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ON ASYMPTOTIC DISTRIBUTION OF
EIGENVALUES OF 2-ND ORDER

OPERATOR-DIFFERENTIAL EQUATIONS ON A
SEMI-AXIS

Abstract

In the paper, asymptotic distribution of eigenvalues of operator-differential
equations on a semi-axis is studied. An asymptotic formula for the function of
distribution eigen values of the given operator is obtained.

Let H be a separable Hilbert space. Denote by H1 a Hilbert space of strongly
measurable functions f (x) (0 ≤ x ≤ ∞) with the values from H for which
∞∫
0

‖f (x)‖2
H dx < ∞. A scalar product of the elements f (x), g (x) ∈ H1 is defined

by the equality

(f, g) =

∞∫

0

(f (x) , g (x))H dx.

In the space H1 = L2 [H; 0 ≤ x ≤ ∞] consider a differential expression

l (y) = (−1)n y(2n) +
2n∑

j=2

Qj (x) y(2n−j), 0 ≤ x < ∞ (1)

with boundary conditions

y(l1) (0) = y(l2) (0) = ... = y(ln) (0) = 0. (2)

Here 0 ≤ l1 ≤ l2 ≤ ... ≤ ln ≤ 2n− 1, y ∈ H1, and the derivatives are understood
in the strong sense. Everywhere by Q (x) we’ll denote Q2n (x).

Let D′ be a totality of all the functions of the form
p∑

k=1

ϕk (x) f , where ϕk (x) are

finite, 2n times continuously differentiable scalar functions, and fk ∈ D (Q).
Determine the operator L′ generated by expression (1) and boundary conditions

(2) with domain of definition D′.
Subject to certain conditions, the operator L′ is a positive and symmetric oper-

ator in H1. We’ll assume that the closure L of the operator L′ is self-adjoint and
lower bounded operator in H1.

Under some conditions on the operator coefficients Q (x), Qj (x), j = 1
2,2n−1 it

is proved that the operator L has a discrete spectrum.
Denote by λ1, λ2, ..., λn, ... eigenvalues, by ϕ1 (x) , ϕ2 (x) , ..., ϕn (x) , ... orthonor-

med eigenfunctions of the operator L. Denote by N (λ) the number of eigenvalues
of the operator L, smaller than the given number λ, i.e.

N (λ) =
∑

λn<λ

1.
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N (λ) is said to be a distribution function of eigenvalues of the operator L. The
goal of our paper is to study asymptotic behavior of the function N (λ) as λ →∞.

Note that A. G. Kostyuchenko and B. M. Levitan [1] have first studied asymp-
totic behavior of eigenvalues of Sturm-Liouville operator with a self-adjoint operator
coefficient. In the paper [2], E. Abdukadyrov generalized the results of [1].

The Green function and asymptotic behavior of the function N (λ) for higher
order operator-differential equations given on the axis and semi-axis was studied in
the papers of M. Bayramoglu [3], H.I. Aslanov [4], A.A. Abudov and H.I. Aslanov
[5].

Enumerate the main suppositions under which the asymptotic behavior of the
Green function is investigated and an asymptotic formula for eigen values of the
operator L is obtained.

1. The operators Q (x) for almost all x ∈ [0,∞] are self-adjoint in H, and almost
for all x there exists a general domain of definition H dense in D (Q), on which the
operators Q (x) are uniformly lower bounded, i.e. there exist d > 0 such that for all
x and for all f ∈ D (Q) (Q (x) , f, f) > d (f, f).

2. For |x− ξ| ≤ 1 it holds
∥∥[Q (ξ)−Q (x)]Q−a (x)

∥∥
H

< A |x− ξ| ,
∥∥∥Q− 1

2n (x) Q
1
2n (ξ)

∥∥∥
H

< C1,

∥∥∥Q
1
2n (x)Q− 1

2n (ξ)
∥∥∥

H
< C2,

where 0 < a < 2n+1
2n , A,C1, C2 are constant numbers.

3. For |x− ξ| > 1 it holds the inequality
∥∥∥∥Q (ξ) exp

[
−Jmω1

2
|x− ξ|Q 1

2n (x)
]∥∥∥∥

H

< B, B = const

where Jmω1 = min
i=1,2,..,n

{
Lmωi > 0, ω2n

i = −1
}

.

4. For all x ∈ [0,∞] it holds the inequality
∥∥∥Qj (x) Q

1−j
2n

+ε (x)
∥∥∥ < C, j = 2, 2n− 1, ε > 0.

5. Almost for all x ∈ [0,∞] the operator Q (x) is inverse for a completely
continuous operator.

Denote by β1 (x) ≤ β2 (x) ≤ ... ≤ βn (x) ≤ ... the operators Q (x) in the in-
creasing order, for which we’ll assume that they are measurable functions. Further-

more, suppose that the series
∞∑

k=1

β
1−4n
2n

k (x) converges almost everywhere, and its sum

F (x) ∈ L1 [0,∞].
In the paper [4] we have investigated the Green function G (x, η, µ) of the oper-

ator L and obtained the following asymptotic formula

G (x, η, µ) = g (x, η, µ) [E + r (x, η, µ)] (3)
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where ‖r (x, η, µ)‖H = O (1) as µ →∞ uniformly with respect to (x, η).
Here the function g (x, η, µ) is the Green function of the equation

(−1)n y(2n) + {Q (x) + µ} y = 0,

with “frozen” coefficients at the point ”ξ” on the axis. It is of the form:

g (x, η, µ) =
[Q (x) + µE]

1−2n
2n

2ni

n∑

α=1

ωαeiωα[Q(x)+µE]
1
2n |x−η|. (4)

Here ωk, k = 1, 2, ..., n are the roots from (−1) of degree 2n lying in the upper
half-plane.

It holds the following main
Theorem. It conditions 1)-5) are fulfilled, then as µ →∞ it holds the formula

∞∫

0

N (λ) dλ

(λ + µ)3
∼ Cn

8

∞∫

0

dx
{
βkj (x) + µ

} 4n−1
2n

, (5)

where Cn = i
n2




n∑
α=1

ωα +
n∑

α1 6=α2
α1,α2=1

ωα1ωα2
ωα1+ωα2


.

Proof. As G (x, η, µ) is the Green function of the operator L, we can write

ϕn (x) = (λn + µ)

∞∫

0

G (x, η, µ)ϕn (η) dη. (6)

From equality (3) we get

ϕn (x) ∼ (λn + µ)

∞∫

0

g (x, η, µ) ϕn (η) dη as µ →∞

or
ϕn (x)
λn + µ

∼
∞∫

0

g (x, η, µ) ϕn (η) dη. (7)

Denote an =
∞∫
0

g (x, η, µ) ϕn (η) dη. Then we have

‖ϕn (x)‖2
H

(λn + µ)2
∼ ‖an‖2

H .

Hence
N∑

n=1

1
(λn + µ)2

∼
∞∫

0

(
N∑

n=1

‖an‖2
H

)
dx. (8)

The numbers an are the Fourier coefficients for the operator-valued function
g (x, η, µ) by the orthonormed system of vectors {ϕn (x)}.
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Then, from the Parseval equality we have:

N∑

n=1

‖an‖2
H =

∞∫

0

∞∑

m=1

r2
mm (x, η, µ) dη (9)

where rii (x, η, µ) are diagonal elements of the matrix corresponding to the operator
g (x, η, µ) in the orthonormed basis made of eigen vectors βk (x) of the operator
Q (x), i.e.

rmm (x, η, µ) =
[βm (x) + µ]

1−2n
2n

2ni

n∑

α=1

ωαeiωα[βm(x)+µ]
1
2n |x−η|.

Then, from (9) we get:

∞∑

m=1

‖an‖2 =

∞∫

0

∞∑

m=1

{
{βm (x) + µ} 1−2n

2n

2ni

n∑

α=1

ωαeiωα[βm(x)+µ]
1
2n |x−η|

}2

dη =

=
∞∑

m=1

{βm (x) + µ} 1−2n
2n

−4n2





∞∫

0

n∑

α=1

ω2
α

[
n∑

α=1

ω2
αe2iωα[βm(x)+µ]

1
2n |x−η|+

+2
∑

α1,α2 6=1
α1=α2

ωα1ωα2e
i(ωα1+ωα2){βm(x)+µ} 1

2n |x−η|





dη =

=
∞∑

m=1

{βm (x) + µ} 1−2n
2n

−4n2





n∑

α=1

ω2
α

n∑

α=1

ω2
α

∞∫

0

e2iωα{βm(x)+µ} 1
2n |x−η|dη+

+2 +
∑

α1,α2 6=1
α1=α2

ωα1ωα2

∞∫

0

ei(ωα1+ωα2)[βm(x)+µ]
1
2n |x−η|dη





=

=
∞∑

m=1

{βm (x) + µ} 1−2n
2n

−4n2

{
n∑

α=1

ω2
α

2iωα [βm (x) + µ]
+

+2
∑

α1=α2=1
α1=α2

ωα1ωα2

(ωα1 + ωα2) [βm (x) + µ]1/2





=

=
1
8

∞∑

m=1

{βm (x) + µ} 1−2n
2n

{βm (x) + µ}1/2n





i

n2




n∑

α=1

ωα + 4
∑

α1,α2 6=1
α1=α2

ωα1ωα2

ωα1+ωα2








=

=
Cn

8

∞∑

m=1

[βm (x) + µ]
1−4n
2n
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where Cn = i
n2




n∑
α=1

ωα +
∑

α1,α2 6=1
α1=α2

ωα1ωα2
ωα1+ωα2


.

So,
∞∑

n=1

‖an‖2
H =

Cn

8

∞∑

m=1

[βm (x) + µ]
1−4n
2n .

By integrating with respect to x in the interval [0,∞) (taking into account the

summability of the function F (x) =
∞∑

m=1
[βm (x) + µ]

1−4n
2n in the interval [0,∞)), we

get
∞∫

0

( ∞∑

n=1

‖an‖2
H

)
dx =

Cn

8

∞∑

m=1

∞∫

0

dx

[βm (x) + µ]
4n−1
2n

. (10)

Taking into attention (8), we get

∞∑

n=1

1
(λn + µ)2

∼ Cn

8

∞∑

m=1

∞∫

0

dx

[βm (x) + µ]
4n−1
2n

. (11)

It holds the known identity ([6], p. 209)

∞∫

0

N (λ)
(λ + µ)3

=
1
2

∞∑

n=1

1
(λn + µ)2

. (12)

Then from (11) and (12) we can write the relation

∞∫

0

N (λ)
(λ + µ)3

∼ Cn

16

∞∑

m=1

∞∫

0

dx

{βm (x) + µ} 4n−1
2n

. (13)

The theorem is proved.
For obtaining the asymptotic function N (λ) , we use the following Tauberian

theorem of Titchmarch ([6]. pp. 422).
Theorem. Let f (x) be a non-negative and non-decreasing function, and x →∞

∞∫

0

f (y) dy

(x + y)α ∼
∞∫

−∞

dξ

{q (ξ) + x}β
, where β > 0, α− β ≥ 1.

If q (x) satisfies the condition

c2

xβ

∫

{q(ξ)<x}

dξ ≤
∫

{q(ξ)>x}

dξ

{q (ξ)}β
≤ c1

xβ

∫

{q(ξ)<x}

dξ, c1, c2 = const > 0

then

f (x) ∼ CΓ (α)
Γ (β) Γ (α− β)

∫

{q(ξ)<x}

{x− q (ξ)}α−β−1 dξ.
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In order to get an asymptotic formula for the function N (λ) from formula (13) with
the help of Titchmarch theorem, the following condition should be fulfilled:

a) There exist positive constants C1 and C2 such that the following inequality is
fulfilled

c1

t
4n−1
2n

∞∑

m=1

∫

{βm(X)≤t}

dx ≤
∞∑

m=1

∫

{βm(X)>t}

dx

β
4n−1
2m

m (x)
≤ c1

t
4n−1
2n

∞∑

m=1

∫

{βm(X)≤t}

dx.

It we assume that condition a) is fulfilled, then from (13) we get the following
asymptotic formula for the function N (λ) as λ →∞

N (λ) ∼ Cnn2

2 (2n− 1) Γ
(

1
2n

)
Γ

(
1− 1

2n

)
∞∑

m=1

∫

{βm(x)<λt}

{λ− βm (x)} 1
2n dx.

In conclusion, the authors express their deep gratitude to prof. M. Bayramoglu
for useful advices.
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