Hamidulla I. ASLANOV, Konul H. BADALOVA

ON ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF 2-ND ORDER OPERATOR-DIFFERENTIAL EQUATIONS ON A SEMI-AXIS

Abstract

In the paper, asymptotic distribution of eigenvalues of operator-differential equations on a semi-axis is studied. An asymptotic formula for the function of distribution eigen values of the given operator is obtained.

Let *H* be a separable Hilbert space. Denote by H_1 a Hilbert space of strongly measurable functions f(x) $(0 \le x \le \infty)$ with the values from *H* for which $\int_{0}^{\infty} ||f(x)||_{H}^{2} dx < \infty$. A scalar product of the elements $f(x), g(x) \in H_1$ is defined by the equality

$$(f,g) = \int_{0}^{\infty} \left(f(x), g(x)\right)_{H} dx$$

In the space $H_1 = L_2[H; 0 \le x \le \infty]$ consider a differential expression

$$l(y) = (-1)^n y^{(2n)} + \sum_{j=2}^{2n} Q_j(x) y^{(2n-j)}, 0 \le x < \infty$$
(1)

with boundary conditions

$$y^{(l_1)}(0) = y^{(l_2)}(0) = \dots = y^{(l_n)}(0) = 0.$$
 (2)

Here $0 \leq l_1 \leq l_2 \leq ... \leq l_n \leq 2n-1$, $y \in H_1$, and the derivatives are understood in the strong sense. Everywhere by Q(x) we'll denote $Q_{2n}(x)$.

Let D' be a totality of all the functions of the form $\sum_{k=1}^{p} \varphi_k(x) f$, where $\varphi_k(x)$ are finite, 2n times continuously differentiable scalar functions, and $f_k \in D(Q)$.

Determine the operator L' generated by expression (1) and boundary conditions (2) with domain of definition D'.

Subject to certain conditions, the operator L' is a positive and symmetric operator in H_1 . We'll assume that the closure L of the operator L' is self-adjoint and lower bounded operator in H_1 .

Under some conditions on the operator coefficients Q(x), $Q_j(x)$, $j = \frac{1}{2,2n-1}$ it is proved that the operator L has a discrete spectrum.

Denote by $\lambda_1, \lambda_2, ..., \lambda_n, ...$ eigenvalues, by $\varphi_1(x), \varphi_2(x), ..., \varphi_n(x), ...$ orthonormed eigenfunctions of the operator L. Denote by $N(\lambda)$ the number of eigenvalues of the operator L, smaller than the given number λ , i.e.

$$N\left(\lambda\right) = \sum_{\lambda_n < \lambda} 1.$$

[H.I.Aslanov,K.H.Badalova]

 $N(\lambda)$ is said to be a distribution function of eigenvalues of the operator L. The goal of our paper is to study asymptotic behavior of the function $N(\lambda)$ as $\lambda \to \infty$.

Note that A. G. Kostyuchenko and B. M. Levitan [1] have first studied asymptotic behavior of eigenvalues of Sturm-Liouville operator with a self-adjoint operator coefficient. In the paper [2], E. Abdukadyrov generalized the results of [1].

The Green function and asymptotic behavior of the function $N(\lambda)$ for higher order operator-differential equations given on the axis and semi-axis was studied in the papers of M. Bayramoglu [3], H.I. Aslanov [4], A.A. Abudov and H.I. Aslanov [5].

Enumerate the main suppositions under which the asymptotic behavior of the Green function is investigated and an asymptotic formula for eigen values of the operator L is obtained.

1. The operators Q(x) for almost all $x \in [0, \infty]$ are self-adjoint in H, and almost for all x there exists a general domain of definition H dense in D(Q), on which the operators Q(x) are uniformly lower bounded, i.e. there exist d > 0 such that for all x and for all $f \in D(Q)$ (Q(x), f, f) > d(f, f).

2. For $|x - \xi| \le 1$ it holds

$$\begin{split} \left\| \left[Q\left(\xi\right) - Q\left(x\right) \right] Q^{-a}\left(x\right) \right\|_{H} &< A \left| x - \xi \right|, \\ \\ \left\| Q^{-\frac{1}{2n}}\left(x\right) Q^{\frac{1}{2n}}\left(\xi\right) \right\|_{H} &< C_{1}, \\ \\ \left\| Q^{\frac{1}{2n}}\left(x\right) Q^{-\frac{1}{2n}}\left(\xi\right) \right\|_{H} &< C_{2}, \end{split}$$

where $0 < a < \frac{2n+1}{2n}, A, C_1, C_2$ are constant numbers.

3. For $|x - \xi| > 1$ it holds the inequality

$$\left\| Q\left(\xi\right) \exp\left[-\frac{Jm\omega_1}{2} \left| x - \xi \right| Q^{\frac{1}{2n}}\left(x\right) \right] \right\|_H < B, \quad B = const$$

where $Jm\omega_1 = \min_{i=1,2,...,n} \{Lm\omega_i > 0, \ \omega_i^{2n} = -1\}.$

4. For all $x \in [0, \infty]$ it holds the inequality

$$\left\|Q_{j}(x) Q^{\frac{1-j}{2n}+\varepsilon}(x)\right\| < C, \quad j = \overline{2, 2n-1}, \quad \varepsilon > 0.$$

5. Almost for all $x \in [0,\infty]$ the operator Q(x) is inverse for a completely continuous operator.

Denote by $\beta_1(x) \leq \beta_2(x) \leq \dots \leq \beta_n(x) \leq \dots$ the operators Q(x) in the increasing order, for which we'll assume that they are measurable functions. Furthermore, suppose that the series $\sum_{k=1}^{\infty} \beta_k^{\frac{1-4n}{2n}}(x)$ converges almost everywhere, and its sum

 $F(x) \in L_1[0,\infty].$

In the paper [4] we have investigated the Green function $G(x, \eta, \mu)$ of the operator L and obtained the following asymptotic formula

$$G(x,\eta,\mu) = g(x,\eta,\mu) \left[E + r(x,\eta,\mu)\right]$$
(3)

Transactions of NAS of Azerbaijan _____5 [On asymptotic distribution of eigenvalues...]

where $\|r(x,\eta,\mu)\|_{H} = O(1)$ as $\mu \to \infty$ uniformly with respect to (x,η) .

Here the function $g(x, \eta, \mu)$ is the Green function of the equation

$$(-1)^{n} y^{(2n)} + \{Q(x) + \mu\} y = 0,$$

with "frozen" coefficients at the point " ξ " on the axis. It is of the form:

$$g(x,\eta,\mu) = \frac{\left[Q(x) + \mu E\right]^{\frac{1-2n}{2n}}}{2ni} \sum_{\alpha=1}^{n} \omega_{\alpha} e^{i\omega_{\alpha}[Q(x) + \mu E]^{\frac{1}{2n}}|x-\eta|}.$$
 (4)

Here ω_k , k = 1, 2, ..., n are the roots from (-1) of degree 2n lying in the upper half-plane.

It holds the following main

Theorem. It conditions 1)-5) are fulfilled, then as $\mu \to \infty$ it holds the formula

$$\int_{0}^{\infty} \frac{N(\lambda) d\lambda}{(\lambda+\mu)^{3}} \sim \frac{C_{n}}{8} \int_{0}^{\infty} \frac{dx}{\left\{\beta_{kj}\left(x\right)+\mu\right\}^{\frac{4n-1}{2n}}},\tag{5}$$

where $C_n = \frac{i}{n^2} \left[\sum_{\alpha=1}^n \omega_{\alpha} + \sum_{\substack{\alpha_1 \neq \alpha_2 \\ \alpha_1, \alpha_2 = 1}}^n \frac{\omega_{\alpha_1} \omega_{\alpha_2}}{\omega_{\alpha_1} + \omega_{\alpha_2}} \right].$

Proof. As $\overline{G}(x, \eta, \mu)$ is the Green function of the operator L, we can write

$$\varphi_n(x) = (\lambda_n + \mu) \int_0^\infty G(x, \eta, \mu) \varphi_n(\eta) \, d\eta.$$
(6)

From equality (3) we get

$$\varphi_n(x) \sim (\lambda_n + \mu) \int_0^\infty g(x, \eta, \mu) \varphi_n(\eta) d\eta \text{ as } \mu \to \infty$$

or

$$\frac{\varphi_n\left(x\right)}{\lambda_n+\mu} \sim \int_0^\infty g\left(x,\eta,\mu\right)\varphi_n\left(\eta\right)d\eta. \tag{7}$$

Denote $a_n = \int_{0}^{\infty} g(x, \eta, \mu) \varphi_n(\eta) d\eta$. Then we have

$$\frac{\left\|\varphi_{n}\left(x\right)\right\|_{H}^{2}}{\left(\lambda_{n}+\mu\right)^{2}} \sim \left\|a_{n}\right\|_{H}^{2}$$

Hence

$$\sum_{n=1}^{N} \frac{1}{(\lambda_n + \mu)^2} \sim \int_{0}^{\infty} \left(\sum_{n=1}^{N} \|a_n\|_H^2 \right) dx.$$
 (8)

The numbers a_n are the Fourier coefficients for the operator-valued function $g(x, \eta, \mu)$ by the orthonormed system of vectors $\{\varphi_n(x)\}$.

6 ______[H.I.Aslanov,K.H.Badalova]

Then, from the Parseval equality we have:

$$\sum_{n=1}^{N} \|a_n\|_H^2 = \int_0^\infty \sum_{m=1}^\infty r_{mm}^2 \left(x, \eta, \mu\right) d\eta \tag{9}$$

where $r_{ii}(x, \eta, \mu)$ are diagonal elements of the matrix corresponding to the operator $g(x,\eta,\mu)$ in the orthonormed basis made of eigen vectors $\beta_k(x)$ of the operator Q(x), i.e.

$$r_{mm}(x,\eta,\mu) = \frac{\left[\beta_m(x) + \mu\right]^{\frac{1-2n}{2n}}}{2ni} \sum_{\alpha=1}^n \omega_\alpha e^{i\omega_\alpha \left[\beta_m(x) + \mu\right]^{\frac{1}{2n}}|x-\eta|}.$$

Then, from (9) we get:

$$\begin{split} &\sum_{m=1}^{\infty} \|a_n\|^2 = \int_0^{\infty} \sum_{m=1}^{\infty} \left\{ \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}{2ni} \sum_{\alpha=1}^n \omega_\alpha e^{i\omega_\alpha [\beta_m(x) + \mu] \frac{1}{2n} |x-\eta|} \right\}^2 d\eta = \\ &= \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}{-4n^2} \left\{ \int_0^{\infty} \sum_{\alpha=1}^n \omega_\alpha^2 \left[\sum_{\alpha=1}^n \omega_\alpha^2 e^{2i\omega_\alpha [\beta_m(x) + \mu] \frac{1}{2n} |x-\eta|} + \right. \right. \\ &+ 2\sum_{\substack{\alpha_1, \alpha_2 \neq 1 \\ \alpha_1 = \alpha_2}} \omega_{\alpha_1} \omega_{\alpha_2} e^{i(\omega_{\alpha_1} + \omega_{\alpha_2}) \{\beta_m(x) + \mu\}^{\frac{1}{2n} |x-\eta|}} \right\} d\eta = \\ &= \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}{-4n^2} \left\{ \sum_{\alpha=1}^n \omega_\alpha^2 \sum_{\alpha=1}^n \omega_\alpha^2 \int_0^\infty e^{2i\omega_\alpha \{\beta_m(x) + \mu\}^{\frac{1}{2n} |x-\eta|}} d\eta + \right. \\ &+ 2 + \sum_{\substack{\alpha_1, \alpha_2 \neq 1 \\ \alpha_1 = \alpha_2}} \omega_{\alpha_1} \omega_{\alpha_2} \int_0^\infty e^{i(\omega_{\alpha_1} + \omega_{\alpha_2})[\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}} d\eta \\ &= \\ &= \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}{-4n^2} \left\{ \sum_{\alpha=1}^n \sum_{\alpha=1}^n \frac{\omega_\alpha^2}{2i\omega_\alpha [\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}} d\eta \right\} = \\ &= \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}{-4n^2} \left\{ \sum_{\alpha=1}^n \sum_{\alpha=1}^n \frac{\omega_\alpha^2}{2i\omega_\alpha [\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}} d\eta \right\} = \\ &= \frac{1}{8} \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}} \left\{ \sum_{\alpha=1}^n \sum_{\alpha=1}^n \frac{\omega_\alpha^2}{2i\omega_\alpha [\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}} d\eta \right\} = \\ &= \frac{1}{8} \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}}{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}} \left\{ \sum_{\alpha=1}^n \sum_{\alpha=1}^n \frac{\omega_\alpha^2}{2i\omega_\alpha [\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}} d\eta \right\} = \\ &= \frac{1}{8} \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}} \left\{ \sum_{\alpha=1}^n \sum_{\alpha=1}^n \frac{\omega_\alpha^2}{2i\omega_\alpha [\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}} d\eta \right\} = \\ &= \frac{1}{8} \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}}{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}} \left\{ \sum_{\alpha=1}^n \sum_{\alpha=1}^n \frac{\omega_\alpha^2}{2i\omega_\alpha [\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}}} d\eta \right\} = \\ &= \frac{1}{8} \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}}{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}} \left\{ \sum_{\alpha=1}^n \sum_{\alpha=1}^n \frac{\omega_\alpha^2}{2i\omega_\alpha [\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}}} d\eta \right\} = \\ &= \frac{1}{8} \sum_{m=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}}{\{\beta_m(x) + \mu\}^{\frac{1-2n}{2n}}}} \left\{ \sum_{\alpha=1}^n \sum_{\alpha=1}^n \frac{\omega_\alpha^2}{2i\omega_\alpha [\beta_m(x) + \mu]^{\frac{1}{2n} |x-\eta|}}} d\eta \right\} = \\ &= \frac{1}{8} \sum_{\alpha=1}^{\infty} \frac{\{\beta_m(x) + \mu\}^{\frac{1}{2n} |x-\eta|}}}{\{\beta_m(x) + \mu\}^{\frac{1}{2n} |x-\eta|}}} d\eta \right\}$$

Transactions of NAS of Azerbaijan _____7 [On asymptotic distribution of eigenvalues...]

where
$$C_n = \frac{i}{n^2} \left(\sum_{\alpha=1}^n \omega_\alpha + \sum_{\substack{\alpha_1, \alpha_2 \neq 1 \\ \alpha_1 = \alpha_2}} \frac{\omega_{\alpha_1} \omega_{\alpha_2}}{\omega_{\alpha_1} + \omega_{\alpha_2}} \right).$$

So,
$$\sum_{n=1}^\infty \|a_n\|_H^2 = \frac{C_n}{8} \sum_{m=1}^\infty \left[\beta_m \left(x\right) + \mu\right]^{\frac{1-4n}{2n}}.$$

By integrating with respect to x in the interval $[0,\infty)$ (taking into account the summability of the function $F(x) = \sum_{m=1}^{\infty} \left[\beta_m(x) + \mu\right]^{\frac{1-4n}{2n}}$ in the interval $[0, \infty)$), we get

$$\int_{0}^{\infty} \left(\sum_{n=1}^{\infty} \|a_n\|_{H}^{2} \right) dx = \frac{C_n}{8} \sum_{m=1}^{\infty} \int_{0}^{\infty} \frac{dx}{\left[\beta_m\left(x\right) + \mu\right]^{\frac{4n-1}{2n}}}.$$
 (10)

Taking into attention (8), we get

$$\sum_{n=1}^{\infty} \frac{1}{(\lambda_n + \mu)^2} \sim \frac{C_n}{8} \sum_{m=1}^{\infty} \int_0^{\infty} \frac{dx}{\left[\beta_m\left(x\right) + \mu\right]^{\frac{4n-1}{2n}}}.$$
 (11)

It holds the known identity ([6], p. 209)

$$\int_{0}^{\infty} \frac{N(\lambda)}{(\lambda+\mu)^{3}} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{(\lambda_{n}+\mu)^{2}}.$$
(12)

Then from (11) and (12) we can write the relation

$$\int_{0}^{\infty} \frac{N\left(\lambda\right)}{\left(\lambda+\mu\right)^{3}} \sim \frac{C_{n}}{16} \sum_{m=1}^{\infty} \int_{0}^{\infty} \frac{dx}{\left\{\beta_{m}\left(x\right)+\mu\right\}^{\frac{4n-1}{2n}}}.$$
(13)

The theorem is proved.

For obtaining the asymptotic function $N(\lambda)$, we use the following Tauberian theorem of Titchmarch ([6]. pp. 422).

Theorem. Let f(x) be a non-negative and non-decreasing function, and $x \to \infty$

$$\int_{0}^{\infty} \frac{f\left(y\right) dy}{\left(x+y\right)^{\alpha}} \sim \int_{-\infty}^{\infty} \frac{d\xi}{\left\{q\left(\xi\right)+x\right\}^{\beta}}, \quad where \quad \beta > 0, \ \alpha - \beta \ge 1.$$

If q(x) satisfies the condition

$$\frac{c_2}{x^{\beta}} \int_{\{q(\xi) < x\}} d\xi \le \int_{\{q(\xi) > x\}} \frac{d\xi}{\{q(\xi)\}^{\beta}} \le \frac{c_1}{x^{\beta}} \int_{\{q(\xi) < x\}} d\xi, \quad c_1, c_2 = const > 0$$

then

$$f(x) \sim \frac{C\Gamma(\alpha)}{\Gamma(\beta)\Gamma(\alpha-\beta)} \int_{\{q(\xi) < x\}} \{x - q(\xi)\}^{\alpha-\beta-1} d\xi.$$

[H.I.Aslanov,K.H.Badalova]

In order to get an asymptotic formula for the function $N(\lambda)$ from formula (13) with the help of Titchmarch theorem, the following condition should be fulfilled:

a) There exist positive constants C_1 and C_2 such that the following inequality is fulfilled

$$\frac{c_1}{t^{\frac{4n-1}{2n}}} \sum_{m=1}^{\infty} \int\limits_{\{\beta_m(X) \le t\}} dx \le \sum_{m=1}^{\infty} \int\limits_{\{\beta_m(X) > t\}} \frac{dx}{\beta_m^{\frac{4n-1}{2m}}(x)} \le \frac{c_1}{t^{\frac{4n-1}{2n}}} \sum_{m=1}^{\infty} \int\limits_{\{\beta_m(X) \le t\}} dx$$

It we assume that condition a) is fulfilled, then from (13) we get the following asymptotic formula for the function $N(\lambda)$ as $\lambda \to \infty$

$$N\left(\lambda\right) \sim \frac{C_n n^2}{2\left(2n-1\right)\Gamma\left(\frac{1}{2n}\right)\Gamma\left(1-\frac{1}{2n}\right)} \sum_{m=1}^{\infty} \int_{\{\beta_m(x) < \lambda t\}} \left\{\lambda - \beta_m\left(x\right)\right\}^{\frac{1}{2n}} dx.$$

In conclusion, the authors express their deep gratitude to prof. M. Bayramoglu for useful advices.

References

[1]. Kostyuchenko A.G., Levitan B.M. On asymptotic behavior of eigen values of Sturm-Liouville operator problem. Funk. Analiz I ego prilozhenia. 1967, vol. 1, issue 1, pp. 86-96 (Russian).

[2]. Abdukadyrov E. On the Green function of Sturm-Liouville equation with operator coefficients. DAN SSSR, 1970, vol. 195, No, pp. 519-522 (Russian).

[3]. Bayramoglu M. Asymptotics of the number of eigen values of ordinary differential equations with operator coefficients. Ini Functional analysis and its applications, Baku, "Elm", 1971 (Russian).

[4]. Aslanov H.I. Asymptotics of the number of eigen values of ordinary differential equations with operator coefficients on the semi-axis. DAN Azerb. SSR, 1976, vol. 3, pp. 3-7 (Russian).

[5]. Abudov A.A., H.I. Aslanov H.I. Distribution of eigen values of operatordifferential equations of order 2_n . AN Azerb. SSR, ser. fiz. Tekhn i. matem nauk, 1980, No 1, pp. 9-14 (Russian).

[6]. Titchmarch E. Ch. Expansion in eigen functions connected with second order differential equations. M., 1961, vol II. IL, (Russian).

Hamidulla I. Aslanov

Institute of Mathematics and Mechanics of NAS of Azerbaijan 9, B. Vahabzade str., AZ 1141, Baku, Azerbaijan Tel.: (99412) 539 47 20 (off.).

Konul H. Badalova

Sumgayit State University 1, Baku str, 43 ward., AZ 5008, Sumgayit, Azerbaijan

Received September 07, 2011; Revised December 06, 2011.