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ADAMS TYPE RESULT FOR SUBLINEAR
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Abstract

In this paper the authors study the boundedness for a large class of sublinear
operators Tα, α ∈ (0, n) generated by Riesz potential operator on generalized
Morrey spaces Mp,ϕ. We prove the boundedness of the sublinear operator Tα,
α ∈ (0, n) satisfies the condition (1.2) generated by Riesz potential operator
from one generalized Morrey space M

p,ϕ
1
p

to M
q,ϕ

1
q

for 1 < p < q < ∞ and

from M1,ϕ to WM
q,ϕ

1
q

for 1 < q < ∞. In all the cases the conditions for

the boundedness are given it terms of Zygmund-type integral inequalities on ϕ,
which do not assume any assumption on monotonicity of ϕ in r. Conditions
of these theorems are satisfied by many important operators in analysis, in par-
ticular fractional maximal operator, Riesz potential operator and Marcinkiewicz
operator.

1. Introduction
The classical Morrey spaces Mp,λ were originally introduced by Morrey in [21]

to study the local behavior of solutions to second order elliptic partial differential
equations. For the properties and applications of classical Morrey spaces, we refer
the readers to [21, 23].

For x ∈ Rn and r > 0, let B(x, r) denote the open ball centered at x of radius
r,

{
B(x, r) denote its complement and |B(x, r)| is the Lebesgue measure of the ball

B(x, r).
Let f ∈ Lloc

1 (Rn). The fractional maximal operator Mα and the Riesz potential
Iα are defined by

Mαf(x) = sup
t>0

|B(x, t)|−1+α
n

∫

B(x,t)
|f(y)|dy, 0 ≤ α < n,

Iαf(x) =
∫

Rn

f(y)dy

|x− y|n−α
, 0 < α < n.

It is well known that operators Mα and Iα plays an important role in harmonic
analysis (see, for example [29, 31]).

We denote by Mp,λ ≡ Mp,λ(Rn) the Morrey space, the space of all functions
f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r
−λ

p ‖f‖Lp(B(x,r)),

where 1 ≤ p < ∞ and 0 ≤ λ ≤ n.
Note that Mp,0 = Lp(Rn) and Mp,n = L∞(Rn). If λ < 0 or λ > n, then

Mp,λ = Θ, where Θ is the set of all functions equivalent to 0 on Rn.
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We also denote by WMp,λ ≡ WMp,λ(Rn) the weak Morrey space of all functions
f ∈ WLloc

p (Rn) for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r
−λ

p ‖f‖WLp(B(x,r)) < ∞,

where WLp(B(x, r)) denotes the weak Lp-space of measurable functions f for which

‖f‖WLp(B(x,r)) ≡ ‖fχ
B(x,r)

‖WLp(Rn) = sup
t>0

t |{y ∈ B(x, r) : |f(y)| > t}|1/p .

The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < q < ∞,
then Iα is bounded from Lp(Rn) to Lq(Rn) if and only if α = n

(
1
p − 1

q

)
and for

p = 1 < q < ∞, Iα is bounded from L1(Rn) to WLq(Rn) if and only if α = n
(
1− 1

q

)
.

S. Spanne (published by J. Peetre [23]) and D.R. Adams [1] studied boundedness of
the Riesz potential in Morrey spaces. Their results, can be summarized as follows.

Theorem 1.1. (Spanne, but published by Peetre [23]) Let 0 < α < n, 1 < p < n
α ,

0 < λ < n− αp. Moreover, let 1
p − 1

q = α
n and λ

p = µ
q . Then for p > 1 the operator

Iα is bounded from Mp,λ to Mq,λ and for p = 1 Iα is bounded from M1,λ to WMq,λ.
Theorem 1.2. (Adams [1]) Let 0 < α < n, 1 < p < n

α , 0 < λ < n − αp and
1
p − 1

q = α
n−λ . Then for p > 1 the operator Iα is bounded from Mp,λ to Mq,λ and for

p = 1 Iα is bounded from M1,λ to WMq,λ.
Recall that, for 0 < α < n,

Mαf(x) ≤ υ
α
n
−1

n Iα(|f |)(x),

hence Theorems 1.1 and 1.2 also implies boundedness of the fractional maximal
operator Mα, where vn is the volume of the unit ball in Rn.

Suppose that T ≡ T0 represents a linear or a sublinear operator, which satisfies
that for any f ∈ L1(Rn) with compact support and x /∈ suppf

|Tf(x)| ≤ c0

∫

Rn

|f(y)|
|x− y|n dy, (1.1)

where c0 is independent of f and x. Similarly, we assume that Tα represents a
linear or a sublinear operator, which satisfies that for any f ∈ L1(Rn) with compact
support and x /∈ suppf

|Tαf(x)| ≤ c1

∫

Rn

|f(y)|
|x− y|n−α

dy (1.2)

for some α ∈ (0, n), where c1 is independent of f and x.
In [14] we prove the boundedness of the sublinear operators T satisfying condition

(1.1) generated by Calderón-Zygmund operators from one generalized Morrey space
Mp,ϕ1

to another Mp,ϕ2
, 1 < p < ∞, and from the space M1,ϕ1

to the weak space
WM1,ϕ2

.
In this work, we shall prove the boundedness of the sublinear operators Tα,

α ∈ (0, n) satisfying condition (1.2) generated by Riesz potential operator from
M

p,ϕ
1
p

to M
q,ϕ

1
q

for 1 < p < q < ∞ and from M1,ϕ to WM
q,ϕ

1
q

for 1 < q < ∞.
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We point out that the condition (1.2) was first introduced by Soria and Weiss in
[26]. The conditions (1.1) and (1.2) are satisfied by many interesting operators in
harmonic analysis, such as the Calderón–Zygmund operators, Carleson’s maximal
operators, Hardy–Littlewood maximal operators, C. Fefferman’s singular multipli-
ers, R. Fefferman’s singular integrals, Ricci–Stein’s oscillatory singular integrals, the
Bochner–Riesz means and so on.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and
B are equivalent.

2. Generalized Morrey spaces
Definition 2.1. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞)

and 1 ≤ p < ∞. We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the
space of all functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖Mp,ϕ ≡ ‖f‖Mp,ϕ(Rn) = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡ WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈ WLloc

p (Rn) for which

‖f‖WMp,ϕ ≡ ‖f‖WMp,ϕ(Rn) = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|− 1
p ‖f‖WLp(B(x,r)) < ∞.

According to this definition, we recover the spaces Mp,λ and WMp,λ under the

choice ϕ(x, r) = r
λ−n

p :

Mp,λ = Mp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p

,

WMp,λ = WMp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p

.

In [10]-[13], [16], [20] and [22] there were obtained sufficient conditions on ϕ1 and
ϕ2 for the boundedness of the fractional maximal operator Mα and Riesz potential
operator Iα from Mp,ϕ1

to Mq,ϕ2
, 1 < p < q < ∞ (see also [2]-[6]). In [22] the

following condition was imposed on ϕ(x, r):

c−1ϕ(x, r) ≤ ϕ(x, t) ≤ c ϕ(x, r) (2.1)

whenever r ≤ t ≤ 2r, where c(≥ 1) does not depend on t, r and x ∈ Rn, jointly with
the condition: ∫ ∞

r
tαpϕ(x, t)p dt

t
≤ C rαpϕ(x, r)p, (2.2)

for the sublinear operator Tα satisfying condition (1.2), where C(> 0) does not de-
pend on r and x ∈ Rn.

3. Sublinear operators in the spaces Mp,ϕ

3.1. Spanne type result
In [7] the following statements was proved by sublinear operator Tα satisfying

condition (1.2), containing the result in [20, 22].
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Theorem 3.3. Let 1 < p < ∞, 0 < α < n
p , 1

q = 1
p − α

n and ϕ(x, r) satisfy
conditions (2.1) and (2.2). Let Tα be a sublinear operator satisfying condition (1.2)
and bounded from Lp(Rn) to Lq(Rn). Then the operator Tα is bounded from Mp,ϕ

to Mq,ϕ.
The following statements, containing results obtained in [20], [22] was proved in

[10,12] (see also [2]-[6], [11,13]).
Theorem 3.4. Let 1 ≤ p < ∞, 0 < α < n

p , 1
q = 1

p − α
n and (ϕ1, ϕ2) satisfy the

condition ∫ ∞

t
rαϕ1(x, r)

dr

r
≤ C ϕ2(x, t), (3.1)

where C does not depend on x and t. Then the operators Mα and Iα are bounded
from Mp,ϕ1

to Mq,ϕ2
for p > 1 and from M1,ϕ1

to WMq,ϕ2
for p = 1.

Theorem 3.5. Let 1 ≤ p < ∞, 0 < α < n
p , 1

q = 1
p − α

n , and (ϕ1, ϕ2) satisfy the
condition

∫ ∞

t

ess inf
r<s<∞ϕ1(x, s)s

n
q

r
n
q
+1

dr ≤ C ϕ2(x, t), (3.2)

where C does not depend on x and t. Let Tα be a sublinear operator satisfying
condition (1.2) bounded from Lp(Rn) to Lq(Rn) for 1 < p < q < ∞, and bounded
from L1(Rn) to WLq(Rn) for 1 < q < ∞. Then the operator Tα is bounded from
Mp,ϕ1

to Mq,ϕ2
for 1 < p < q < ∞ and from M1,ϕ1

to WMq,ϕ2
for 1 < q < ∞.

Moreover, for p > 1
‖Tαf‖Mq,ϕ2

. ‖f‖Mp,ϕ1
,

and for p = 1
‖Tαf‖WMq,ϕ2

. ‖f‖M1,ϕ1
.

Corollary 3.1. Let 1 ≤ p < ∞, 0 < α < n
p , 1

q = 1
p − α

n and (ϕ1, ϕ2) satisfy
condition (3.2). Then the operators Mα and Iα are bounded from Mp,ϕ1

to Mq,ϕ2

for p > 1 and from M1,ϕ1
to WMq,ϕ2

for p = 1.

3.2. Adams type result
The following is a result of Adams type.
Theorem 3.6. Let 1 ≤ p < ∞, 0 < α < n

p , q > p and let ϕ(x, t) satisfies the
conditions ∫ ∞

r
ϕ(x, t)

1
p
dt

t
≤ Cϕ(x, r)

1
p , (3.3)

∫ ∞

r
tα ϕ(x, t)

1
p
dt

t
≤ Cr

− αp
q−p , (3.4)

where C does not depend on x ∈ Rn and r > 0. Let also Tα be a sublinear operator
satisfying condition (1.2) and the condition

|Tα(fχ
B(x0,r)

)(x)| . rαMf(x) (3.5)

holds for any ball B(x0, r).
Then the operator Tα is bounded from M

p,ϕ
1
p

to M
q,ϕ

1
q

for p > 1 and from M1,ϕ

to WM
q,ϕ

1
q

for p = 1.

Proof. Let 1 < p < ∞, 0 < α < n
p , q > p and f ∈ M

p,ϕ
1
p
.
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For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0 and of radius
r. We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ {
(2B)

(y), t > 0, (3.6)

and have
‖Tαf‖Lq(B) ≤ ‖Tαf1‖Lq(B) + ‖Tαf2‖Lq(B).

For Tαf2(x) we have

|Tαf2(x)| ≤
∫

{B(x,2r)
|x− y|α−n|f(y)|dy .

∫
{B(x,2r)

|f(y)|dy

∫ ∞

|x−y|
tα−n−1dt .

.
∫ ∞

2r

(∫

2r<|x−y|<t
|f(y)|dy

)
tα−n−1dt .

∫ ∞

r
t
α−n

p
−1‖f‖Lp(B(x,t))dt. (3.7)

Then from conditions (3.4), (3.5) and (3.7) we get

|Tαf(x)| . rα Mf(x) +
∫ ∞

r
t
α−n

p
−1‖f‖Lp(B(x,t))dt ≤

≤ rα Mf(x) + ‖f‖Mp,ϕ

∫ ∞

r
tαϕ(x, t)

1
p
dt

t
. rα Mf(x) + r

− αp
q−p ‖f‖M

p,ϕ
1
p

. (3.8)

Hence choose r =
(‖f‖M

p,ϕ1/p

Mf(x)

) q−p
αq for every x ∈ Rn, we have

|Tαf(x)| . (Mf(x))
p
q ‖f‖1− p

q

M
p,ϕ

1
p

.

Hence the statement of the theorem follows in view of the boundedness of the max-
imal operator M in M

p,ϕ
1
p

provided by Theorem 4.2 in [12] in virtue of condition

(3.3).
‖Tαf‖M

q,ϕ
1
q

= sup
x∈Rn, t>0

ϕ(x, t)−
1
q t
−n

q ‖Tαf‖Lq(B(x,t)) .

. ‖f‖1− p
q

M
p,ϕ

1
p

sup
x∈Rn, t>0

ϕ(x, t)−
1
q t
−n

q ‖Mf‖
p
q

Lp(B(x,t)) =

= ‖f‖1− p
q

M
p,ϕ

1
p

(
sup

x∈Rn, t>0
ϕ(x, t)−

1
p t
−n

p ‖Mf‖Lp(B(x,t))

) p
q

=

= ‖f‖1− p
q

M
p,ϕ

1
p

‖Mf‖
p
q

M
p,ϕ

1
p

. ‖f‖M
p,ϕ

1
p

,

if 1 < p < q < ∞ and

‖Tαf‖WM
q,ϕ

1
q

= sup
x∈Rn, t>0

ϕ(x, t)−
1
q t
−n

q ‖Tαf‖WLq(B(x,t)) .

. ‖f‖1− 1
q

M1,ϕ
sup

x∈Rn, t>0
ϕ(x, t)−

1
q t
−n

q ‖Mf‖
1
q

WL1(B(x,t)) =



66
[V.S.Guliyev,P.S.Shukurov]

Transactions of NAS of Azerbaijan

= ‖f‖1− 1
q

M1,ϕ

(
sup

x∈Rn, t>0
ϕ(x, t)−1t−n‖Mf‖WL1(B(x,t))

) 1
q

=

= ‖f‖1− 1
q

M1,ϕ
‖Mf‖

1
q

WM1,ϕ
. ‖f‖M1,ϕ ,

if 1 < q < ∞.
Corollary 3.2. Let 1 ≤ p < ∞, 0 < α < n

p , q > p, and let ϕ(x, t) satisfies the
conditions (3.3) and (3.4). Then the operators Mα and Iα are bounded from M

p,ϕ
1
p

to M
q,ϕ

1
q

for p > 1 and from M1,ϕ to WM
q,ϕ

1
q

for p = 1.

Note that Corollary 3.2 was proved in [12] and [24]. In the case ϕ(x, t) = tλ−n,
0 < λ < n from Corollary 3.2 we get Adams theorem 1.2.

4. Some applications
In this section, we shall apply Theorem 3.5 to several particular operators such as

the Marcinkiewicz operator, Schrödinger type operators V γ(−∆+V )−β, V γ∇(−∆+
V )−β and fractional powers of the some analytic semigroups.

4.1. Marcinkiewicz operator
Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit sphere in Rn equipped with the

Lebesgue measure dσ. Suppose that Ω satisfies the following conditions.
(a) Ω is the homogeneous function of degree zero on Rn \ {0}, that is,

Ω(µx) = Ω(x), for any µ > 0, x ∈ Rn \ {0}.

(b) Ω has mean zero on Sn−1, that is,
∫

Sn−1

Ω(x′)dσ(x′) = 0.

(c) Ω ∈ Lipγ(Sn−1), 0 < γ ≤ 1, that is there exists a constant M > 0 such that,

|Ω(x′)− Ω(y′)| ≤ M |x′ − y′|γ for any x′, y′ ∈ Sn−1.

In 1958, Stein [27] defined the Marcinkiewicz integral of higher dimension µΩ as

µΩ(f)(x) =
(∫ ∞

0
|FΩ,t(f)(x)|2 dt

t3

)1/2

,

where
FΩ,t(f)(x) =

∫

|x−y|≤t

Ω(x− y)
|x− y|n−1

f(y)dy.

The Marcinkiewicz operator is defined by (see [32])

µΩ,α(f)(x) =
(∫ ∞

0
|FΩ,α,t(f)(x)|2 dt

t3

)1/2

,

where
FΩ,α,t(f)(x) =

∫

|x−y|≤t

Ω(x− y)
|x− y|n−1−α

f(y)dy.
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Note that µΩf = µΩ,0f .
Let H be the space H = {h : ‖h‖ = (

∫∞
0 |h(t)|2dt/t3)1/2 < ∞}. Then, it is clear

that µΩ,α(f)(x) = ‖FΩ,α,t(x)‖.
By Minkowski inequality and the conditions on Ω, we get

µΩ,α(f)(x) ≤
∫

Rn

|Ω(x− y)|
|x− y|n−1−α

|f(y)|
(∫ ∞

|x−y|

dt

t3

)1/2

dy ≤ C

∫

Rn

|f(y)|
|x− y|n−α

dy.

Thus, µΩ,α satisfies condition (1.2). It is known that µΩ,α is bounded from Lp(Rn)
to Lq(Rn) for 1 < p < q < ∞, and bounded from L1(Rn) to WLq(Rn) for 1 < q < ∞
(see [32]), then from Theorem 3.5 we get

Corollary 4.3. Let 1 ≤ p < q < ∞, 0 < α < n
p , ϕ(x, t) satisfies the conditions

(3.3), (3.4), and Ω satisfies conditions (a)–(c). Then µΩ,α is bounded from M
p,ϕ

1
p

to M
q,ϕ

1
q

for p > 1 and from M1,ϕ to WM
q,ϕ

1
q

for p = 1.

4.2. Schrödinger type operators V γ(−∆ + V )−β and V γ∇(−∆ + V )−β

In this section we consider the Schrödinger operator −∆ + V on Rn, where the
nonnegative potential V belongs to the reverse Hölder class B∞(Rn) for some q1 ≥ n.
The generalized Morrey Mp,ϕ1

→ Mq,ϕ2
estimates for the operators V γ(−∆ + V )−β

and V γ∇(−∆ + V )−β are obtained.
The investigation of Schrödinger operators on the Euclidean space Rn with non-

negative potentials which belong to the reverse Hölder class has attracted attention
of a number of authors (cf. [9, 25, 33]). Shen [25] studied the Schrödinger operator
−∆ + V , assuming the nonnegative potential V belongs to the reverse Hölder class
Bq(Rn) for q ≥ n/2 and he proved the Lp boundedness of the operators (−∆+V )iγ ,
∇2(−∆ + V )−1, ∇(−∆ + V )−

1
2 and ∇(−∆ + V )−1. Kurata and Sugano generalized

Shens results to uniformly elliptic operators in [15]. Sugano [30] also extended some
results of Shen to the operator V γ(−∆+V )−β, 0 ≤ γ ≤ β ≤ 1 and V γ∇(−∆+V )−β,
0 ≤ γ ≤ 1

2 ≤ β ≤ 1 and β − γ ≥ 1
2 . Later, Lu [19] and Li [17] investigated the

Schrödinger operators in a more general setting.
We investigate the generalized Morrey Mp,ϕ1

-Mq,ϕ2
boundedness of the operators

T1 = V γ(−∆ + V )−β, 0 ≤ γ ≤ β ≤ 1,

T2 = V γ∇(−∆ + V )−β, 0 ≤ γ ≤ 1
2
≤ β ≤ 1, β − γ ≥ 1

2
.

Note that the operators V (−∆ + V )−1 and V
1
2∇(−∆ + V )−1 in [17] are the special

case of T1 and T2, respectively.
It is worth pointing out that we need to establish pointwise estimates for T1, T2

and their adjoint operators by using the estimates of fundamental solution for the
Schrödinger operator on Rn in [17]. And we prove the generalized Morrey estimates
by using Mp,ϕ1

−Mq,ϕ2
boundedness of the fractional maximal operators.

Let V ≥ 0. We say V ∈ B∞, if there exists a constant C > 0 such that

‖V ‖L∞(B) ≤
C

|B|
∫

B
V (x)dx

holds for every ball B in Rn (see [17]).
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The following two pointwise estimates for T1 and T2 which proven in [33], Lemma
3.2 with the potential V ∈ B∞ are valid.

Theorem B. Suppose V ∈ B∞ and 0 ≤ γ ≤ β ≤ 1. Then for any f ∈ C∞
0 (Rn)

there exists a constant C > 0 such that

|T1f(x)| . Mαf(x),

where α = 2(β − γ).
Theorem C. Suppose V ∈ B∞, 0 ≤ γ ≤ 1

2 ≤ β ≤ 1 and β − γ ≥ 1
2 . Then for

any f ∈ C∞
0 (Rn) there exists a constant C > 0 such that

|T2f(x)| . Mαf(x),

where α = 2(β − γ)− 1.
The above theorems will yield the generalized Morrey estimates for T1 and T2.
Corollary 4.4. Assume that V ∈ B∞ and 0 ≤ γ ≤ β ≤ 1. Let 1 ≤ p < q < ∞,

2(β−γ) = n
(

1
p − 1

q

)
and the conditions (3.3) and (3.4) be satisfied for α = 2(β−γ).

Then T1 is bounded from M
p,ϕ

1
p

to M
q,ϕ

1
q

for p > 1 and from M1,ϕ to WM
q,ϕ

1
q

for
p = 1.

Corollary 4.5. Assume that V ∈ B∞, 0 ≤ γ ≤ 1
2 ≤ β ≤ 1 and β − γ ≥ 1

2 . Let

1 ≤ p < q < ∞, 2(β − γ) − 1 = n
(

1
p − 1

q

)
and the conditions (3.3) and (3.4) be

satisfied for α = 2(β − γ)− 1. Then T2 is bounded from M
p,ϕ

1
p

to M
q,ϕ

1
q

for p > 1

and from M1,ϕ to WM
q,ϕ

1
q

for p = 1.

4.3. Fractional powers of the some analytic semigroups
The theorems of the previous sections can be applied to various operators which

are estimated from above by Riesz potentials. We give some examples.
Suppose that L is a linear operator on L2 which generates an analytic semigroup

e−tL with the kernel pt(x, y) satisfying a Gaussian upper bound, that is,

|pt(x, y)| ≤ c1

tn/2
e−c2

|x−y|2
t (4.1)

for x, y ∈ Rn and all t > 0, where c1, c2 > 0 are independent of x, y and t.
For 0 < α < n, the fractional powers L−α/2 of the operator L are defined by

L−α/2f(x) =
1

Γ(α/2)

∫ ∞

0
e−tLf(x)

dt

t−α/2+1
.

Note that if L = −4 is the Laplacian on Rn, then L−α/2 is the Riesz potential
Iα. See, for example, Chapter 5 in [28].

Theorem 4.7. Let condition (4.1) be satisfied. Moreover, let 1 ≤ p < q < ∞,
0 < α < n

p , ϕ satisfies the conditions (3.3) and (3.4). Then L−α/2 is bounded from
M

p,ϕ
1
p

to M
q,ϕ

1
q

for p > 1 and from M1,ϕ to WM
q,ϕ

1
q

for p = 1.

Proof. Since the semigroup e−tL has the kernel pt(x, y) which satisfies condition
(4.1), it follows that

|L−α/2f(x)| . Iα(|f |)(x)
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(see [8]). Hence by the aforementioned theorems we have

‖L−α/2f‖Mq,ϕ2
. ‖Iα(|f |)‖Mq,ϕ2

. ‖f‖Mp,ϕ1
.

Property (4.1) is satisfied for large classes of differential operators (see, for exam-
ple [4]). In [4] also other examples of operators which are estimates from above by
Riesz potentials are given. In these case Theorem 3.5 is also applicable for proving
boundedness of those operators from M

p,ϕ
1
p

to M
q,ϕ

1
q
.
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