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ASYMPTOTICS OF EIGENVALUE DISTRIBUTION
AND TRACE FORMULA OF ONE SINGULAR

Abstract

The spectrum and eigenvalue aysmptotics of boundary problem value for
differential operator equation on semiaxis is studied. Trace formula for operator
associated with this problem is established.

Let H be separable Hilbert space with scalar product (···) and norm ‖·‖ . Consider
in space L2 ((0,∞) ,H) the problem

l[y] ≡ −y′′(t) + ty(t) + Ay(t) + q(t)y(t) = λy(t), (1)

y′(0) + λy(0) = 0, (2)

where A = A∗, A > E, E an identity operator in H, A−1 ∈ σ∞. Denote eigen-
values and orthonormal eigen-vectors of operator A by γ1 ≤ γ2 ≤ ... and ϕ1, ϕ2,...
respectively.

Suppose q(t) is weakly measurable, ‖q(t)‖ < const, q∗(t) = q(t), ∀t ∈ [0,∞) and
the following conditions are held:

1.
∞∑

k=1

∞∫

0

|(q(t)ϕk, ϕk)| dt < const, ∀t ∈ [0,∞);

2.
qk(t)

t
≡ (q(t)ϕk, ϕk)

t
is summable on (0,∞),

∞∫

0

qk(t)
t

dt = 0, ∀k = 1,∞;

3.

1∫

0

qk(t)
t5

< ∞, ∀k = 1,∞.

Introduce the space L2 = L2((0,∞),H) ⊕ H with scalar product for elements

Y = (y(t), y0) ∈ L2, Z = (z(t), z0) ∈ L2 : (Y, Z)L2 =

∞∫

0

(y(t), z(t))dt + (y0, z0).

Define in L2 operator L0 for case q(t) ≡ 0

D(L0) = {Y ∈ L2/l[y] ∈ L2(0,∞),H), y0 = y(0)} ,

L0Y =
{
l(y),−y′(0)

}
.

One could show, that L0 is selfadjoint operator in L2.
Denote operator, corresponding to case q(t) 6= 0, by L : L = L0 + Q where

Q : QY = {q(t)y(t), 0} is bounded selfadjoint operator in L2.
In the paper the eigenvalue asymptotics of problem (1), (2) is studied. Also trace

formula for operator L is established.
The asymptotics of eigenvalue distributions of problems for differential operator

equations with parameter dependent boundary conditions are investigated in [1], [2],
[3] and others, in [3], [4] also trace formulas for appropriate operators are established.
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1. The asymptotics of eigenvalues. Begin with studding of the spectrum
operator L0.

Condition A > E yields positive-definiteness of L0 in L2. Let yk(t) = (y(t), ϕk).

Since the system of vectors {ϕk} are basis in H, then (y(t), y(t)) =
∞∑

k=1

|yk(t)|2 ,

((tE + A)y(t), y(t)) =
∞∑

k=1

(t + γk) |yk(t)|2 . (1.1)

Theorem 1.1. If A−1 is compact operator in H, then spectrum of L0 is dis-
crete.

Proof. Since L0 is positive-definite, by Rellich’s (see [5, p.386) it is enough to
show precompactness of the set of vectors

V = {Y ∈ D(L0)/(L0Y, Y ) =

=

∞∫

0

[∥∥y′(t)
∥∥2 + ((tE + A)y(t), y(t))

]
dt ≤ 1



 (1.2)

in L2.
To proof this theorem the following two lemma are usefull.
Lemma 1.1. For any given number ε > 0 we can find N = N(ε) such that all

Y ∈ V satisfy
∞∫

N

(y(t), y(t))dt < ∞. (1.3)

Proof. Consider partition of semiaxis (N,∞) into subintervals Ωk of the same
length

ε

4
. The mean value theorem yields, there is a point tk in each subinterval Ωk,

such that

(y(tk), y(tk)) ≤

∫

Ωk

((tE + A)y(t), y(t)dt

∫

Ωk

tdt

. (1.4)

Chose a number N = N(ε) as large so that for all Ωk ⊂ (N,∞) to hold the

inequality
∫

Ωk

tdt > 1.

Hence,
∣∣∣‖y(t)‖2 − ‖y(tk)‖2

∣∣∣ ≤ 2
∫

Ωk

[
(y′(t), y′(t)) + ((tE + A)y(t), y(t))

]
dt. (1.5)

(1.4) and (1.5) yield
∫

Ωk

‖y(t)‖2 dt <
ε

4

∫

Ωk

((tE + A)y(t), y(t))dt+
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+
ε

2

∫

Ωk

[
(y′(t), y′(t)) + ((tE + A)y(t), y(t))

]
dt. (1.6)

Summing (1.6) over all k and using Y ∈ V we get

∞∫

N

(y(t), ty(y))dt < ε, which

proves the lemma.
Lemma 1.2. If given any ε > 0 there is R = R(ε), such that

N∫

0

∞∑

k=R+1

|yk(t)|2 dt +
∞∑

k=R+1

|yk(0)|2 < ε. (1.7)

Proof. For Y ∈ V,

N∫

0

∞∑

k=R+1

|yk(t)|2 dt ≤ 1
γR

N∫

0

(Ay(t), y(t))dt ≤ 1√
γR

. (1.8)

On the other hand

∞∑

k=R+1

|yk(0)|2 =
∞∑

k=R+1

∞∫

0

(y2
k(t))

′dt ≤

≤ 2




∞∑

k=R+1

∞∫

0

(y′k(t))
2dt




1
2

2




∞∑

k=R+1

∞∫

0

(yk(t))2dt




1
2

≤ 2√
γR

. (1.9)

Since γR →∞, whenever R →∞, then ∀ε > o, ∃R,
2√
γR

< ε.

The last relation with (1.8) and (1.9) proves the assertion of lemma.
Denote by ER(N) the set of all vector functions Ỹ = {ỹ1, ..., ỹR}, where ỹk =

{yk(t), yk(0)} (t ≤ N). Define the functions yk(t) as yk(t) = 0 for t > N . The
lemma 1.1. and 1.2. yield, that the set ER(N) is ε−net in L2 for V . Since |yk(0)| ≤
const, (k = 1, R) and one could apply criteria of precompactness to yk(t) in L2(0, N)
([6], p. 291), then ER(N) is precompact in L2. That is why, V also precompact,
which completes the proof of discreteness of spectrum of L0.

From the following relations for resolvents of operators L0 and L

Rλ(L) = Rλ(L0)−Rλ(L0)QRλ(L),

where Q is bounded operator, we get discreteness of psectrum of L. Denote eigen-
values of operators L0 and L by λ1 ≤ λ2 ≤ ... and µ1 ≤ µ2 ≤ ...., respectively.

Now turn to study of eigenvalue asymptotics of operator L0.
Suppose γk ∼ akα, k →∞, a > 0, α > 0. By virtue of spectral expansion of A

we get the following problem for coefficients yk(t) = (y(t), ϕk)

−y′′k(t) + tyk(t) + γkyk(t) = λyk(t) t ∈ (0,∞) (1.10)

y′k(0) + λyk(0) = 0. (1.11)



12
[N.M.Aslanova,Kh.M.Aslanov]

Transactions of NAS of Azerbaijan

The solution of problem (1.10), (1.11) from L2(0,∞) in case t + γk > λ is

ψ(t, λ) =
√

t + γk − λK 1
3

{
2
3
(t + γk − λ)

3
2

}
.

But in case t + γk < λ one could write it as function of real argument like

ψ(t, λ) =
π√
3

√
λ− t− γk×

×
{

J 1
3

(
2
3
(λ− γk − t

) 3
2

}
+ J− 1

3

{(
2
3
(λ− γk − t

) 3
2

}
. (1.13)

To satisfy (1.11) it is necessary and sufficient to hold

(λ− γk)

{
J 2

3

(
2
3
(λ− γk

) 3
2

− J− 2
3

(
2
3
(λ− γk

) 3
2

}
+

+λ
√

λ− γk

{
J 1

3

(
2
3
(λ− γk

) 3
2

− J− 1
3

(
2
3
(λ− γk

) 3
2

}
= 0 (1.14)

at last for one γk(λ 6= γk). Therefore, the spectrum of L0 consists of those real
λ 6= γk, which satisfy equation (1.14) at last for one k.

Denote z =
√

λ− γk. Then equation on becomes like

z

{
J 2

3

(
2
3
z3

)
− J− 2

3

(
2
3
z3

)}
+

+(z2 + γk)
{

J 1
3

(
2
3
z3

)
+ J− 1

3

(
2
3
z3

)}
= 0. (1.15)

Find the asymptotics of those solutions of equation (1.14) which greater than
γk, other words real roots of (1.15).

In virtue of ([7], p. 973) the asymptotics

Jv(z) =

√
2
πz

cos
(
z − vπ

2
− π

4

)(
1 + O

(
1
z

))
,

for large |z|, we get the following equation equivalent to (1.15)

cos

(
4
3z3 − π

2

2

)
+ O

(
1
z

)
= 0,

from which

z = 3

√
9π

8
+

3πm

2
+ O

(
1
m

)
=

(
3π

2
m

) 1
3

+
1
4

1

m
2
3

+ O

(
1

m
5
3

)
. (1.16)

Find the asymptotics of eigenvalues of L0, which are less that γk. These eigen-
values corresponds to imaginary roots of (1.15). Taking

√
λ− γk = iy(y > 0) we

get

iy

{
J 2

3

(
−2

3
iy3

)
− J− 2

3

(
−2

3
iy3

)}
+
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+
(
γk − y2

){
J 1

3

(
−2

3
iy3

)
+ J− 1

3

(
−2

3
iy3

)}
= 0. (1.17)

By using relations ([7], p. 981)

zJ ′v(z)vJv(z) = zJv−1(z), (1.18)

zJ ′v(t)− vJv(z) = −zJv+1(z), (1.19)

and

J 2
3

(
−2

3
iy3

)
− J− 2

3

(
−2

3
iy3

)
∼ e−

2
3
iy3

√
3

π

(
1− 1

2y3

)
(1.20)

in (1.17), we get the following equivalent equation

y2 + y − γk + O

(
1
y3

)
= 0,

and

y ∼
√

γk +
1
4
− 1

2
.

Thus,

λ = γk + (iy)2 ∼
√

γk +
1
4
− 1

2
. (1.21)

We come to the following assertion.
Lemma 1.3. Eigenvalues of L0 form two sequences

λk ∼
√

γk +
1
4
− 1

2
; λm,k = γk + z2

m,

where zm = c1m
1
3 + O

(
1

m
2
3

)
.

Obviously, beginning with some large K (1.15) has one imaginary root, and for
k ≤ K the number of imaginary roots (if they exist) is finite.

Denote the imaginary roots of (1.15) by xm,k, where m = Mk,∞, and the real
roots xm,k, where m = Mk,∞ ( after some sufficiently large k Mk = 1).

It is easy to prove the following two lemmas, which we will use later.
Lemma 1.4. Equation (1.15) has no complex roots with exception imaginary

roots.
For large |z| consider the rectangular contour l with vectors at points ±AN ± iB,

where B > xm,k, (m = 0, Mk − 1). For every fixed k take AN = 3

√
3πN

2
+

15π
8

.

According to (1.16) AN−1 < xN,k < AN for great N .
Lemma 1.5.
Denote by N(λ,L0) the distribution function of L0

N(λ,L0) =
∑

λk(L0)<λ

= N1(λ) + N2(λ),

where N1(λ) =
∑

λk<λ

1, N2(λ) =
∑

λm,k<λ

1. Since γk ∼ akα, a > 0, α > 0, then

λk ∼ √
γk ∼ constk

α
2 . So, N1(λ) ∼ c2λ

2
α .
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N2(λ) is the number of pairs of positive whole number (m, k) for which holds
x2

m,k + γk ≤ λ.
In virtue of lemma 1.3. for large m

(c− ε)m
2
3 ≤ x2

m,k ≤ (c− ε)m
2
3 .

Also from asymptotics γk we have (a − ε)kα < γk < (a + ε)kα (ε < 0 is quite
small). So, according to lemmas 1.4. and 1.5.

N
′′
2 (λ)−O(1) < N2(λ) < N ′

2(λ)−O(1),

where N ′
2(λ) is the number of positive whole pairs (m, k) satisfying

(c− ε)m
2
3 + (a− ε)kα < λ,

and N ′′
2 (λ) the number of pairs (m, k) satisfying∼

(a− ε)kα + (c− ε)m
2
3 < λ.

Then, by the same way as in ([8], lemma 2) we get the following lemma.
Lemma 1.6. If γk ∼ akα,(a > 0, α > 0) then µn ∼ λn ∼ dnβ where

β =





2α

2 + 3α
, α ∈

(
0,

2
3

)

α

2
, α >

2
3

1
3
, α =

2
3

(1.22)

2. Trace formula.
The following lemma is valid.

Lemma 2.1. Let the conditions of lemma 1.6. be hold. Then for α >
2
3
, there

is subsequence {nm} of natural numbers, such that

λk − λnm ≥ d

2

(
k

α
2 − n

α
2
m

)
, k = nm, nm + 1, ...

Proof. According to lemma 1.6. for α >
2
3

lim
n→∞

λn

n
α
2

= d,

which yields, that lim
n→∞

(
µn −

d

2
n

α
2

)
= ∞. That is why one could chose such a

subsequences that n1 < n2 < ... < nm..., for all k ≥ nm

µn −
d

2
n

α
2 ≥ µnm

− d

2
n

α
2
m,
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or
µk − µnm

≥ d

2

(
k

α
2 − n

α
2
m

)
.

The lemma is proved.

Call lim
n→∞

nm∑

n=1

(µn−λn) regularized trace of operator L. As it will be shown below

this limit independent of choice sequence {nm} satisfying the hypothesis of lemma
2.1.

Let R0(λ) and R(λ) be resolvents of operators L0 and L. From (1.22) it is clear
that, they are trace class operators for α > 2.

In virtue of lemma 2.1. for α > 2 the following assertion is valid.
Lemma 2.2. If ‖q(t)‖ < const on interval [0,∞), and the conditions of lemma

1.6 hold. Then for α > 2 the following relation is true

lim
m→∞

nm∑

n=1

(µn − λn − (Qψn, ψn)) = 0.

The proof of this lemma is analogous to proofs of lemma 2 and theorem 2 form
[9], so we don’t derive it here.

The eigen-vectors of L0 in L2 are

ψm,k =
{
ψ(t, x2

m,k)ϕk, ψ(0, x2
m,k)ϕk

}
.

Calculate their norms. We have

∥∥ψm,k

∥∥ =

∞∫

0

ψ2(t, x2
m,k)dt + ψ2(0, x2

m,k).

Let z2 = α2 and z2 = β2 in equation −y′′k(t) + tyk(t) = z2yk(t). So, appropri-
ate solutions are ψ(t, α2), ψ(t, β2). Multiplying the first of considered equations by
ψ(t, β2) and the second one by ψ(t, α2) and subtracting the second one form the
first one, we get

∞∫

0

ψ(t, α2), ψ(t, β2)dt =

=
π2

3
αβ


α

{
J 2

3

(
2
3α3

)− J− 2
3

(
2
3α3

)}{
J 1

3

(
2
3β3

)
+ J− 1

3

(
2
3β3

)}

α2 − β2 −

−
β

{
J 1

3

(
2
3α3

)
+ J− 1

3

(
2
3α3

)}{
J 2

3

(
2
3β3

)− J− 2
3

(
2
3β3

)}

α2 − β2


 . (2.1)

Going to limit as α → β we obtain

∞∫

0

ψ2(t, β2)dt =
π2β4

3

(
J 1

3

(
2
3
β3

)
+ J− 1

3

(
2
3
β3

))2
(

1 +

(
β2 + γk

)2

β2

)
. (2.2)
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So
∥∥ψm,k

∥∥2

L2
=

π2x2
m,k

3

(
J 1

3

(
2
3
x3

m,k

)
+ J− 1

3

(
2
3
x3

m,k

))2

×

×
(
x2

m,k + 1 +
(
x2

m,k + γk

)2
)

. (2.2′)

So orthonormal eigen-vectors of operator L0 are

ψm,k =

√
3(ψ(x2

m,k, t)ϕk, ψ(x2
m,k, 0)ϕk)

πxm,k

(
J 1

3

(
2
3x3

m,k

)
+ J− 1

3

(
2
3x3

m,k

)) √
x2

m,k + 1 +
(
x2

m,k + γk

)2
.

Lemma 2.3. If operator-valued function q(t) satisfies condition 1 and α > 2,
then

3
π2

∞∑

k=1

∞∑

m=Mk

∞∫

0

×

×

∣∣∣∣∣∣∣∣

qk(t)ψ2(x2
m,k, t)

x2
m,k

(
J 1

3

(
2
3x3

m,k

)
+ J− 1

3

(
2
3x3

m,k

)) (
x2

m,k + 1 +
(
x2

m,k + γk

)2
)

∣∣∣∣∣∣∣∣
dt+

+
3
π2

∞∑

k=K

∞∫

0

×

×

∣∣∣∣∣∣∣∣

qk(t)ψ2(x2
0,k, t)dt

x2
0,k

(
J 1

3

(
2
3x3

0,k

)
+ J− 1

3

(
2
3x3

0,k

))(
x2

0,k + 1 +
(
x2

0,k + γk

)2
)

∣∣∣∣∣∣∣∣
dt < ∞,

where x0,k are imaginary, xm,k, k = 1,∞, m = Mk,∞ are real roots of equation
(1.15).

Proof. Consider the first series in (2.3). Let ε > 0 is sufficiently small number.
Take t ∈ (0, x2

m,k − xε
m,k), then z = x2

m,k − t ∈ (x2
m,k, x

ε
m,k). At t ∈ (x2

m,k − xε
m,k ·

x2
m,k +xε

m,k), we have z ∈
(
−xε

m,k, 0
]
∪(0, xε

m,k) and finally, for t ∈ (x2
m,k +xε

m,k +∞)

we will have z ∈ (−∞,−xε
m,k). Therefore, since for z ∈ (x2

m,k, x
ε
m,k)

ψ(x2
m,k, t) =

√
x2

m,k − t

(
J 1

3

(
2
3

√
x2

m,k − t
3
))

+ J− 1
3

(
2
3

√
x2

m,k − t
3
)
∼ e−i

√
z
3

z
,

and for

z ∈ (−∞,−xε
m,k)ψ(x2

m,k, t) =
√

t− x2
m,kK 1

3

(
2
3
(t− x2

m,k)
3
2

)
∼ e−

√−z
3

−z
,

then ∣∣∣∣∣∣

∞∫

0

qk(t)ψ(x2
m,k, t)dt

∣∣∣∣∣∣
∼

∣∣∣∣∣∣∣∣

xε
m,k∫

x2
m,k

e−2i
√−z

3

z2
qk(x2

m,k − z)dz+
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+

−xε
m,k∫

xε
m,k

qk(x2
m,k − z)ψ2(z)dz +

−xε
m,k∫

−∞
qk(x2

m,k − z)
e−2

√−z
3

z2
dz

∣∣∣∣∣∣∣
<

<

∞∫

0

|qk(z)| dz +

−xε
m,k∫

xε
m,k

∣∣qk(x2
m,k − z)ψ2(z)

∣∣ dz +

∞∫

0

|qk(z)| dz. (2.4)

For ε → 0, we get

lim
ε→0

∣∣∣∣∣∣∣

−xε
m,k∫

xε
m,k

∣∣qk(x2
m,k − z)ψ2(z)

∣∣ dz

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

1∫

−1

∣∣qk(x2
m,k − z)ψ2(z)

∣∣ dz

∣∣∣∣∣∣
<

< c

1∫

−1

|qk(z)| dz < c

1∫

−1

|qk(z)| dz. (2.5)

In virtue of asymptotics xm,k ∼ cm
1
3 with (2.4) and (2.5) and condition 1) we obtain

∞∑

k=1

∞∑

m=Mk

3
π

∞∫

0

∣∣∣∣∣∣∣∣

qk(t)ψ2(x2
m,k, t)dt

x2
m,k

(
J 1

3

(
2
3x3

m,k

)
+ J− 1

3

(
2
3x3

m,k

)) (
x2

m,k + 1 +
(
x2

m,k + γk

)2
)

∣∣∣∣∣∣∣∣
<

<

∞∑

k=1

∞∫

0

|qk(t)| dt

∞∑

m=Mk

1

m
4
3

< ∞.

Convergence of the second series in (2.3) follows from the following asymptotics
at large k (x0,k = iy, y > 0)

ψ2(x2
0,kt)(

J 1
3

(
2
3
x3

0,k

)
+ J− 1

3

(
2
3
x3

0,k

))2 ∼
e−2

√
−y2+t

3

e−2y3(y2+t)
, y ∼ √

γk ∼ ak
α
2 , α > 2,

and from condition 1.
The lemma is proved.
Prove the following theorem by usin lemma 2.3.
Theorem 2.1. Let the conditions of lemma 1.6. be held. If operator valued

function q(t) satisfies conditions 1-3, then

lim
m→∞

nm∑

n=1

(λn − µn) = 0.

Proof. According to lemma 2.1

lim
m→∞

nm∑

n=1

(λn − µn) =
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=
∞∑

k=K

∞∑

m=0

∞∫

0

3
π

qk(t)ψ2(x2
m,k, t)dt

x2
m,k

(
J 1

3

(
2
3x3

m,k

)
+ J− 1

3

(
2
3x3

m,k

)) (
x2

m,k + 1 +
(
x2

m,k + γk

)2
)+

+
∞∑

k=1

∞∑

m=1

∞∫

0

3
π

qk(t)ψ2(x2
m,k, t)dt

x2
m,k

(
J 1

3

(
2
3x3

m,k

)
+ J− 1

3

(
2
3x3

m,k

))(
x2

m,k + 1 +
(
x2

m,k + γk

)2
) .

(2.6)
Calculate the first series in (2.6).
Denote

TN (t) =
N∑

m=0

3
π2

ψ2(x2
m,k, t)

x2
m,k

(
J 1

3

(
2
3x3

m,k

)
+ J− 1

3

(
2
3x3

m,k

)) (
x2

m,k + 1 +
(
x2

m,k + γk

)2
) .

Show the m-th term of the sum TN (t) as a residue at point xm,k of some function
of complex variable z having poles at points x0,k, ..., xN,k.

Consider the following function

G(z) =
6ψ(z2, t)2

f(z)
, (2.7)

where

f(z) = π2z

[
z

(
J 2

3

(
2
3
z2

)
− J− 2

3

(
2
3
z2

))
+

+(z2 + γk)
(

J 1
3

(
2
3
z3

)
+ J− 1

3

(
2
3
z3

))] (
J 1

3

(
2
3
z3

)
+ J− 1

3

(
2
3
z3

))
. (2.8)

Denote the factor in brackets in (2.8) by F (z). The function G(z) has simple

poles at points xm,k and at zeros of function J 1
3

(
2
3
z3

)
+J− 1

3

(
2
3
z3

)
. Zeros of latter

one denote by αm.
Find the residue at xm,k. By virtue of recurrent formulas (1.18) and (1.19) we

have

J ′2
3

(
2
3
z3

)
= 2z2

[
− 1

z3
J 2

3

(
2
3
z3

)
+ J− 1

3

(
2
3
z3

)]
,

J ′− 2
3

(
2
3
z3

)
= 2z2

[
− 1

z3
J− 2

3

(
2
3
z3

)
− J 1

3

(
2
3
z3

)]
,

J ′1
3

(
2
3
z3

)
= 2z2

[
J− 2

3

(
2
3
z3

)
− 1

2z3
J 1

3

(
2
3
z3

)]
,

J ′− 1
3

(
2
3
z3

)
= 2z2

[
−J 2

3

(
2
3
z3

)
− 1

2z3
J− 1

3

(
2
3
z3

)]
.

So, from the latter relations by virtue of (1.15) we get

F ′(xm,k) = 2xm,k(x2
m,k + 1 + (x2

m,k + γk))
(

J 1
3

(
2
3
x3

m,k

)
+ J− 1

3

(
2
3
x3

m,k

))
.
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According to (2,2’) F ′(xm,k) 6= 0 since ψm,k is nontrivial solution of problem at
q(t) ≡ 0, i.e. xm,k is a simple pole.

Hence,

resG(z)
z=xm,k

=
3ψ2(x2

m,k, t)

π2x2
m,k

[
J 1

3

(
2
3
x3

m,k

)
+ J− 1

3

(
2
3
x3

m,k

)]2

(x2
m,k + (x2

m,k + γk)2 + 1)
.

Now calculate residue at αm. It is easy to show that, zeros of function

J 1
3

(
2
3
x3

)
+ J− 1

3

(
2
3
x3

)
are real and simple.

Since
(

J 1
3

(
2
3
z3

)
+ J− 1

3

(
2
3
z3

))′∣∣∣∣ = 2α2
m

(
J− 2

3

(
2
3
α3

m

)
− J 2

3

(
2
3
α3

m

))
−

− 1
2α3

m

(
J− 1

3

(
2
3
α3

m

)
+ J 1

3

(
2
3
α3

m

))
= −2α2

m

(
J 2

3

(
2
3
α3

m

)
− J− 2

3

(
2
3
α3

m

))
,

then

resG(z)
z=αm

= − 3ψ2(α2
m, t)

π2α4
m

(
J 2

3

(
2
3
α3

m

)
− J− 2

3

(
2
3
α3

m

))2 .

Thus, we get that

N∑

m=0

3ψ2(α2
m, t)

π2α4
m

(
J 2

3

(
2
3
α3

m

)
− J− 2

3

(
2
3
α3

m

))2−

−
N∑

m=0

3ψ2(α2
m, t)

π2x2
m,k

[
J 1

3

(
2
3
x3

m,k

)
− J− 1

3

(
2
3
x3

m,k

)]2

(x2
m,k + (x2

m,k + γk)2 + 1)
=

=
1

2πi

∫

|z|=r,0<ϕ<π

G(z)dz +
1

2πi

∫

l

G(z)dz, (2.9)

where l is a rectangular contour with vertices at ±AN + iB,±AN which by passes
point xm,k and αm along semicircles below real axis, and xm,k and −αm above it.
For sufficiently large N

xN−1,k < AN < xN,k, αN < AN < αN+1.

Since G(z) is an odd function, then integral along lower part of l equals to zero.
As r → 0 G(z) is equivalent to

zt

(
J 1

3

(
2
3
√−t

3
)

+ J− 1
3

(
2
3
√−t

3
))2

[z4 − 1 + (z2 + 1)(z2 + γk)] (z2 + 1)
.
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Since

J 1
3

(
2
3
√−t

3
)

+ J− 1
3

(
2
3
√−t

3
)
∼−

√
t
3

, t ∈ (0,∞),

then

lim
r→0

∞∫

0

qk(t)
∫

|z|=r,0<ϕ<π

G(z)dzdt = 0.

At B = CAN , C > 0 and great N on segment with vertices at AN and AN +iB by

virtue of asymptotics J− 1
3
(z)+J 1

3
(z) ∼ e−iz,

(√
z2 − t

)3
∼ z3− 3

2
for t > 0 and N →

∞, we have

AN+iB∫

AN

G(z)dz ∼ i

B∫

0

e3A2
Nv−v3− 3

2
tvdv

e3A2
Nv−v3

√
v2+A2

N

= O

(
e−

3
2
AN

AN t

)
→ 0.

At t = 0, N →∞
AN+iB∫

AN

G(z)dz ∼
AN∫

0

dv√
A2

N + v2
= In

AN +
√

2AN

AN
= const.

So,

∞∫

0

qk(t)

AN+iB∫

AN

G(z)dzdt → 0 when N → ∞. On the upper side of rectangle (on

the segment with vertices ±AN + iB) for t > 0

−AN+iB∫

AN+iB

G(z)dz ∼
−AN∫

AN

e3u2B−B3− 3
2
tBdv

e3u2B−B2
√

B2+A2
N

du = O
e−

3t
2

CAN

√
2AN

2AN → 0

when N →∞. Obviously, at t = 0 the considered integral is bounded. So,

∞∫

0

qk(t)dt ∼
−AN+iB∫

AN+iB

G(z)dzdt → 0

when N →∞.
On the left side of rectangle in virtue of condition 2, we have

∞∫

0

qk(t)

−AN∫

−AN+iB

G(z)dzdt ∼

∼ i

∞∫

0

qk(t)

AN∫

0

e−
3
2
tv

√
A2

N + v2
dvdt =

∞∫

0

2qk(t)
3t

dtO

(
1

AN

)
= 0.
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Therefore

lim
N→∞

∞∫

0

qk(t)
N∑

m=1

3ψ2(α2
m, t)dt

π2α4
m

(
J 2

3

(
2
3
α3

m

)
− J− 2

3

(
2
3
α2

m

))2 =

= lim
N→∞

∞∫

0

qk(t)
N∑

m=1

3
π2
×

× ψ2(x2
m,k, t)

x2
m,k(x

2
m,k + 1 + (x2

m,k + γk)2
[
J 1

3

(
2
3
x3

m,k

)
+ J− 1

3

(
2
3
x3

m,k

)]2 . (2.10)

Find ∞∑

m=1

ψ2(α2
m, t)

α4
m

(
J 2

3

(
2
3
α3

m

)
− J− 2

3

(
2
3
α3

m

))2 . (2.11)

For this deal chose a function of complex variable with poles at αm, so that the
resides at poles are equal to the terms of this series. By taking x instead of zero in
(2.6) one could show, that

∞∫

x

ψ2(t, β2)dt =
π2

3
(β2 − x)2

[{
J 1

3

(
2
3
(β2 − x)

3
2

)
+ J− 1

3

(
2
3
(β2 − x)

3
2

)}2

+

+
{

J 2
3

(
2
3
(β2 − x)

3
2

)
− J− 2

3

(
2
3
(β2 − x)

3
2

)}2
]

. (2.12)

Denote β2 − x = f(x, β) and the right hand side of (2.12) by F (f(x, β)). We
have F ′

x = −F ′
f , Fβ = F ′

f · 2β = −F ′
x · 2β. F ′

x = −ψ2(x, β2).

F ′
β = 2βψ2(x, β2). (2.13)

Using these relations we get that the function

g(z) =
F (f(x, z)
zv2(z)

,

(
v(z) = J 1

3

(
2
3
z3

)
+ J− 1

3

(
2
3
z3

))

have poles of second order at αm which equal to terms of series (2.11).
So,

resg(z)
z=αm

= lim
z→αm

(
(z − αm)2

F (f(x, z))
zv2(z)

)′
=

= lim
z→αm

(
(z − αm)2

F (f(x, z))
αmv′(αm)2(z − αm)2 + cm(z − αm)4

)
=

= lim
z→αm

(
(z − αm)2

F (f(x, z))
αmv′(αm)2 + cm(z − αm)2

)
=

F ′
z=αm

αmv′(αm)2
=
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=
2αmψ2(x, α2

m)

4α5
m

(
J 2

3

(
2
3
α3

m

)
− J− 2

3

(
2
3
α3

m

))2 =

=
ψ2(x, α2

m)

2α4
m

(
J 2

3

(
2
3
α3

m

)
− J− 2

3

(
2
3
α3

m

))2 .

Take as contour of integration the considered above contour l, which by passes
point αm below it and points αm, 0 above them.

First consider the part of contour with vertices at AN and AN + iB :

∞∫

0

qk(t)

AN+iB∫

An

g(z)dzdt ∼
∞∫

0

qk(t)

AN∫

0

e−
3
2
ivA3

Ndvdt =

=

∞∫

0

qk(t)

[
A3

N

e−
3
2
tAN

−3
2 t

+
2A3

N

3t

]
dt. (2.14)

From condition 2 ∞∫

0

qk(t)
t

A3
Ndt = 0.

According to conditions 3

∞∫

0

∣∣∣∣
qk(t)

t

∣∣∣∣ A3
Ne−

3
2
tAN dt =

=

∞∫

0

∣∣∣∣
qk(t)

t

∣∣∣∣
A3

N

1 +
3
2
tAN

( 3
2
tAN)2

2! + ( 3
2
tAN)3

2! + ( 3
2
tAN)4

2! + ...

dt <

<

∞∫

0

∣∣∣∣
qk(t)

t

∣∣∣∣
1

( 3
2
tAN)4

4!

dt =
const

AN

∞∫

0

∣∣∣∣
qk(t)5

t

∣∣∣∣ dt → 0. (2.15)

On the side with vertices ±AN + iB of contour we have

∞∫

0

qk(t)

AN+iB∫

−AN+iB

g(z)dzdt ∼
∞∫

0

qk(t)

AN∫

−AN

e−
3
2
tAN A3

Ndudt =

=

∞∫

0

2qk(t)A4
Ne−

3
2
tAN dt, (2.16)

∣∣∣∣∣∣

∞∫

0

2qk(t)A4
Ne−

3
2
tAN dt

∣∣∣∣∣∣
<

const

AN

∞∫

0

∣∣∣∣
qk(t)
t5

∣∣∣∣ dt → 0. (2.17)
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By condition 3 lim
t→0

qk(t) = 0. So, in the similar way as in (2.15), (2.16) we
obtain convergence to zero of the integral along the left side of contour when N →
∞. Consequently,

lim
N→∞

∫
g(z)dz = 0, (2.18)

∞∑

m=1

∞∫

0

ψ2(α2
m, t)qk(t)dt

α4
m

(
J 2

3

(
2
3
α3

m

)
− J− 2

3

(
2
3
α3

m

)) = lim
N→∞

∫
g(z)dz = 0. (2.19)

From (2.10), (2.19) we obtain that the sum of the first series in (2.6) equals zero.
It is possible to show analogously that the sum of the second series is also zero.

The theorem is proved.
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