Ahmad H. JAMSHIDIPOUR, Hidayat M. HUSEYNOV

SOLUTION OF THE INVERSE SCATTERING PROBLEM FOR THE STURM-LIOUVILLE EQUATION WITH A SPECTRAL PARAMETER IN DISCONTINUITY CONDITION

Abstract

In the paper, a total solution of the inverse scattering problem is given for Sturm-Liouville equation with a spectral parameter in the discontinuity condition in the absenese of a discrete spectrum.

It is known that the inverse scattering problem for the differential equation

$$
\begin{equation*}
-y^{\prime \prime}-\lambda p(x) y+q(x) y=\lambda^{2} y, \quad-\infty<x<\infty \tag{1}
\end{equation*}
$$

where $p(x)$ and $q(x)$ are real functions, $p(x)$ is absolutely continuous, and $p(x)$, $p^{\prime}(x), q(x)$ rather rapidly decrease as $|\lambda| \rightarrow \infty$, was investigated in the papers [1]-[3]. In the case $p(x) \equiv 0$, under the condition

$$
\begin{equation*}
\int_{-\infty}^{\infty}(1+|x|)|q(x)| d x<\infty \tag{2}
\end{equation*}
$$

the papers [4]-[6] deal with the solution of the inverse scattering problem.
In the present paper, we consider the inverse scattering problem for equation (1), when $p(x)=\beta \delta(x-a)$, where β is a real number, $\delta(x-a)$ is a Dirac function, and condition (2) is fulfilled. In this case, equation (1) may be reduced to the problem ([7])

$$
\begin{gather*}
-y^{\prime \prime}+q(x) y=\lambda^{2} y, \quad-\infty<x<\infty \tag{3}\\
y(a+0)=y(a-0) \tag{4}\\
y^{\prime}(a+0)-y^{\prime}(a-0)=\lambda \beta y(a) \tag{5}
\end{gather*}
$$

As is known [8], problem (3)-(5) for all λ from the half-plane $\operatorname{Im} \lambda \geq 0$ has the solutions $e^{+}(x, \lambda), e^{-}(x, \lambda)$ representable in the form

$$
\begin{equation*}
e^{ \pm}(x, \lambda)=e_{0}^{ \pm}(x, \lambda) \pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) e^{ \pm i \lambda t} d t \tag{6}
\end{equation*}
$$

moreover, the kernels $K^{ \pm}(x, t)$ satisfy the inequalities

$$
\begin{gather*}
\left|K^{ \pm}(x, t)\right| \leq \frac{C}{2} \sigma^{ \pm}\left(\frac{x+t}{2}\right) e^{C \sigma_{1 \pm}(x)}, \quad 0<|x-a|< \pm(t-a) \tag{7}\\
\left|K^{ \pm}(x, t)\right| \leq\left\{\frac{C}{2} \sigma^{ \pm}\left(\frac{x+t}{2}\right)+\frac{|\beta|}{4} \sigma^{ \pm}\left(\frac{x+2 a-t}{2}\right)\right\} e^{C \sigma_{1}^{ \pm}(x)},|t-a|< \pm(a-x)
\end{gather*}
$$

[A.H.Jamshidipour,H.M.Huseynov]
where $C=1+\frac{|\beta|}{2}, \sigma^{ \pm}(x)= \pm \int_{x}^{ \pm \infty}|q(\xi)| d \xi, \sigma_{1}^{ \pm}(x)= \pm \int_{x}^{ \pm \infty} \sigma^{ \pm}(\xi) d \xi$.
Furthermore, the functions $K^{ \pm}(x, t)$ are continuous for $t \neq 2 a-x, \quad x \neq a$, and the following relations are fulfilled:

$$
\begin{gather*}
K^{ \pm}(x, t)= \pm \frac{1}{2} \int_{x}^{ \pm \infty} q(\xi) d \xi, \quad \pm x> \pm a, \\
K^{ \pm}(x, x)= \pm \frac{1}{2}\left(1+\frac{i \beta}{2}\right) \int_{x}^{ \pm \infty} q(\xi) d \xi, \quad \pm x< \pm a, \tag{8}\\
K^{ \pm}(x, 2 a-x+0)-K^{ \pm}(x, 2 a-x-0)= \\
=\mp \frac{i \beta}{2}\left\{\int_{x}^{a} q(\xi) d \xi-\int_{x}^{ \pm \infty} q(\xi) d \xi\right\}, \quad \pm x< \pm a .
\end{gather*}
$$

In formulae $(6)_{ \pm}$, the functions $e_{0}^{ \pm}(x, \lambda)$ are the Jost solutions of problem (3)-(5) for $q(x) \equiv 0$:

$$
e_{0}^{ \pm}(x, \lambda)=\left\{\begin{array}{lc}
e^{ \pm i \lambda x}, & \pm x> \pm a \\
\left(1+\frac{i \beta}{2}\right) e^{ \pm i \lambda x}-\frac{i \beta}{2} e^{ \pm i \lambda(2 a-x)}, & \pm x< \pm a
\end{array}\right.
$$

For $\lambda \in R /\{0\}$ the following relations hold:

$$
\begin{equation*}
\frac{1}{a(\lambda)} e^{ \pm}(x, \lambda)=r^{\mp}(\lambda) e^{\mp}(x, \lambda)+\overline{e^{\mp}(x, \lambda)}, \tag{9}
\end{equation*}
$$

where

$$
\begin{gathered}
r^{-}(\lambda)=\frac{b(\lambda)}{a(\lambda)}, r^{+}(\lambda)=-\frac{\overline{b(\lambda)}}{a(\lambda)} \\
a(\lambda)=\frac{1}{2 i \lambda} W\left[e^{+}(x, \lambda), e^{-}(x, \lambda)\right], \quad b(\lambda)=-\frac{1}{2 i \lambda} W\left[e^{+}(x, \lambda), \overline{e^{-}(x, \lambda)}\right]
\end{gathered}
$$

$W\left[y_{1}, y_{2}\right]=y_{1}^{\prime} y_{2}-y_{1}^{\prime} y_{2}^{\prime}$ is the wronskian of the functions y_{1} and y_{2}.
The functions $r^{-}(\lambda), r^{+}(\lambda)$ and $\frac{1}{a(\lambda)}$ are called left and right reflection factor and passage factor, respectively. The function $a(\lambda)$ admits analytic continuation to the half-plane $\operatorname{Im} \lambda>0$ and may have there at most finite number of zeros. In future, we'll assume that the zeros also are absent, i.e.

$$
\begin{equation*}
a(\lambda) \neq 0 \quad \text { for } \quad \operatorname{Im} \lambda>0 \tag{10}
\end{equation*}
$$

and consequently, the discrete spectrum of problem (3)-(5) is absent.
In this case, the inverse scattering problem for problem (3)-(5) is in renewal of the function $q(x)$ by the left or right reflection factor and finding necessary and sufficient conditions to which should satisfy an arbitrarily taken function $r(\lambda)$ for it to be the right (left) reflection factor of some problem of the form (3)-(5) with a real coefficient satisfying condition (2).

In the following theorem we give the solution of the inverse scattering problem.
[Solution of the inverse scattering problem]
Theorem. For the function $r^{+}(\lambda),-\infty<\lambda<\infty$ to be the right reflection factor of the problem of the form (3)-(5), without a discrete spectrum, with a real potential $q(x)$ satisfying inequality (2) and with a real number β, it is necessary and sufficient that the following conditions to be fulfilled:

1) for real $\lambda \neq 0$, the function $r^{+}(\lambda)$ is continuous,

$$
\left|r^{+}(\lambda)\right| \leq 1-c \lambda^{2}\left(1+2^{2}\right)^{-1} \quad \text { and } r^{+}(\lambda)-r_{0}^{+}(\lambda)=O\left(\frac{1}{\lambda}\right) \text { as } \lambda \rightarrow \pm \infty
$$

where

$$
r_{0}^{+}(\lambda)=-\frac{i \beta}{2+i \beta} e^{-2 i \lambda a} ;
$$

2) the function $z a(z)$, where

$$
a(z)=\left(1+\frac{i \beta}{2}\right) e^{-\frac{1}{2 \pi i} \int_{-\infty}^{ \pm \infty \ln \frac{1-\left|r^{+}(\lambda)\right|^{2}}{\lambda-z}} d \lambda}
$$

is continuous in the closed upper half-plane, and

$$
\lim _{\lambda \rightarrow 0} \lambda a(\lambda)\left[r^{+}(\lambda)+1\right]=0 ;
$$

3) the functions

$$
R^{ \pm}(x)=\frac{1}{2 \pi} \int_{-\infty}^{ \pm \infty}\left[r^{ \pm}(\lambda)-r_{0}^{ \pm}(\lambda)\right] e^{ \pm i \lambda x} d \lambda
$$

where $r^{-}(\lambda)=\overline{-r^{+}(\lambda)} \cdot \frac{\bar{a}(\lambda)}{a(\lambda)}$, are absolutely continuous on any segment not containing the point $2 a$, the derivatives ${R^{+^{\prime}}}^{(} \lambda)$ and ${R^{-}}^{\prime}(\lambda)$ for all $\alpha>-\infty$ and $a^{\prime}<\infty$ satisfy the inequality

$$
\int_{\alpha}^{\infty}(1+|x|)\left|R^{+^{\prime}}(x)\right| d x<\infty, \quad \int_{-\infty}^{\alpha^{\prime}}(1+|x|)\left|R^{-^{\prime}}(x)\right| d x<\infty
$$

4) the solutions $K^{ \pm}(x, y)$ of the equations

$$
\begin{align*}
& R_{1}^{ \pm}(x, y)+\overline{K^{ \pm}(x, y)} \mp \frac{i \beta}{2+i \beta} K^{ \pm}(x, 2 a-y) \pm \\
& \quad \pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) R^{ \pm}(t+y) d t=0, \quad \pm y> \pm x \tag{11}
\end{align*}
$$

where

$$
R_{1}^{ \pm}(x, y)=\left\{\begin{array}{lc}
R^{ \pm}(x, y), & \pm x> \pm a \\
\left(1+\frac{i \beta}{2}\right) R^{ \pm}(x+y)-\frac{i \beta}{2} R^{ \pm}(2 a-x+y), & \pm x< \pm a
\end{array},\right.
$$

[A.H.Jamshidipour,H.M.Huseynov]

satisfy the conditions

$$
\left.K^{ \pm}(x, x)\right|_{a \mp 0}=\left.\left(1+\frac{i \beta}{2}\right) K^{ \pm}(x+y)\right|_{a \neq 0} .
$$

Proof. Necessity follows from the results of the papers [8]-[9]. Give the proof of sufficiency.

1. From conditions 1), 3) of the theorem it follows that the main equations $(11)_{+}$and (11) $)_{-}$constructed by the function $r^{+}(\lambda)$, according to the paper [10] have unique solutions $K^{+}(x, y)$ and $K^{-}(x, y)$. In the expanded form the main equation $(11)_{ \pm}$looks as follows:

$$
\begin{align*}
& R^{ \pm}(x+y)+\overline{K^{ \pm}(x, y)} \pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) R^{ \pm}(t+y) d t=0, \pm x> \pm a, \pm y> \pm x \\
& \left(1+\frac{i \beta}{2}\right) R^{ \pm}(x+y)-\frac{i \beta}{2} R^{ \pm}(2 a-x+y)+\overline{K^{ \pm}(x, y)} \pm \\
& \quad \pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) R^{ \pm}(t+y) d t=0, \pm x< \pm a, \pm y> \pm(2 a-x) . \tag{13}\\
& \left(1+\frac{i \beta}{2}\right) R^{ \pm}(x+y)-\frac{i \beta}{2} R^{ \pm}(2 a-x+y)+\overline{K^{ \pm}(x, y)} \mp \frac{i \beta}{2+i \beta} K^{ \pm}(x, 2 a-y) \pm \\
& \quad \pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) R^{ \pm}(t+y) d t=0, \pm x< \pm a, \pm x<y< \pm(2 a-x) . \tag{14}
\end{align*}
$$

Assuming $y=2 a-x \mp 0$ and $y=2 a-x \pm 0$ in main equations (14) $)_{ \pm}$and (13) \pm, respectively, we have

$$
\begin{gathered}
\left(1+\frac{i \beta}{2}\right) R^{ \pm}(2 a \mp 0)-\frac{i \beta}{2} R^{ \pm}(4 a-2 x \mp 0)+\overline{K^{ \pm}(x, 2 a-x \mp 0)} \mp \\
\mp \frac{i \beta}{2+i \beta} K^{ \pm}(x, x \pm 0) \pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) R^{ \pm}(t+2 a-x \mp 0) d t=0, \pm x< \pm a, \\
\left(1+\frac{i \beta}{2}\right) R^{ \pm}(2 a \pm 0)-\frac{i \beta}{2} R^{ \pm}(4 a-2 x \pm 0)+\overline{K^{ \pm}(x, 2 a-x \pm 0)} \pm \\
\pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) R^{ \pm}(t+2 a-x \pm 0) d t=0, \pm x< \pm a .
\end{gathered}
$$

We subtract the second relation from the first one. As a result we get :

$$
\begin{gathered}
\left(1+\frac{i \beta}{2}\right)\left[R^{ \pm}(2 a \mp 0)-R^{ \pm}(2 a \pm 0)\right]+ \\
+\overline{K^{ \pm}(x, 2 a-x \mp 0)-K^{ \pm}(x, 2 a-x \pm 0) \mp}
\end{gathered}
$$

[Solution of the inverse scattering problem]

$$
\mp \frac{i \beta}{2+i \beta} K^{ \pm}(x, x \pm 0), \pm x< \pm a .
$$

Now assume (see (8) $)_{ \pm}$)

$$
q^{ \pm}(x)=\left\{\begin{array}{c}
\mp \frac{4}{2+i \beta} \frac{d K^{ \pm(x, x)}}{d x}= \tag{15}\\
= \pm \frac{4}{i \beta} \frac{d}{d x}\left[\frac{K^{ \pm}(x, 2 a-x+0)-K^{ \pm}(x, 2 a-x-0)}{}\right], \\
\pm x< \pm a, \quad \mp 2 \frac{d K^{ \pm(x, x)}}{d x}, \quad \pm x> \pm a .
\end{array}\right.
$$

2. Show that the functions $e^{+}(x, \lambda), e^{-}(x, \lambda)$ constructed with the help of $K^{+}(x, t), K^{-}(x, t)$ by formula (6) ${ }_{+}$and (6) - satisfy the equations

$$
\begin{equation*}
-e^{ \pm^{\prime \prime}}(x, \lambda)+q^{ \pm}(x) e^{ \pm}(x, \lambda)=\lambda^{2} e^{ \pm}(x, \lambda) \tag{16}
\end{equation*}
$$

and conditions

$$
\begin{gather*}
a^{ \pm}(a+0, \lambda)=e^{ \pm}(a-0, \lambda), \tag{17}\\
e^{ \pm^{\prime}}(a+0, \lambda)-e^{ \pm^{\prime}}(a-0, \lambda)=\lambda \beta e^{ \pm}(a, \lambda), \tag{18}
\end{gather*}
$$

moreover

$$
\begin{equation*}
\int_{x^{\prime}}^{\infty}(1+|x|)\left|q^{+}(x)\right| d x<\infty, \quad \int_{-\infty}^{x^{\prime \prime}}(1+|x|)\left|q^{-}(x)\right| d x<\infty \tag{19}
\end{equation*}
$$

At first suppose that the functions $R^{ \pm}(x)$ are twice continuously differentiable, and for all $\alpha^{\prime}>-\infty, \beta^{\prime}<+\infty$

$$
\begin{equation*}
\int_{\alpha^{\prime}}^{\infty}(1+|x|)\left|R^{+^{\prime \prime}}(x)\right| d x<+\infty, \quad \int_{-\infty}^{\beta^{\prime}}(1+|x|)\left|R^{-^{\prime \prime}}(x)\right| d x<\infty . \tag{20}
\end{equation*}
$$

Then the solutions $K^{ \pm}(x, y)$ of main equations $(11)_{ \pm}$are twice continuously differentiable for $y \neq 2 a-x$ and $x \neq a$, and for each x all partial derivatives of first and second order are summable over y.

Consider the domain $\pm x< \pm a, \pm x< \pm y< \pm(2 a-x)$. Then the main equations $(11)_{ \pm}$take the form of $(14)_{ \pm}$. Differentiating these equations twice with respect to y and integrating by parts, we get

$$
\begin{aligned}
& \left(1+\frac{i \beta}{2}\right)+R^{ \pm^{\prime \prime}}(x+y)-\frac{i \beta}{2} R^{ \pm^{\prime \prime}}(2 a-x+y)+\overline{K_{y y}^{ \pm^{\prime \prime}}(x, y)} \mp \frac{i \beta}{2+i \beta} K_{y y}^{ \pm^{\prime \prime}}(x, 2 a-y) \mp \\
& \left.\mp K^{ \pm}(x, x) R^{ \pm^{\prime}}(x+y) \mp K^{ \pm}(x, t)\right|_{t=2 a-x-0} ^{2 a-x+0} \cdot R^{ \pm^{\prime}}(2 a-x+y) \pm\left. K_{t}^{ \pm^{\prime}}(x, t)\right|_{t=x} \times \\
& \times R^{ \pm}(x+y) \pm\left. K_{t}^{ \pm^{\prime}}(x, t)\right|_{t=2 a-x-0} ^{2 a-x+0} R^{ \pm}(2 a-x+y) \pm \int_{x}^{ \pm \infty} K_{t t}^{ \pm^{\prime \prime}}(x, t) R^{ \pm}(t+y)=0 .
\end{aligned}
$$

Further, differentiating equation $(14)_{ \pm}$twice respect to x, we have

$$
\left(1+\frac{i \beta}{2}\right) R^{ \pm^{\prime \prime}}(x+y)-\frac{i \beta}{2} R^{ \pm^{\prime \prime}}(2 a-x+y)+\overline{K_{x x}^{ \pm^{\prime \prime}}(x, y)} \mp
$$

$$
\begin{gathered}
\mp \frac{i \beta}{2+i \beta} K_{x x}^{ \pm^{\prime \prime}}(x, 2 a-y) \mp K^{ \pm}(x, x) R^{ \pm}(x+y) \mp K^{ \pm}(x, x) \cdot R^{ \pm^{\prime}}(x+y) \mp \\
\mp\left[\left.K^{ \pm}(x, t)\right|_{t=2 a-x-0} ^{2 a-x+0}\right] R^{ \pm}(2 a-x+y) \pm \\
\pm\left.\left[\left.K^{ \pm}(x, t)\right|_{t=2 a-x-0} ^{2 a-x+0}\right] R^{ \pm^{\prime}}(2 a-x+y) \mp K_{x}^{ \pm^{\prime}}(x, t)\right|_{t=x} R^{ \pm}(x+y) \pm \\
\pm\left[\left.K_{x}^{ \pm}(x, t)\right|_{t=2 a-x-0} ^{2 a-x+0}\right] R^{ \pm}(2 a-x+y) \pm \int_{x}^{ \pm \infty} K_{x x}^{ \pm^{\prime}}(x, t) R^{ \pm}(t+y) d t=0 .
\end{gathered}
$$

Subtracting from the last equality the previous one, we get

$$
\begin{gather*}
\overline{K_{x x}^{ \pm^{\prime \prime}}(x, y)} \mp \frac{i \beta}{2+i \beta} K_{x x}^{ \pm^{\prime \prime}}(x, 2 a-y)-\overline{K_{y y}^{ \pm^{\prime \prime}}(x, y)} \pm \frac{i \beta}{2+i \beta} K_{y y}^{ \pm^{\prime \prime}}(x, 2 a-y) \mp \\
\mp 2 K^{ \pm}(x, x) R^{ \pm}(x+y) \mp 2\left[\left.K^{ \pm}(x, t)\right|_{t=2 a-x-0} ^{2 a-x+0}\right]^{\prime} R^{ \pm}(2 a-x+y) \pm \\
\quad \pm \int_{x}^{ \pm \infty}\left(K_{x x}^{ \pm^{\prime \prime}}(x, t)-K_{t t}^{ \pm^{\prime \prime}}(x, t)\right) R^{ \pm}(t+y) d t=0 \tag{21}
\end{gather*}
$$

From $(15)_{ \pm}$and main equation $(14)_{ \pm}$

$$
\begin{align*}
& \mp 2 K^{ \pm^{\prime}}(x, x) R^{ \pm}(x+y) \mp 2\left[\left.K^{ \pm}(x, t)\right|_{t=2 a-x-0} ^{2 a-x+0}\right]^{\prime} R^{ \pm}(2 a-x+y)= \\
= & \left(1+\frac{i \beta}{2}\right) q^{\prime \prime}+(x) R^{ \pm}(x+y)-\frac{i \beta}{2} q^{ \pm}(x) R^{ \pm}(2 a-x+y)= \\
= & q^{ \pm(x)}\left[\overline{-K^{ \pm}(x, y)} \pm \frac{i \beta}{2} K^{ \pm}(x, 2 a-y) \mp \int_{x}^{ \pm \infty} K^{ \pm}(x, t) R^{ \pm}(t+y) d t\right] . \tag{22}
\end{align*}
$$

From $(21)_{ \pm}$and $(22)_{ \pm}$it follows that the functions

$$
h_{x}^{ \pm}(y)=K_{x x}^{ \pm^{\prime \prime}}(x, y)-q^{ \pm}(x) K^{ \pm}(x, y)-K_{y y}^{ \pm^{\prime \prime}}(x, y)
$$

satisfy the equations

$$
\overline{h_{x}^{ \pm}(y)} \pm \frac{i \beta}{2+i \beta} h_{x}^{ \pm}(2 a-y) \pm \int_{x}^{ \pm \infty} h_{x}^{ \pm}(t) R^{ \pm}(t+y) d t=0
$$

i.e. the functions $h_{x}^{ \pm}(t)$ are summable solutions of homogeneous equations corresponding to $(14)_{ \pm}$. Behaving in the same way with equations $(12)_{ \pm}$and $(13)_{ \pm}$, we get that the solutions of main equations $(11)_{ \pm}$, according to $[10]$ satisfy the equation

$$
\begin{equation*}
K_{x x}^{ \pm^{\prime \prime}}(x, y)-q^{ \pm}(x) K^{ \pm}(x, y)-K_{y y}^{ \pm^{\prime \prime}}(x, y)=0 \tag{23}
\end{equation*}
$$

By condition 4) of the theorem, from $(15)_{ \pm}$it follows that the functions $K^{ \pm}(x, y)$ satisfy relations $(8)_{ \pm}$. Under the made suppositions (20) it is easy to show that

$$
\begin{equation*}
\lim _{x+y \rightarrow \pm \infty} K_{x}^{ \pm^{\prime}}(x, y)=\lim _{x+y \rightarrow \pm \infty} K_{x}^{ \pm^{\prime}}(x, y)=0 \tag{24}
\end{equation*}
$$

Now, show that the functions $K^{ \pm}(x, y)$ satisfy the conditions

$$
\begin{gather*}
K^{ \pm}(a+0, y)=K^{ \pm}(a-0, y), \quad \pm y> \pm a \tag{25}\\
K_{x}^{ \pm^{\prime}}(a+0, y)-K_{x}^{ \pm^{\prime}}(a-0, y)=i \beta K_{y}^{ \pm^{\prime}}(a, y), \quad \pm y> \pm a . \tag{26}
\end{gather*}
$$

Assume $x=a \pm 0$ and $x=a \mp 0$ in main equations $(12)_{ \pm}$and (14) \pm, respectively. From the obtained first relation subtract the second one. As a result we get that the differences $K^{ \pm}(a+0, y)-K^{ \pm}(a+0, y)$ are the solutions of homogeneous equations corresponding to equations $(11)_{ \pm}$, for $x=0$. Therefore, by [10] we get $(25)_{ \pm}$.

Prove that conditions $(26)_{ \pm}$are also fulfilled.
First of all note that for the solution of main equations, the following relations are valid:

$$
\begin{align*}
& \left.K^{ \pm}(x, 2 a-x \pm 0)\right|_{a \mp 0}=\left.K^{ \pm}(x, x)\right|_{a \pm 0} \\
& \left.K^{ \pm}(x, 2 a-x \mp 0)\right|_{a \neq 0}=\left.K^{ \pm}(x, x)\right|_{a \neq 0} \tag{27}
\end{align*}
$$

Indeed, in equations (12) $)_{ \pm}$assume at first $y=x$, then $x=a \pm 0$, in equations $(13)_{ \pm}$at first $y=2 a-x \pm 0$, then $x=a \mp 0$. Further, from these equations, subtracting one from another one, by $(25)_{ \pm}$we get the first equality from $(27)_{ \pm}$. Assuming once $y=2 a-x \mp 0, x=a \mp 0$ and $y=x \pm 0, x=a \mp 0$ another time in equations $(14)_{ \pm}$and subtracting one of the obtained equalities from another one it is easy to get the second relation from $(27)_{ \pm}$.

Now differentiate equations $(12)_{ \pm}$and $(13)_{ \pm}$with respect to the variable x, and assume $x=a+0$ and $x=a-0$, respectively. As a result we have

$$
\begin{gathered}
R^{+^{\prime}}(a+y)+\overline{K_{x}^{+^{\prime}}(a+0, y)}-\left.K^{+}(x, x)\right|_{a+0} R^{+}(a+y)+ \\
+\int_{a}^{+\infty} K_{x}^{+^{\prime}}(a+0, t) R^{+}(t+y) d t=0 \\
\left(1+\frac{i \beta}{2}\right) R^{+}(a+y)+\frac{i \beta}{2}{R^{+^{\prime}}(a+y)+\overline{K_{x}^{+^{\prime}}(a-0, y)}-\left.K^{+}(x, x)\right|_{a-0} R^{+}(a+y)+}_{+\left.\left[K^{+}(x, 2 a-x+0)-K^{+}(x, 2 a-x-0)\right]\right|_{a-0} R^{+}(a+y)+}^{ \pm \infty}+\int_{a}^{ \pm \infty} K_{x}^{+^{\prime}}(a-0, t) R^{+}(t+y) d t=0 .
\end{gathered}
$$

Subtracting one these equalities from another one, and taking into account (27) $)_{ \pm}$, we get

$$
\begin{aligned}
& -i \beta R^{+}(a+y)+\overline{K_{x}^{+^{\prime}}(a+0, y)-K_{x}^{+}(a-0, y)}+ \\
+ & \left\{\left.2 K^{+}(x, x)\right|_{a-0}-\left.2 K^{+}(x, x)\right|_{a+0}\right\} R^{+}(a+y)+ \\
+ & \int_{a}^{ \pm \infty}\left[K_{x}^{+^{\prime}}(a+0, t)-K_{x}^{+^{\prime}}(a-0, t)\right] R^{+}(t+y) d t=0 .
\end{aligned}
$$

[A.H.Jamshidipour,H.M.Huseynov]
Further, assume $x=a$ in equation $(12)_{+}$, and differentiate with respect to y. Then integrating by parts, we get

$$
\begin{aligned}
R^{+^{\prime}}(a+y) & +\overline{K_{y}^{+^{\prime}}(a, y)}-\left.K^{+}(x, x)\right|_{a+0} R^{+}(a+y)+ \\
& +\int_{a}^{+\infty} K_{t}^{+^{\prime}}(a, t) R^{+}(t+y) d t=0
\end{aligned}
$$

Multiply these equalities by $-i \beta$ and substract the obtained relation from the equality next to last. As a result, by condition of the theorem we have

$$
+\int_{a}^{ \pm \infty}\left\{K_{x}^{+^{\prime}}(a+0, t)-K_{x}^{+^{\prime}}(a-0, t)-i \beta K_{t}^{\prime}(a, y)\right\} R^{+}(t+y) d t=0
$$

Hence, according to the uniqueness theorem on the solution of main equation ([10]) we get relation $(26)_{ \pm}$. Similaly, proceeding from equations (12) _ and (13) $)_{-}$, relation (26)_ is established.

Thus, by fulfilling conditions (20), the solutions $K^{ \pm}(x, y)$ of main equations $(11)_{ \pm}$satisfy equation $(23)_{ \pm}$by relations $(8)_{ \pm},(25)_{ \pm},(26)_{ \pm}$conditions $(24)_{ \pm}$. Then for solving these problems we get integral equations from [8] which show that the functions $e^{ \pm}(x, \lambda)$ constructed with the help of $K^{ \pm}(x, t)$ by formulae $(6)_{ \pm}$satisfy equations $(16)_{ \pm}$and conditions $(17)_{ \pm},(18)_{ \pm}$.

The case when only conditions 3) of the theorem are fulfilled, may be considered by means of the limit passage (see [3], p. 212).

Finally, show that conditions (19) are also fulfilled. Since for $\pm x> \pm a$ main equations $(11)_{ \pm}$have the form of $(12)_{ \pm}$, i.e. similar to the case $\alpha=1$ form and conditions 3) of the theorem is the same as in the case $\alpha=1$, then it is easy show that relations (19) are valid if $x^{\prime} \geq a$ and $x^{\prime} \leq a$ (see [3], p. 209). It remains to show that $q^{+}(x)\left(q^{-}(x)\right)$ are summable in the interval $\left(x^{\prime}, a\right)\left(\left(a, x^{\prime \prime}\right)\right)$ for each $x^{\prime}>-\infty$ $\left(x^{\prime \prime}<+\infty\right)$. If we use conditions 3) of the theorem, and integrability of partial derivatives $K_{x}^{ \pm^{\prime}}, K_{t}^{ \pm^{\prime}}$, these facts are easily established by means of the formula (equivalent to equation $(14)_{ \pm}$)

$$
K^{ \pm}(x, y)=\left(1+\frac{\beta^{2}}{4}\right)\left[\overline{\varphi^{ \pm}(x, y)} \mp \frac{i \beta}{2-i \beta} \varphi^{ \pm}(x, 2 a-y)\right]
$$

where

$$
\begin{gathered}
\varphi^{ \pm}(x, y)=-\left(1+\frac{i \beta}{2}\right) R^{ \pm}(x+y)+ \\
+\frac{i \beta}{2} R^{ \pm}(2 a-x+y) \mp \int_{x}^{ \pm \infty} K^{ \pm}(x, y) R^{ \pm}(t+y) d t
\end{gathered}
$$

[Solution of the inverse scattering problem] ${ }^{97}$
3. Now for proving theorem, it suffices to show that for real $\lambda \neq 0$ the functions $e^{+}(x, \lambda)$ and $e^{-}(x, \lambda)$ are connected with the equalities

$$
\begin{equation*}
r^{ \pm}(\lambda) e^{ \pm}(x, \lambda)+\overline{e^{ \pm}(x, \lambda)}=\frac{1}{a(\lambda)} e^{\mp}(x, \lambda) . \tag{28}
\end{equation*}
$$

Indeed, from $(28)_{ \pm}$, by $(16)_{ \pm}$it follows that:

$$
q^{+}(x)=q^{-}(x) \stackrel{\text { def }}{=} q(x), \quad-\infty<x<+\infty,
$$

and according to (19) we have:

$$
\int_{-\infty}^{\infty}(1+|x|)|q(x)| d x<+\infty
$$

Show that then $r^{+}(\lambda)$ and $r^{-}(\lambda)$ are the right and left (respectively) reflection factors of the constructed problem (3)-(5).

Denote the right and left reflection factors of the constructed problem (3)-(5) by $\widetilde{r}^{+}(\lambda)$ and $\widetilde{r}^{-}(\lambda)$, respectively. The functions $e^{+}(x, \lambda)$ and $e^{-}(x, \lambda)$ will the Iost solutions of problem (3)-(5). Therefore, by the results of the direct scattering problem we can write the relations

$$
\begin{equation*}
\widetilde{r}^{ \pm}(\lambda) e^{ \pm}(x, \lambda)+\overline{e^{ \pm}(x, \lambda)}=\frac{1}{\widetilde{a}(\lambda)} e^{\mp}(x, \lambda) . \tag{29}
\end{equation*}
$$

From $(28)_{ \pm}$and $(29)_{ \pm}$we have

$$
\begin{aligned}
& a(\lambda) r^{+}(\lambda) e^{+}(x, \lambda)+a(\lambda) \overline{e^{+}(x, \lambda)}=e^{-}(x, \lambda), \\
& \widetilde{a}(\lambda) \widetilde{r}^{+}(\lambda) \widetilde{e}^{+}(x, \lambda)+\widetilde{a}(\lambda) \overline{e^{+}(x, \lambda)}=e^{-}(x, \lambda) .
\end{aligned}
$$

Subtracting one of these relations from another one, we have

$$
\left\{a(\lambda) r^{+}(\lambda)-\widetilde{a}(\lambda) \tilde{r}^{+}(\lambda)\right\} e^{+}(x, \lambda)+\{a(\lambda)-\widetilde{a}(\lambda)\} \overline{e^{+}(x, \lambda)}=0 .
$$

Since $\lambda \neq 0$, the functions $e^{+}(x, \lambda)$ and $e^{-}(x, \lambda)$ are linearly independent, then it follows from the last identity that

$$
a(\lambda) r^{+}(\lambda)-\widetilde{a}(\lambda) \widetilde{r}^{+}(\lambda)=0, \quad a(\lambda)-\widetilde{a}(\lambda)=0
$$

i.e. $r^{+}(\lambda)=\widetilde{r}^{+}(\lambda), a(\lambda)=\widetilde{a}(\lambda)$, similarly, from relations (28)_ and (29)_ we get $r^{-}(\lambda)=\widetilde{r}^{-}(\lambda)$.

Further, since the function $a(z)$ according to condition 2) of the theorem has no zeros in upper half-plane, then problem (3)-(5) has no discrete spectrum.
4. Now, prove relations $(28)_{ \pm}$. Assume

$$
\Phi^{ \pm}(x, y)=R_{1}^{ \pm}(x+y) \pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) R^{ \pm}(t+y) d t
$$

where

$$
R_{1}(x, y)=\left\{\begin{array}{l}
R^{ \pm}(x+y), \quad \pm x> \pm a, \\
\left(1+\frac{i \beta}{2}\right) R^{ \pm}(x+y)-\frac{i \beta}{2} R^{ \pm}(2 a-x+y), \quad \pm x< \pm a .
\end{array}\right.
$$

Since $R^{ \pm}(y) \in L_{2}(-\infty,+\infty)$, then for each fixed $x \quad \Phi(x, y) \in L_{2}(-\infty,+\infty)$ we have

$$
\begin{gather*}
\lim _{N \rightarrow+\infty} \int_{-N}^{N} \Phi^{ \pm}(x, y) e^{\mp \lambda y} d y= \\
=\left[r^{ \pm}(\lambda)-r_{0}^{ \pm}(\lambda)\right]\left[e_{0}^{ \pm}(x, \lambda) \pm \int_{x}^{ \pm \infty} K^{ \pm}(x, t) e^{ \pm \lambda t} d t\right]= \\
=\left[r^{ \pm}(\lambda)-r_{0}^{ \pm}(\lambda)\right] e^{ \pm}(x, \lambda) . \tag{30}
\end{gather*}
$$

On the other hand, from equations $(11)_{ \pm}$

$$
\Phi^{ \pm}(x, y)=-\overline{K^{ \pm}(x, y)} \pm \frac{i \beta}{2+i \beta} K^{ \pm}(x, 2 a-y), \quad \pm y> \pm x
$$

Therefore

$$
\begin{gather*}
\lim _{N \rightarrow+\infty} \int_{-N}^{N} \Phi^{ \pm}(x, y) e^{\mp \lambda y} d y= \\
=\lim _{N \rightarrow+\infty}\left\{ \pm \int_{\mp N}^{x} \Phi^{ \pm}(x, y) e^{\mp \lambda y} d y\right\}-\int_{x}^{ \pm \infty} \overline{K^{ \pm}(x, t)} e^{\mp \lambda y} d y+ \\
+\frac{i \beta}{2+i \beta} \int_{x}^{ \pm \infty} K^{ \pm}(x, 2 a-y) e^{\mp \lambda y} d y=\lim _{N \rightarrow+\infty}\left\{ \pm \int_{\mp N}^{x} \Phi^{ \pm}(x, y) e^{\mp \lambda y} d y\right\}- \\
-\overline{e^{ \pm}(x, \lambda)}+\overline{e_{0}^{ \pm}(x, \lambda)}-r_{0}^{ \pm}(\lambda)\left[e^{ \pm}(x, \lambda)+e_{0}^{ \pm}(x, \lambda)\right] . \tag{31}
\end{gather*}
$$

Comparing $(30)_{ \pm}$and $(31)_{ \pm}$, and taking into account the formulae

$$
r_{0}^{ \pm}(\lambda) e_{0}^{ \pm}(x, \lambda)+\overline{e_{0}^{ \pm}(x, \lambda)}=\frac{2}{2+i \beta} e_{0}^{\mp}(x, \lambda)
$$

we get

$$
\begin{equation*}
r^{ \pm}(\lambda) e^{ \pm}(x, \lambda)+\overline{e^{ \pm}(x, \lambda)}=\frac{1}{a(\lambda)} h^{\mp}(x, \lambda), \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
h^{ \pm}(\lambda)=a(\lambda)\left[\frac{2}{2+i \beta} e_{0}^{\mp}(x, \lambda)+\text { l.i.m. }\left(\mp \int_{\mp N}^{x} \Phi^{\mp}(x, y) e^{ \pm \lambda y} d y\right)\right] \tag{33}
\end{equation*}
$$

Thus, it suffices to prove that $h^{ \pm}(x, \lambda)=e^{ \pm}(x, \lambda)$. If we use representations $(32)_{ \pm}$and $(33)_{ \pm}$for the functions $h^{ \pm}(x, \lambda)$ and condition 2$)$ of the theorem, then the
proof of these equalities completely coincide with the proof similar to the statement of the case $\beta=0$ (see. [3], pp. 277-278). Therefore we don't cite it.

The theorem is proved.
Remark. Condition 4) of the theorem is essential. The function

$$
r^{+}(\lambda)=\frac{i \beta+\frac{\gamma}{i \lambda}}{2+i \beta+\frac{\gamma}{i \lambda}} e^{-2 i \lambda a}
$$

for $\gamma \neq 0$ satisfies all the conditions of the theorem, except for 4). In this case

$$
K^{ \pm}(x, t)=\left\{\begin{array}{l}
0, \pm x> \pm a, \pm t> \pm x \vee \pm x< \pm a, \pm t> \pm(2 a-x), \\
\frac{\gamma}{2}, \pm x< \pm a, \pm x< \pm t< \pm(2 a-x),
\end{array}\right.
$$

consequently the Jost solutions satisfy equation (3) with $q(x) \equiv 0$ and condition (4), but condition (5) is not fulfilled. If $\gamma=0$, then condition 4) is fulfilled, and in this case, the solution of the inverse problem exists: $r^{+}(\lambda)=r_{0}^{+}(\lambda)$ is the right reflection factor of problem (3)-(5) with the potential $q(x)=0$.

This work of the second author was supported by the Science Development Foundation under the President of the Republic of Azerbaijan-Grant No EIF-2011-1(3)$82 / 24 / 1$

References

[1]. Jaulent M. On the inverse problem for the Schordinger equation with an energy-dependent potential. // Comptes rendus Acad. Sci. Paris, t. 280, Serie A, 1975, pp. 1467-1470.
[2]. Jaulent M., Jean C. The inverse problem for the on dimensional Schordinger equation with an energy-dependent potential. // Ann. Inst. Henri Poincare, 1976, vol. 25, No 2, pp. 105-137.
[3]. Maksudov F.G., Huseynov G. Sh. To the solution of the inverse scattering problem for a quadratic pencil of one-dimensional Schrodinger operators on the axis. // DAN SSSR, 1986, vol. 289, No 1, pp. 42-46 (Russian).
[4]. Faddeyev L.D. Property of S-matrix of Schordinger's one-dimensional equation. // Trudy MIAN 1964, vol. 73, pp. 314-336 (Russian).
[5]. Marchenko V.A. Strum-Liouville operators and their applications. Kiev, Naukova Dumka, 1977 (Rusiian).
[6]. Huseynov H.M. On continuity of reflection factor of Schrodinger one-dimensional equation. // Diff. Uravn. 1985, vol. 21, No 11, pp. 1993-1995 (Russian).
[7]. Savchuk A.M., Shkalikov A.A. Sturm-Liouville operators with singular potential // Matem. zametki. 1999, vol. 66, No 6, pp. 897-912(Russian).
[8]. Jamshidipour A.H., Huseynov H.M. On Jost solutions of Sturm-Liouville equations with spectral parameter in discontinuity conditions. // Transactions of NAS of Azerb. 2010, vol. XXX, No 4, pp. 61-68.
[9]. Jamshidipour A.H., Huseynov H.M. Scaterring data of Sturm-Liouville operator with spectral parameter in discontinuity conditions. // Transactions of NAS of Azerb. 2011, vol. XXXI, No 1, pp. 71-78.
[10]. Jamshidipour A.H., Huseynov H.M. Basic equations of inverse scattering problem for Sturm-Liouville operator with spectral parameter in discontinuity conditions. // Proceedings of IMM of NAS of Azerb. 2011, vol. XXXV, (XLIII), pp. 59-64.

Ahmad H. Jamshidipour, Hidayat M. Huseynov
Institute of Mathematics and Mechanics of NAS of Azerbaijan.
9, B.Vahabzade str., AZ 1141, Baku, Azerbaijan.
Tel.: (99412) 5394720 (off.).
Receivedn September 06, 2011; Revised December 15, 2011.

