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Aynur I. GASANOVA

DETERMINATION OF THE COEFFICIENT OF

PARABOLIC EQUATION IN THE PROBLEM WITH

NONLINEAR BOUNDARY CONDITION

Abstract

The goal of the paper is to investigate the well-posedness of the inverse prob-
lem on definition of the coefficient at a minor term of a parabolic equation in
the nonlinear boundary condition problem under nonlocal additional condition.
A theorem on theuniqueness and “conditional” stability of the problem under
consideration is proved.

Let Rn be an n-dimensional Euclidean space, x = (x1, ..., xn) be an arbitrary
point of the bounded domain D ⊂ Rn with a sufficiently smooth boundary ∂D,
Ω = D × (0; T ], S = ∂D × [0;T ], 0 < T be a fixed number.

The spaces C l (·), C l+α (·), C l,l/2 (·), C l+α,(l+α)/2 (·), l = 0, 1, 2, α ∈ (0, 1) and
the norms in these spaces were determined for example in [1, pp. 12-20]

‖·‖l = ‖·‖Cl , ut =
∂u

∂t
, uxj =

∂u

∂xj
, i = 1, n,

∆u =
N∑

i=1

∂2u

∂x2
i

is a Laplace operator,
∂u

∂ν
is an internal conormal derivative.

We consider an inverse problem on definition of a pair of functions {u (x, t) , c (x)}
from the conditions

ut −∆u + c (x) u = f (x, t) , (x, t) ∈ Ω (1)

u (x, 0) = ϕ (x) , x ∈ D = D ∪ ∂D (2)

∂u

∂ν
= ψ (x, t, u) , (x, t) ∈ S (3)

T∫

0

u (x, t) dt = h (x) , x ∈ D, (4)

here f (x, t) , ϕ (x) , ψ (x, t, p) , h (x) are the given functions.
The coefficient inverse problems were studied in the papers [2-4] (see also the

references in these papers).
For the input data of problem (1)-(4), we make the following suppositions:
10. f (x, t) ∈ Cα,α,/2

(
Ω

)
;

20. ϕ (x) ∈ C2+α
(
D

)
;

30. ψ (x, t, p) ∈ Cα,α,/2
(
Ω×R1

)
, there exists m1 > 0, such that for any (x, t) ∈

Ω and p1, p2 ∈ R1 : |ψ (x, t, p1)− ψ (x, t, p2)| ≤ m1 |p1 − p2|;
40. h (x) ∈ C2+α

(
D

)
.
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Definition 1. A pair of functions {c (x) , u (x, t)} is said to be a solution of
problem (1)-(4) if:

1) c (x) ∈ C
(
D

)
;

2) u (x, t) ∈ C2,1 (Ω) ∩ C1,0
(
Ω

)
;

3) for these functions, relations (1)-(4) are fulfilled, therewith, condition (3) is
determined in the following way:

∂u (x, t)
∂ν (x, t)

= lim
y→x
y∈σ

∂u (y, t)
∂ν (x, t)

,

where σ is a closed cone with a vertex x, that is contained in D ∪ {x}.
The uniqueness theorem and also estimation of stability of the solutions of inverse

problems occupies a central place in investigation of their well-posedness matters.
In the paper, the uniqueness of the solution of problem (1)-(4) is proved under more
general suppositions and the estimation characterizing the “conditional” stability of
the problem is established.

Let {ui (x, t) , ci (x)} be the solution of problem (1)-(4) corresponding to the data
fi (x, t), ϕi (x), ψi (x, t, ui), hi (x), i = 1, 2.

Definition 2. Say that the solution of problem (1)-(4) is stable if for any
ε > 0 there will be found δ (ε) > 0 such that for ‖f1 − f2‖ < δ, ‖ϕ1 − ϕ2‖ < δ,
‖ψ1 − ψ2‖ < δ, ‖h1 − h2‖ < δ the inequality ‖u1 − u2‖+ ‖c1 − c2‖ ≤ ε is fulfilled.

Theorem. Let:
1. fi, ϕi, ψi, hi, i = 1, 2 satisfy conditions 1 0-4 0, respectively;
2. there exist the solutions {ui (x, t) , ci (x)}, i = 1, 2, of problem (1)-(4) in the

sense of definition 1, and they belong to the set

Kα =
{

(u, c)|u (x, t) ∈ C2+α,1+α/2
(
Ω

)
, c (x) ∈ Cα

(
D

)}
.

Then there exists a T ∗ > 0 such that for (x, t) ∈ D × [0, T ∗] the solution of
problem (1)-(4) is unique, and it is valid the stability estimation

‖u1 − u2‖0 + ‖c1 − c2‖0 ≤

≤ m2 [‖f1 − f2‖0 + ‖ϕ1 − ϕ2‖2 + ‖ψ1 − ψ2‖0 + ‖h1 − h2‖2] , (5)

where m2 > 0 depends on the data of problem (1)-(4) and the set Kα.

Proof of the theorem. At first prove the validity of estimation (5). In order
to get a uniqueness theorem, in the arguments below we should suppose that per-
turbations of input data everywhere identically equal zero. Allowing for (2) and the
conditions of the theorem, from equation (1) for the function c (x) we get

c (x) =


u (x, T )− ϕ (x)−∆h (x)−

T∫

0

f (x, t) dt


 · (h (x))−1 , (6)

Denote z (x, t) = u1 (x, t)− u2 (x, t), λ (x) = c1 (x)− c2 (x),
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δ1 (x, t) = f1 (x, t)− f2 (x, t) , δ2 (x) = ϕ1 (x)− ϕ2 (x),
δ3 (x, t, p) = ψ1 (x, t, p)− ψ2 (x, t, p), δ4 (x) = h1 (x)− h2 (x).
We can verify that the functions λ (x), w (x, t) = z (x, t) − δ2 (x) satisfy the

relations of the system:

wt −∆w = F (x, t) , (x, t) ∈ Ω, (7)

w (x, 0) = 0, x ∈ D;
∂w

∂ν
(x, t) = Ψ (x, t) , (x, t) ∈ S (8)

λ (x) = z (x, T ) · (h1 (x))−1 −H (x) , x ∈ D, (9)

where
F (x, t) = δ1 (x, t)−∆δ2 (x)− c1 (x) z (x, t)− δ2 (x) u2 (x, t) ,

Ψ(x, t) = δ3 (x, t, u1)− ∂δ2

δν
(x, 0) + ψ2 (x, t, u1)− ψ2 (x, t, u2) ,

H (x) =






δ2 (x) + ∆δ4 (x) +

T∫

0

δ1 (x, t) dt


h2 (x)+

+


u2 (x, T )− ϕ2 (x)−∆h2 (x)−

T∫

0

f2 (x, t) dt


 δ4 (x)



×

× [h1 (x) · h2 (x)]−1 .

Under the conditions of the theorem, if follows that there exists a classic solution
of problem (7), (8) on definition of w (x, t) and it may be represented in the form
[51, p. 182]

w (x, t) =

t∫

0

∫

D

Γ (x, t; ξ, τ) F (ξ, τ) dξdτ +

t∫

0

∫

∂D

Γ (x, t; ξ, τ) ρ (ξ, τ) dξ∂Ddτ, (10)

where Γ (x, t; ξ, τ) is a fundamental solution of the equation wt − ∆w = 0, dξ =
dξ1...dξn, dξ∂D is an element of the surface ∂D, ρ (x, t)is a continuous bounded so-
lution of the following integral equation [2 p. 183]

ρ (x, t) = 2

t∫

0

∫

D

Γ (x, t; ξ, τ)
∂ν (x, t)

F (ξ, τ) dξdτ+

+2

t∫

0

∫

D

Γ (x, t; ξ, τ)
∂ν (x, t)

ρ (ξ, τ) dξ∂Ddτ − 2Ψ (x, t) . (11)

Assume
χ = ‖u1 − u2‖0 + ‖c1 − c2‖0 .
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Estimate the function |z (x, t)|. Taking into account that z (x, t) = w (x, t) +
δ2 (x), from (10) we get:

|z (x, t)| ≤ |w (x, t)|+ |δ2 (x)| ≤ |δ2 (x)|+
t∫

0

∫

D

|Γ (x, t; ξ, τ)| · |F (ξ, τ)| dξdτ+

+

t∫

0

∫

D

|Γ (x, t; ξ, τ)| · |ρ (ξ, τ)| dξ∂Ddτ, (12)

For the expression
∫
D

|Γ (x, t; ξ, τ)| dξ in the second summand of the right hand

side of (12), the following estimation is true:
∫

D

|Γ (x, t; ξ, τ)| dξ ≤ m3. (13)

By the requirements imposed on the input data and on the set F (x, t), the
integrand function Kα in the second summand of the right side of (12), satisfies the
estimation

|F (x, t)| ≤ |δ1 (x, t)|+ |∆δ2 (x)|+ |c1 (x)| |z (x, t)|+

+ |λ (x)| |u2 (x, t)| ≤ ‖f1 − f2‖0 + ‖ϕ1 − ϕ2‖2 + m4 · χ, (x, t) ∈ Ω (14)

here m4 > 0 depends on the data of problem (1)-(4) and the set Kα.
The expression

∫
∂D

|Γ (x, t; ξ, τ)| dξ∂D in the third summand of the right side of

(12) satisfies the estimation
∫

∂D

|Γ (x, t; ξ, τ)| dξ∂D ≤ m5. (15)

Taking into account expression (11), the conditions of the theorem, definition of
the set Kα and the following estimation [5, p. 20]:

∫

D

∣∣∣∣
∂Γ (x, t; ξ, τ)

∂ν (x, t)

∣∣∣∣ dξ ≤ m6 (t− τ)−µ ,
1
2

< µ < 1,

for the function ρ (x, t) we get:

|ρ (x, t)| ≤ m7 [‖δ1‖0 + ‖δ2‖2 + ‖δ3‖0 + χ] + m8 ‖ρ‖ · t1−µ, (x, t) ∈ S

where m7,m8 > 0 depend on the data of problem (1)-(4) and the set Kα.
The last inequality is fulfilled for all (x, t) ∈ ∂D × [0, T ], therefore the following

estimation is true:

‖ρ‖0 ≤ m7 [‖δ1‖0 + ‖δ2‖2 + ‖δ3‖0 + χ] + m8t
1−µ ‖ρ‖0 .
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Let 0 < T1 ≤ T be a number such that m8T
1−µ < 1. Then for all (x, t) ∈

∂D × [0, T1] we have

‖ρ‖0 ≤ m9 [‖δ1‖0 + ‖δ2‖2 + ‖δ3‖0 + χ] , (16)

where m9 > 0 depends on the data of problem (1)-(4) and the set Kα.
Taking into account inequalities (13), (14), (15) and (16) for |z (x, t)|, from (12)

we get:
|z (x, t)| ≤ m10 [‖δ1‖0 + ‖δ2‖2 + ‖δ3‖0] + m11χt, (x, t) ∈ Ω (17)

where m10, m11 > 0 depend on the data of problem (1)-(4) and the set Kα.
Now estimate the function |λ (x)|. From (9) it follows

|λ (x)| ≤ |z (x, t)| ·
∣∣∣h1 (x)−1

∣∣∣ + |H (x)| .

Taking into account the conditions of the theorem, definitions of the set Kα,
inequalities (17) and expressions for H (x), from the last inequality we get:

|λ (x)| ≤ m12 [‖δ1‖0 + ‖δ2‖2 + ‖δ3‖0 + ‖δ4‖2] + m13tχ, x ∈ Ω (18)

where m12, m13 > 0 depend on the data of the problem and the set Kα.
Inequalities (17) and (18) are satisfied for any values of (x, t) ∈ D × [0, T ].
Consequently, combining these inequalities, we get

χ ≤ m14 [‖δ1‖0 + ‖δ2‖2 + ‖δ3‖0 + ‖δ4‖2] + m15tχ, (19)

where m14,m15 > 0 depend on the data of problem (1)-(4) and the set Kα.
Let T2 (0 < T2 ≤ T ) be a number such that m15T2 < 1. Then from (19) we

get that for (x, t) ∈ D × [0, T ∗], T ∗ = min (T1, T2), the stability estimation for the
solution of problem (1)-(4) is true.

Uniqueness of the solution of problem (1)-(4) follows from estimation (5) for
f1 (x, t) = f2 (x, t), ϕ1 (x) = ϕ2 (x), ψ1 (x, t, u) = ψ2 (x, t, u), h1 (x) = h2 (x).

The theorem is completely proved.
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