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TWO–WEIGHTED INEQUALITY FOR PARABOLIC
SINGULAR INTEGRAL OPERATORS IN
VECTOR-VALUED LEBESGUE SPACES

Abstract

In this paper, the author establishes the boundedness in weighted
Lp,ω(Rn+1;E) spaces on Rn+1 with parabolic singular integral operators. The
conditions of these theorems are satisfied by many important operators in analy-
sis. Sufficient conditions on weighted functions ω and ω1 are given so that cer-
tain parabolic singular integral operator is bounded from the weighted Lebesgue
spaces Lp,ω(Rn+1; E) to Lp,ω1(Rn+1;E).

In this paper, the author establishes the boundedness in weighted Lp,ω(Rn+1;E)
spaces on Rn+1 with parabolic singular integral operators. The conditions of these
theorems are satisfied by many important operators in analysis. Sufficient condi-
tions on weighted functions ω and ω1 are given so that certain parabolic singular
integral operator is bounded from the weighted Lebesgue spaces Lp,ω(Rn+1; E) to
Lp,ω1(Rn+1;E). The parabolic singular integral operators by many interesting op-
erators in harmonic analysis, such as the parabolic Calderon-Zygmund operators,
parabolic maximal operators, parabolic Hardy-Littlewood maximal operators, and
so on. See [13] for details.

Note that singular integral operators with Calderon-Zygmund kernels were proved
in [11] and for singular integral operators, defined on homogeneous groups, in [12],
[7] (see also [6]).

Let Rn be the n-dimensional Euclidean space of points x′ = (x1, . . . , xn), |x′|2 =
n∑

i=1
x2

i and denote by x = (x′, t) = (x1, . . . , xn, t) a point in Rn+1. An almost

everywhere positive and locally integrable function ω : Rn+1 → Rn will be called a
weight.

Let us now endow Rn+1 with the following parabolic metric introduced by Fabes
and Riviére in [4]:

d(x, y) = ρ(x− y), where ρ(x) =

√
|x′|2 +

√
|x′|4 + 4t2

2
. (1)

A ball with respect to the metric d centered at zero and of radius r is the ellipsoid

Er(0) =
{

x ∈ Rn+1 :
|x′|2
r2

+
t2

r4
< 1

}
.

Obviously, the unit sphere with respect to this metric coincides with the unit
sphere in Rn+1, i.e.,

∂E1(0) ≡ Σn+1 =



x ∈ Rn+1 : |x| =

(
n∑

i=1

x2
i + t2

) 1
2

= 1



 .
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Let
d̃(x, y) = ρ̃(x− y), ρ̃(x) = max{|x′|, t 1

2 }.
I be a parabolic cylinder centered at some point x of radius r, that is, I ≡

Ir(x) = {y = (y′, τ) ∈ Rn+1 : |x′−y′| < r, |t− τ | < r2}. It is easy to see that for any
ellipsoid Er there exist cylinders I and I with measures comparable with rn+2 and
such that I ⊂ Er ⊂ I. Obviously, this implies an equivalence of both metrics and
the topologies induced by them. Later we shall use this equivalence without making
reference to, except if required.

Let E-Banach space norm of the element a ∈ E be determined by ‖a‖E .
We say that a Banach space E is ζ-convex, or convex be Burkholder [3] if there

exists a symmetric function of ζ(a, b) on E×E, convex in each variable and satisfying
the conditions

ζ(0, 0) > 0, ζ(a, b) ≤ ‖a, b‖E , ‖a‖E = ‖b‖E = 1.

Suppose that ω is a positive, measurable, and real function defined in Rn+1, i.e.,
is a weight function. By Lp,ω(Rn+1; E) we denote a space of measurable E-valued
functions f(x) on x ∈ Rn+1 with finite norm

‖f‖Lp,ω(Rn;E) =




∫

Rn

‖f(x)‖p
Eω(x)dx




1/p

, 1 ≤ p < ∞.

Theorem 1. [4] If the E-valued function f : Rn → E integrable by Bochner,
then ∥∥∥∥∥∥

∫

Rn

f(x)dx

∥∥∥∥∥∥
E

≤
∫

Rn

‖f(x)‖E dx.

It is worth noting that ρ(x) has been employed in the study of singular integral
operators with Calderon-Zygmund kernels of mixed homogeneity (see [4]).

Definition 1. A function K defined on Rn+1 × (Rn+1 \ {0}) is said to be a
parabolic Calderon-Zygmund (PCZ) kernel in Rn+1 if

i) K(x, ·) ∈ C∞(Rn+1 \ {0}) for almost every x ∈ Rn+1;
ii) K(x, δr(y)) = r−(n+2)K(x, y) for each r > 0, y ∈ Rn+1 \ {0} for almost every

x ∈ Rn+1, where δr(y) = (ry′, r2τ);
iii)

∫
Σn+1

K(x, y)dσy = 0 for almost every x ∈ Rn+1, where dσ is the element of

area of the Σn+1;

iv) for every multi-index β, vrai sup
x∈Rn+1

sup
y∈Σn+1

∣∣∣∣
(

∂
∂y

)β
K(x, y)

∣∣∣∣ < ∞ .

Let K be a parabolic Calderon-Zygmund kernel and T be the integral operator

Tf(x) ≡
∫

Rn

t∫

0

K(x, x− y)f(y)dy = lim
ε→0

∫

Rn

t−ε∫

0

K(x, x− y)f(y)dy. (2)

Theorem 2. Let E be ζ-convex Banach lattice. Let K be a parabolic Calderon-
Zygmund kernel and T be the integral operator (2). Moreover, let p ∈ (1,∞), ω(t)
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be a weight function on (0,∞), ω1(t) be a positive increasing function on (0,∞) and
the following conditions be satisfied:

(a) there exists a constant b > 0 such that ω1(2t) ≤ bω(t) for a.e., t > 0,

(b) A ≡ sup
τ>0




∞∫

2τ

ω1(t)t−pdτ







τ∫

0

ω1−p′(t)dt




p−1

< ∞.

Then there exists a constant c = c(n, p, ω, ω1,K) such that for all f ∈ Lp,ω(Rn+1
+ ;E)

∫

Rn+1
+

‖Tf(x)‖p
Eω1(t)dx′dt ≤ c

∫

Rn+1
+

‖f(x)‖p
Eω(t)dx′dt. (3)

Proof. Suppose that f ∈ Lp,ω(Rn+1
+ ; E) and ω1 are positive increasing functions

on (0,∞) that satisfy the condition (a), (b).
Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(0+) +

t∫

0

ψ(τ)dτ, t > 0,

where ω1(0+) = limt→0 ω1(t) and ψ(t) ≥ 0 on (0,∞). In fact there exists a se-
quence of increasing absolutely continuous functions $n such that $n(t) ≤ ω1(t)
and lim

n→∞$n(t) = ω1(t) for any t ∈ (0,∞) (see [1], [6], [8], [9]).
We have

∫

Rn+1
+

‖Tf(x)‖p
Eω1(t)dx′dt = ω1(0+)

∫

Rn+1
+

‖Tf(x)‖p
Edx+

+
∫

Rn+1
+

‖Tf(x)‖p
E




t∫

0

ψ(τ)dτ


 dx = I1 + I2.

If ω1(0+) = 0, then J1 = 0. If ω1(0+) 6= 0 by the boundedness of T in Lp(Rn+1;E)
by the (a), we have

I1 ≤ cω1(0+)
∫

Rn+1
+

‖f(x)‖p
Edx ≤

≤ c

∫

Rn+1
+

‖f(x)‖p
Eω1(2t)dx′dt ≤ c

∫

Rn+1
+

‖f(x)‖p
Eω(t)dx′dt.

After changing the order of integration in I2, we have

I2 =

∞∫

0

ψ(λ)




∫

Rn

∞∫

λ

‖Tf(x)‖p
Edx′dt


 dλ ≤



48
[S.H.Gasumova]

Transactions of NAS of Azerbaijan

≤ c

∞∫

0

ψ(λ)




∫

Rn

∞∫

λ

∥∥∥∥∥∥∥

∫

Rn

∞∫

λ/2

K(x, x− y)f(y)dy

∥∥∥∥∥∥∥

p

E

dx


 dλ+

+c

∞∫

0

ψ(λ)




∫

Rn

∞∫

λ

∥∥∥∥∥∥∥

∫

Rn

λ/2∫

0

K(x, x− y)f(y)dy

∥∥∥∥∥∥∥

p

E

dx


 dλ =

= I21 + I22.

Using the boundeedness of T in Lp(Rn+1; E), we obtain

I21 ≤ c

∞∫

0

ψ(t)




∫

Rn

∞∫

λ/2

‖f(y′, τ)‖p
Edy′dτ


 dt =

= c

∫

Rn+1
+

‖f(y)‖p
E




2τ∫

0

ψ(t)dt


 dy ≤ c

∫

Rn+1
+

‖f(y)‖p
Eω1(2τ)dy′dτ ≤

≤ c1

∫

Rn+1
+

‖f(y)‖p
Eω(τ)dy′dτ.

Let us estimate I22. For t > λ and 0 ≤ τ ≤ λ/2, we have t/2 ≤ |t − τ | ≤ 3t/2,
and so

I22 ≤ c

∞∫

0

ψ(λ)




∫

Rn

∞∫

λ




∫

Rn

λ/2∫

0

‖f(y)‖E

ρ(x− y)n+2
dy




p

dx


 dλ ≤

≤ c

∞∫

0

ψ(λ)




∞∫

λ

∫

Rn




λ/2∫

0

∫

Rn

‖f(y′, τ)‖E

(|x′ − y′|+ t1/2)n+2
dy




p

dx′dt


 dλ.

For x = (x′, t) ∈ Rn+1 let

I(t, λ) =
∫

Rn




λ/2∫

0

∫

Rn

‖f(y′, τ)‖E

(|x′ − y′|+ t1/2)n+2
dy




p

dx′ =

=
∫

Rn




λ/2∫

0




∫

Rn

‖f(y′, τ)‖E

(|x′ − y′|+ t1/2)n+2
dy′


 dτ




p

dx′.

Using the Minkowski and Young inequalities, we obtain

I(t, λ) ≤




λ/2∫

0




∫

Rn

‖f(y′, τ)‖p
Edy′




1/p 


∫

Rn

dy′

(|y′|+ t1/2)n+2


 dτ




p

=
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=




λ/2∫

0

‖f(·, τ)‖Lp(Rn;E)dτ




p 


∫

Rn

dy′

(|y′|+ t1/2)n+2




p

=

=
c

tp




λ/2∫

0

‖f(·, τ)‖Lp(Rn;E)dτ




p 


∫

Rn

dy′

(|y′|+ 1)n+2




p

=

=
c

tp




λ/2∫

0

‖f(·, τ)‖Lp(Rn;E)dτ




p

.

Integrating in (0,∞), we get

I22 ≤ c

∞∫

0

ψ(λ)




∞∫

λ




λ/2∫

0

‖f(·, τ)‖Lp(Rn;E)dτ




p

dt

tp


 dλ =

= c

∞∫

0

ψ(λ)λ−p−1




λ/2∫

0

‖f(·, τ)‖Lp(Rn;E)dτ




p

dλ.

The Hardy inequality

∞∫

0

ψ(λ)λ−p−1




λ/2∫

0

‖f(·, τ)‖Lp(Rn;E)dτ




p

dλ ≤

≤ C

∫

R+

‖f(·, τ)‖p
Lp(Rn;E)ω(τ)dτ =

∫

Rn+1
+

‖f(y)‖p
Eω(τ)dy′dτ.

for p ∈ (1,∞) is characterized by the condition C ≤ cA′, where

A′ ≡ sup
τ>0




∞∫

2τ

ψ(t)t−p−1dτ







τ∫

0

ω1−p′(t)dt




p−1

< ∞.

Note that ∞∫

2t

ψ(τ)τ−p−1dτ = p

∞∫

2t

ψ(τ)dτ

∞∫

τ

λ−pdλ =

= p

∞∫

2t

λ−pdλ

λ∫

2t

ψ(τ)dτ ≤ p

∞∫

2t

λ−pω1(λ)dλ.

By theorem from condition (b) it follows A′ ≤ pA < ∞. Hence, applying the
Hardy inequality, we obtain

I22 ≤ c

∞∫

0

‖f(·, τ)‖p
Lp(Rn;E)ω(τ)dτ ≤ c

∫

Rn+1
+

‖f(y)‖p
Eω(τ)dy′dτ.
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Combining the estimates of I1 and I2, we obtain (3) for ω1(t) = ω1(0+) +
t∫
0

ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue integral

sign, this implies (3).
Theorem 3. Let E be ζ-convex Banach lattice. Let K be a parabolic Calderon-

Zygmund kernel and T be the integral operator (2). Moreover, let p ∈ (1,∞), ω(t)
be a weight function on (0,∞), ω1(t) be a positive decreasing function on (0,∞).
Assume that there exists a constant b1 > 0 such that the inequality ω1(t) ≤ b1 ω(t)
holds for almost all t > 0. Then there exists a constant c = c(n, p, K) such that for
all f ∈ Lp,ω(Rn+1

+ ; E),

‖Tf‖Lp,ω1 (Rn+1
+ ;E) ≤ c‖f‖Lp,ω(Rn+1

+ ;E). (4)

Proof. Without loss of generality we can suppose that ω1 may be represented
by

ω1(t) = ω1(+∞) +

∞∫

t

ψ(τ)dτ, t > 0,

where ω1(+∞) = lim
t→∞ω1(t) and ψ(t) ≥ 0 on (0,∞).

We have
∫

Rn+1
+

‖Tf(x)‖p
Eω1(t)dx′dt = ω1(+∞)

∫

Rn+1
+

‖Tf(x)‖p
Edx+

+
∫

Rn+1
+

‖Tf(x)‖p
E




∞∫

t

ψ(τ)dτ


 dx = J1 + J2.

If ω1(+∞) = 0, then J1 = 0. If ω1(+∞) 6= 0 by the boundedness of T in
Lp(Rn+1

+ ; E)

J1 ≤ cω1(+∞)
∫

Rn+1
+

‖f(x)‖p
Edx ≤

≤ c

∫

Rn+1
+

‖f(x)‖p
Eω1(t)dx′dt ≤ c

∫

Rn+1
+

‖f(x)‖p
Eω(t)dx′dt.

After changing the order of integration in J2, using the boundeedness of T in
Lp(Rn+1; E) and applying the Minkowski inequality, we obtain

J2 =

∞∫

0

ψ(λ)




∫

Rn

λ∫

0

‖Tf(x)‖p
Edx′dt


 dλ =

=

∞∫

0

ψ(λ)




∫

Rn

λ∫

0

∥∥∥∥∥∥

∫

Rn

t∫

0

K(x, x− y)f(y)χ{0≤τ≤λ}(y)dy

∥∥∥∥∥∥

p

E

dx′dt


 dλ ≤
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≤ c

∞∫

0

ψ(λ)




∫

Rn

λ∫

0

‖f(x)‖p
Edx′dt


 dλ =

= c

∫

Rn+1
+




∞∫

t

ψ(λ)dλ


 ‖f(x)‖p

Edx ≤ c‖f‖p

Lp,ω1 (Rn+1
+ ;E)

≤ c‖f‖p

Lp,ω(Rn+1
+ ;E)

.

Combining the estimates of J1 and J2, we get (4) for ω1(t) = ω1(+∞)+
∞∫
t

ψ(τ)dτ .

By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this
implies (4).

Corollary 1. Let E be ζ-convex Banach lattice. Let K be a parabolic Calderon-
Zygmund kernel and T be the integral operator (2). Moreover, let p ∈ (1,∞) and
ω(t) be a positive decreasing function on (0,∞). Then there exists a constant c =
c(n, p,K) such that for all f ∈ Lp,ω(Rn+1

+ ; E),

‖Tf‖Lp,ω(Rn+1
+ ;E) ≤ c‖f‖Lp,ω(Rn+1

+ ;E).
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