrivial solution of problem at
q(t) =0, i.e. . is a simple pole.
Hence,

2(,.2
resG(z) = i (xm’k’t)

S 2 2 2 '
T wa, [Jé (fi’n,k>“; (3mkﬂ (22,4 (T 70+ 1)

3

Now calculate residue at «,,. It is easy to show that, zeros of function

2 2
J1 (3x3) + J_% (33:3) are real and simple.
Since

3
2 2 ! 2 2
(5 (5) s (52 |2 (s (o) = () ) -
1 2 3 2 3 _ 2 2 3 2 3

i 397 (a7, 1) _
2 2 2
m=0r2a4, (J2 <3a§n> —J_2 <3a§n>>
al 3¢%(ag, t)
_ Z ; ; 5 _
=0 w2 ) [Jl <3x73nk> —J1 <3 i k>] (@5 + (@ +70)% +1)
_ 1 / G(2)d +1/G( )d (2.9)
T 2mi DT o . '
|z|=r,0<p<m l

where [ is a rectangular contour with vertices at £+ Ay + iB, + AN which by passes
point Z,, ; and «a;, along semicircles below real axis, and x,,, and —a,, above it.
For sufficiently large N

IN-1k < AN <INk, N < AN < ON41-

Since G(z) is an odd function, then integral along lower part of [ equals to zero.
As r — 0 G(z) is equivalent to

o0 (37) o2 ()

24 =1+ 22+ 1)(22+v,)] (22 +1)
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Since
2 2
J1 <3\/—t3> + ‘]f% <3\/—t3> N*‘/Es,t € (0, 00),
then
lin% qx(t) / G(z)dzdt = 0.
0 |z|=r,0<p<m

At B =CApy,C > 0 and great NV on segment with vertices at Ay and Ay +iB by
) 3 3
virtue of asymptotics J_1(z)+J1(z) ~ e %, <\/ 2?2 — t) ~ 23— 5 fort >0and N —
3 3

oo, we have
An+iB B
Nt 3A2 v—v —7tv —2 AN
N dv e 2
2)dz ~ i =0|— | —0.
€3 v—o3 2+A2 Apnt
0

AN
Att=0, N >0

An+iB

/ G(z dZN/d—InAN_l_\/iANzconst.
[ 42, + v? AN
[ele} An—+iB

So, /qk(t) / G(z)dzdt — 0 when N — oco. On the upper side of rectangle (on
0 AN
the segment with vertices £Ay + ¢B) for t > 0

—AN+iB —

3 B—B3*~3tB 1, e~ 5 CAN
G(z du=0———2AN — 0
o3u?B—B? V/B2+A%, V2AN

An+iB AN

when N — oco. Obviously, at ¢ = 0 the considered integral is bounded. So,

/qk(t)dt ~ / G(z)dzdt — 0
0 AN+iB

when N — oo.
On the left side of rectangle in virtue of condition 2, we have
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Therefore
s N 2/ 2
3Y-(ay,,t)dt
ngnoo/q’“(t) 2 2¢ el 2 2~
0 m=1 r2ad <J2 (a%) —J 2 <a$n>>
3\3 3\ 3
= lgn /q’f(t)Zﬁx
OOO m=1
2/ 9
xZ .t
x V1) : (2.10)

i V(o 1) : (2.11)

2 2 2
m=1 4 A3 _ A3
o (7 (3o) ~ -1 (3o

For this deal chose a function of complex variable with poles at «,, so that the
resides at poles are equal to the terms of this series. By taking z instead of zero in
(2.6) one could show, that

7w2<t,62>dt =Ty [{Jé (G -at) vy (-t }2 .

+{J§ (z(ﬁQ—w) >—J_§ (§(ﬂ2_x)%>}2]. (2.12)

Denote 32 — x = f(z,) and the right hand side of (2.12) by F(f(z,3)). We
have F), = —F}, Fg = F} - 26 = —F, - 2. F}, = —*(x, 8%).

(SIS

Fj =284 (z, 5%). (2.13)

Using these relations we get that the function

9(z) = W <”(z) =J <223) T (323»

have poles of second order at a, which equal to terms of series (2.11).
So,

resg(z) = lim ((z—am)2 F(f(f”’z))>':

esg(z) = lim, ()
o Flfa.2) _
o zgglm <(Z m) OémU/(Oém)2(Z - am)2 + Cm(z - Odm)4> N

= lim ((z—am)2

Z—Qim,

F(f(z,2)) ) Pl

amV (am)? + em(z — am) amv! (am)? -
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= 2 2 2.
4 a3 ) = Zad
2ag, <J§ <3am> J—% <3am>>

Take as contour of integration the considered above contour [, which by passes
point «,, below it and points «,, 0 above them.
First consider the part of contour with vertices at Ay and Ay + B :

[e's) AN—l—iB [e'e) AN
/qk(t) / g(z)dzdtw/qk(t)/eS“’A?\;dvdt:
0 An 0 0
s tAN 3
2A
:/qk(t) A3,€ 23 Nt (2.14)
—35t 3t
0
From condition 2
o0
t
/ q’“t( Addt =0
0
According to conditions 3
o
/ tht)‘A%[e 2tAth_
0
N 3
N t 3 (3tay)” | (3tAn)® | (BeAn)! b=
0 L StAN S+ g o
o0 o0 5
t 1 t t
</ q’“t)’ =2 / w®| gy o, (2.15)
(§tAN) AN t
0 41 0

On the side with vertices +Ay + B of contour we have

) An+iB [e%e] AN
/qk(t) / g(z)dzdt ~ /qk(t) / e_%tANA‘?Vdudt:
0 —An+iB 0 —An
3
= / 2k (t) Ake 214N dt, (2.16)
0
t t
/2qk(t)A§Ve—3tAth < CZ"S/ q’;g)’dt—m. (2.17)
N
0 0
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By condition 3 %ir%qk(t) = 0. So, in the similar way as in (2.15), (2.16) we
obtain convergence to zero of the integral along the left side of contour when N —
oo. Consequently,

A}im g(z)dz =0, (2.18)
0o X 202
3 / Y7 (a,, t)qk(t)dt — lim [ g(z)dz = 0. (2.19)
2 2 N—oo
m=1 0 a%@ <J§ (30[%) — Jﬁ% (30[%))

From (2.10), (2.19) we obtain that the sum of the first series in (2.6) equals zero.
It is possible to show analogously that the sum of the second series is also zero.
The theorem is proved.
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