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OPTIMAL STABILIZATION FOR A WEAK
NONLINEAR HYPERBOLIC EQUATION WITH

PHASE RESTRICTION

Abstract
In the paper, we consider an optimal stabilization problem for a weak non-

linear hyperbolic equation with phase restrictions. Using the penalty method,
we get the necessary condition of optimality for an approximate optimal control
problem.

The optimal control problems for the systems described by nonlinear oscillatory
and wave equations when no phase restrictions exist, have been studied sufficiently
well (see, [1]-[4]).

However, only the paper [5] in which the model equation from the book [7] is
considered, has been devoted to optimal stabilization problems for hyperbolic type
nonlinear equations with pointwise phase restrictions. In the present paper, we
consider a problem of indicated type. The penalty method is used for its solution,
and its convergence is proved. A necessary condition of optimality is obtained for the
approximate optimal control problem. The solution of the approximate problem for
sufficiently small value of the penalty parameter is taken in the place of approximate
solution of the problem.

We consider the equation

∂2u

∂t2
−

n∑

i,j=1

∂

∂xi

(
aij (x, t)

∂u

∂xj

)
= f1 (x, t, u) + f2 (x, t) υ, (x, t) ∈ QT , (1)

with boundary conditions

u (x, 0) = u0 (x) ,
∂u (x, 0)

∂t
= u1 (x) , x ∈ Ω, (2)

u = 0, (x, t) ∈ Σ, (3)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω QT = Ω × (0, T )
is a cylinder 0 < T < ∞,

∑
= ∂Ω × (0, T ) is a lateral surface of the cylinder

QT , u0 ∈ H1
0 (Ω), u1 ∈ L2 (Ω), f1 (x, t, u) is a continuous function in QT × R and

has a bounded derivative with respect to u for all (x, t, u) ∈ QT × R, f2 (x, t) is a
continuous function in QT , the functions aij (x, t), ∂aij(x,t)

∂t i, j = 1, n are continuous
in QT and for all (x, t) ∈ QT satisfy the condition

n∑

i,j=1

aij (x, t) ξiξj ≥ α

n∑

i=1

ξi, α = const > 0, ∀ξ = (ξ1, ..., ξn) ∈ Rn.

Then, by means of the Galerkin method [see 6,7], one can prove that for any control
υ from the space V = L2 (QT ), problem (1)-(3) has a unique solution u = u (υ) from
the space

Y =
{

u

∣∣∣∣u ∈ L∞
(
[0, T ] ;H1

0 (Ω)
)
,
∂u

∂t
∈ L∞ ([0, T ] ; L2 (Ω))

}
.
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The control is selected from the convex closed subset Vad of the space V . The
system’s state should belong to the convex closed subset Yad of the space Y . The
final state of the system is zero, i.e. the following conditions are fulfilled:

u (x, T ) = 0,
∂u (x, T )

∂t
= 0, x ∈ Ω. (4)

The control υ ∈ Vad is assumed to be admissible if the appropriate state of the
system (1)-(3) is the element of the set Yad and satisfies the final conditions (4).
Everywhere in the sequel, it is supposed that the set U of admissible controls is
not empty. The optimal stabilization problem consists of finding such an admissible
control that minimizes the functional

I (υ) =
∫

QT

f (x, t, υ, u (υ)) dxdt, (5)

where F is a given function in QT ×R×R.
It is assumed that F is a continuous function with respect to all the arguments,

convex with respect to the fourth argument and coercive with respect to the third
and fourth argument, growing not rapidly than the quadratic function with respect
to these arguments, and continuously differentiable with respect to them.

Theorem 1. The optimal stabilization problem is solvable.
Proof. Let {υk} ∈ Vad be a minimizing sequence, i.e.

lim
k→∞

I (υk) = inf
υ∈Vad

I (υ) . (6)

Then for the solution of problem (1)-(3) uk = u (υk), k = 1, 2, ..., corresponding
to the controls υk ∈ Vad, the following condition is fulfilled:

uk ∈ Yad and uk (x, T ) = 0,
∂uk (x, T )

∂t
= 0, k = 1, 2, ... . (7)

From the conditions on the function F (x, t, υ, u) in functional (5) it follows that
the sequence {υk} is bounded in L2 (QT ), i.e.

‖υk‖L2(QT ) ≤ c, k = 1, 2, ..., (8)

here and in the sequel, c denotes various constants independent of admissible controls
and estimated quantities.

Taking into account (8) and the conditions on the data of problem (1)-(3), by
means of the results of the works [6,7], for its solution we get the estimation

‖uk‖Y ≤ c, k = 1, 2, ... . (9)

Hence and from (8) it follows that from {υk, uk} we can select such a subsequence,
denote it by {υk, uk}, that as k →∞ it holds

υk → υ0 weakly in L2 (QT ) ,

uk → u0 ∗ −weakly in L∞
(
0, T ; H1

0 (Ω)
)
,
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∂uk

∂t
→ ∂u0

∂t
∗ −weakly in L∞

(
0, T ; H1

0 (Ω)
)
,

and by the imbedding theorem [6]

uk → u0 strongly in L2 (QT ) .

As Vad and Yad are convex, closed sets in V and Y respectively, and they are weakly
closed, then υ0 ∈ Vad and u0 ∈ Yad, moreover u0 = u (υ0) i.e. u0 is a solution of
problem (1)-(3) that corresponds to the control υ0 ∈ Vad. Furthermore, it follows
from (7) that

u0 (x, T ) = 0,
∂u0 (x, T )

∂t
= 0.

Under the conditions imposed on F (x, t, υ, u), functional (5) is weakly lower
semicontinuous, i.e.

lim
k→∞

I (υk) = lim
k→∞

∫

QT

F (x, t, υk, u (υk)) dxdt ≥

≥
∫

QT

F (x, t, υ0, u0) dxdt = I (υ0) . (9)

Thus, it follows from (6) and (9) that υ0 ∈ Vad is an optimal control in problem
(1)-(5), u0 = u (υ0) is the appropriate solution of problem (1)-(3).

The theorem is proved.
For deriving necessary conditions of optimality, in the present paper we use a

modified variant of the penalty method [5,8]. Define the functional

Ik (υ, u) =
∫

QT

F (x, t, υ, u) dxdt+

+
1

2εk

∫

QT

[
∂2u

∂t2
− Lu− f1 (x, t, u)− f2 (x, t) υ

]2

dxdt+

+
1

2εk

∫

QT

[
u2 (x, T ) +

(
∂u (x, T )

∂t

)2
]

dx, (10)

where εk > 0 and εk → 0 as k →∞,

Lu ≡
n∑

i,j=1

∂

∂xi

(
aij (x, t)

∂u

∂xj

)
, moreover, υ ∈ Vad,

∂2u

∂t2
− Lu ∈ L2 (QT ) .

The approximate problem consists of minimization of the functional Ik on the
set Vad × Yad subject to the initial conditions (2).

Theorem 2. The approximate problem is solvable.
Proof. Let {υm, um} be a minimizing sequence, i.e.

lim
m→∞Ik (υm, um) = inf

Vad×Yad

Ik (υ, u) , k = 1, 2, ... .
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From definition of functional (10) it follows that

‖υm‖L2(QT ) ≤ c, ‖um‖L2(QT ) ≤ c.

The form of the functional (10) yields

∂2um

∂t2
− Lum = f1 (x, t, um) + f2 (x, t) υm + gm (x, t) ,

where gm (x, t) is such a function that ‖gm‖L2(QT ) ≤ c.
Hence, taking into account the conditions on the data of problem (1)-(3) by the

standard reasonings from theory of boundary value problems [6,7] we get

‖um‖L∞(0,T ;H1
0 (Ω)) +

∥∥∥∥
∂um

∂t

∥∥∥∥
L∞(0,T ;L2(Ω))

≤ c.

Then from the sequence {υm, um} we can select such a subsequence, denote it
again by {υm, um}, that as m →∞

υm → υ weakly in L2 (QT ) ,

um → u ∗ −weakly in L∞
(
0, T ; H1

0 (Ω)
)
,

∂um

∂t
→ ∂u

∂t
∗ −weakly in L∞ (0, T ; L2 (Ω)) ,

um → u strongly in L2 (QT ) .

The functional Ik (υ, u) is weakly lower-semicontinuous in V × Y . Therefore,

lim
m→∞

Ik (υm, um) ≥ Ik (υ, u) ,

i.e. {υ, u} ∈ Vad × Yad delivers minimum to the functional (10).
Now, establish the form of the convergence that corresponds to the weak form

of the approximate solution of optimization problems.
Definition [5]. The point u is said to be a weak approximate solution of the

problem of minimization of the functional J on the subset U of topological space if
for sufficiently small vicinity O of this set and sufficiently small positive number δ,
the inclusion u ∈ O and the inequality J (u) ≤ inf

v∈U
J (υ) + δ are valid.

According to the given definition, the weakly approximate solution, generally
speaking, lies beyond the set U characterizing the restrictions on the system, but
sufficiently close to some of its elements. Thus, the given restrictions are assumed
to be fulfilled only with some degree of accuracy. And the value of the functional
in the considered point turns out to be sufficiently close to its low boundary on the
given set.

Let the pair (υk, uk) be a solution of the approximate problem. The following
theorem is valid.

Theorem 3. As k →∞, it holds the convergence

υk → υ0 weakly in V, u → u (υ0) weakly in Y,
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uk|t=T → 0 strongly in L2 (Ω) ,
∂uk

∂t

∣∣∣∣
t=T

→ 0 strongly in L2 (Ω) ,

and the inclusions υ0 ∈ Vad, u (υ0) ∈ Yad are true.
Proof. Since for υ = υ0, u = u (υ0), the characterizing “penalty” addends in

expression (10) equal zero, then

Ik (υk, uk) ≤ Ik (υ0, u (υ0)) = I (υ0) = c.

Then from this estimation taking into account the conditions on the function
F (x, t, υ, u) we get ‖υk‖L2(QT ) ≤ c,

1
εk

∥∥∥∥
∂2uk

∂t2
− Luk − f1 (x, t, uk)− f2 (x, t) υk

∥∥∥∥
2

L2(QT )

≤ c,

1
εk
‖uk (x, T )‖L2(Ω) ≤ c,

1
εk

∥∥∥∥
∂uk (x, T )

∂t

∥∥∥∥
L2(QT )

≤ c.

Hence it follows that
∥∥∥∥
∂2uk

∂t2
− Luk − f1 (x, t, uk)− f2 (x, t) υk

∥∥∥∥
L2(QT )

≤ c
√

εk,

‖uk (x, T )‖L2(Ω) ≤ c
√

εk,

∥∥∥∥
∂uk (x, T )

∂t

∥∥∥∥
L2(Ω)

≤ c
√

εk.

Therefore, as
υk → υ0 weakly in L2 (Q) ,

uk → u (υ0) ∗ −weakly in Y,

uk|t=T → 0 strongly in L2 (Q) ,

∂uk

∂t

∣∣∣∣
t=T

→ 0 strongly in L2 (Q) ,

and by convexity and closeness of the sets Vad and Yad they are weakly closed, i.e.
υ0 ∈ Vad, u (υ0) ∈ Yad. The theorem is proved.

As is known, the necessary condition of minimum at the point υ of the functional
J on the set U is the variation inequality

〈
J ′ (υ) , w − υ

〉 ≥ 0, ∀w ∈ U. (11)

The following theorem is valid.
Theorem 4. The functional Ik (υ, u) at the point y = (υk, uk) has the Gato

derivative
I ′k (y) = I ′kυ (υk, uk) , I ′ku (υk, uk) ,

characterized by the equalities

I ′kυ (υk, uk) = Fυ (υk, uk) + pk,

I ′ku (υk, uk) = Fu (υk, uk) + rk,
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where Fυ (υk, uk) and Fu (υk, uk) are the partial derivatives of the function F (x, t, υ, u)
with respect to the third and fourth argument at the point (υk, uk), pk and rk satisfy
the relation

∂2uk

∂t2
− Luk = f1 (x, t, uk) + f2 (x, t) υk + εkpk, (x, t) ∈ QT , (12)

∂2pk

∂t2
− Lpk − ∂f1 (x, t, uk)

∂u
pk = rk, (x, t) ∈ QT , (13)

pk (x, T ) = − 1
εk

∂uk (x, T )
∂t

,
∂pk (x, T )

∂t
=

1
εk

uk (x, T ) , x ∈ Ω, (14)

pk = 0, (x, t) ∈ Σ. (15)

Proof. Calculate the first variation of the functional Ik (υ, u) at the point
y = (υk, uk). By definition, for any w ∈ Vad and for any z ∈ Yad we have:

δIkυ (υk, uk; w − υk) =
d

dλ
Ik (υk + λ (w − υk) , uk)

∣∣∣∣
λ=0

=

=
∫

QT

Fυ (x, t, υk, uk) (w − υk) dxdt+

+
1
εk

∫

QT

(
∂2uk

∂t2
− Luk − f1 (x, t, uk) + f2 (x, t) υk

)
(w − υk) dxdt, (16)

δIku (υk, uk; z − υk) =
d

dλ
Ik (υk, uk + λ (z − υk))

∣∣∣∣
λ=0

=

=
∫

QT

Fu (x, t, υk, uk) (z − υk) dxdt+

+
1
εk

∫

QT

(
∂2uk

∂t2
− Luk − f1 (x, t, uk)− f2 (x, t) υk

)
×

×
(

∂2 (z − uk)
∂t2

− L (z − uk)− ∂f1 (x, t, uk)
∂u

(z − uk)
)

dxdt+

+
1
εk

∫

Ω

[uk (x, T ) (z (x, T )− uk (x, T ))+

+
∂uk (x, T )

∂t

(
∂z (x, T )

∂t
− ∂uk (x, T )

∂t

)]
dx. (17)

If by pk we denote

pk =
1
εk

(
∂2uk

∂t2
− Luk − f1 (x, t, uk)− f2 (x, t) υk

)
,

it follows from (17) that

δIku (υk, uk; z − υk) =
∫

QT

Fu (x, t, υk, uk) (z − uk) dxdt+
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+
∫

QT

[
∂2pk

∂t2
− Lpk − ∂f1 (x, t, uk)

∂u
pk

]
(z − uk) dxdt+

+
∫

QT

(
1
εk

uk (x, T )− ∂pk (x, T )
∂t

)
(z (x, T )− uk (x, T )) dx+

+
∫

QT

(
1
εk

∂uk (x, T )
∂t

+ pk (x, T )
)(

∂z (x, T )
∂t

− ∂uk (x, T )
∂t

)
dx. (17′)

If by rk we denote

rk ≡ ∂2pk

∂t2
− Lpk − ∂f1 (x, t, uk)

∂u
pk,

then from (17’) we get

δIku (υk, uk; z − υk) =
∫

QT

[Fu (x, t, υk, uk) + rk] (z − uk) dxdt+

+
∫

Ω

(
1
εk

uk (x, T )− ∂pk (x, T )
∂t

)
(z (x, T )− uk (x, T )) dx+

+
∫

Ω

(
1
εk

∂uk (x, T )
∂t

+ pk (x, T )
)(

∂z (x, T )
∂t

− ∂uk (x, T )
∂t

)
dx. (18)

Here, taking into account definition 1[5] of the weak approximate solution of the
problem, we get the validity of conditions (14). Therefore, it follows from (16) and
(18) that the functional Ik (υ, u) at the point y = (υk, uk) has the Gato derivative

I ′k (y) =
(
I ′kυ (υk, uk) , I ′ku (υk, uk)

)
,

moreover,
I ′kυ (υk, uk) = Fυ (x, t, υk, uk) + pk,

I ′ku (υk, uk) = Fu (x, t, υk, uk) + rk.

The theorem is proved.
Using theorem 4and relation (11), we get a necessary condition of optimality for

the approximate problem.
Theorem 5. The solution of the approximate problem is characterized by the

system including variational inequalities
∫

QT

[Fυ (x, t, υk, uk) + pk] (w − υk) dxdt ≥ 0, ∀w ∈ Vad,

∫

QT

[Fu (x, t, υk, uk) + rk] (z − uk) dxdt ≥ 0, ∀z ∈ Yad,
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equation (12) with boundary conditions

uk (x, 0) = u0 (x) ,
∂uk (x, 0)

∂t
= u1 (x) , x ∈ Ω

uk = 0, (x, t) ∈ Σ

and equation (13) with boundary conditions (14) and (15). Since in equation (13)

the right side belongs to L2 (QT ) and in conditions (14)
∂uk (x, T )

∂t
∈ L2 (Ω), under

the solution of boundary value problem (13)-(15) we understand the weak classic
solution, i.e. the solution from L2 (QT ).

Thus, according to the results obtained above, the solution of the approximate
problem for a sufficiently large number k may be selected as a weakly approximate
solution of the optimal stabilization problem.
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