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Hikmet T. TAGIYEV

ON THE EXISTENCE OF THE SOLUTION OF

NONLOCAL CONDITION OPTIMAL CONTROL

PROBLEM FOR HYPERBOLIC TYPE EQUATION

Abstract

In the paper, a nonlocal condition optimal control problem is considered for
a second order hyperbolic equation. At first, the existence of the solution of
initial boundary value problem is proved for each control. Then a theorem on
the existence of optimal control is proved.

1. Problem Statement. Assume that the controlled process is described by
the equation

∂2u (x, t)
∂t2

−
m∑

i,j=1

∂

∂xi

(
aij (x, t)

∂u (x, t)
∂xj

)
= f (x, t, u (x, t) , ϑ (x, t)) , (1.1)

with initial conditions

u (x, 0) = ϕ0 (x) ,
∂u (x, 0)

∂t
= ϕ1 (x) (1.2)

and nonlocal condition
m∑

i,j=1

aij (x, t)
∂u

∂xj
cos (v, xi) =

∫

Ω

K (x, y, t, u (y, t)) dy on ST . (1.3)

Here u (x, t) describes the state of the process, ϑ (x, t) is a control function, QT =
{(x, t) |x ∈ Ω, 0 < t < T}, where Ω is a bounded domain in Rm with smooth bound-
ary ∂Ω, ST = {(x, t) |x ∈ ∂Ω, 0 < t < T} is a lateral surface of the cylinder QT , v is
an external normal to ST .

As a class of admissible controls Uad we take a set of measurable and bounded
r - dimensional vector-functions ϑ (x, t) in QT such that almost for all (x, t), the
values of these functions belong to the compact set V ⊂ Rr, V 6= ∅.

We state a problem: find an admissible control from Uad that together with
appropriate solution of problem (1.1)-(1.3) delivers minimum to the functional

J (ϑ) =
∫

QT

f (x, t, u (x, t) , ϑ (x, t)) dxdt. (1.4)

For the given control function ϑ (x, t), under the solution of problem (1.1)-(1.3)
we understand the function u (x, t) ∈ W 1

2 (QT ) that for any function Φ (x, t) ∈
W 1

2 (QT ) such that Φ (x, T ) = 0 satisfies the integral identity

∫

QT


−∂u (x, t)

∂t

∂Φ (x, t)
∂t

+
m∑

i,j=1

aij (x, t)
∂u (x, t)

∂xj

∂Φ(x, t)
∂xi


 dxdt−
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−
T∫

0

∫

∂Ω

Φ(x, t)
∫

Ω

K (x, y, t, u (y, t)) dydsdt =

=
∫

QT

f (x, t, u (x, t) , ϑ (x, t))Φ (x, t) dxdt +
∫

Ω

ϕ1 (x)Φ (x, 0) dx, (1.5)

and the fulfilment of the condition u (x, 0) = ϕ0 (x) is understood in the sense
lim

t→+0

∫
Ω

(u (x, t)− ϕ0 (x))2 dx = 0. Such a solution is called a generalized solution of

problem (1.1)-(1.3).
We’ll assume that the following conditions are fulfilled:

10. aij (x, t) ,
∂aij (x, t)

∂t
∈ C

(
QT

)
, i, j = 1, 2, ...,m, moreover ∀ξ ∈ Rm and for

all (x, t) ∈ (
QT

)
m∑

i,j=1
aij (x, t) ξiξj ≥ µ

m∑
i=1

ξ2
i , µ = const > 0, aij (x, t) = aji (x, t);

20. ϕ0 (x) ∈ W 1
2 (Ω) , ϕ1 (x) ∈ L2 (Ω);

30. The functions f (x, t, u, ϑ) and f0 (x, t, u, ϑ) are continuous on QT × R ×
V , the function f (x, t, u, ϑ) satisfies the Lipshits condition u uniformly with re-
spect to (x, t) ∈ QT and ϑ ∈ V ; the function f0 (x, t, u, ϑ) satisfies the condition
|f0 (x, t, u, ϑ)| ≤ a0 + b0 |u|2, where a0, b0 = const > 0; the function K (x, y, t, u)

is continuous on ∂Ω × QT × R and has continuous derivatives
∂K

∂t
,

∂K

∂u
, more-

over K (x, y, t, 0) = 0,
∂K (x, y, t, 0)

∂t
= 0,

∣∣∣∣
∂K (x, y, t, u)

∂u

∣∣∣∣ ≤ M , K (x, y, t, u) and

∂K (x, y, t, u)
∂t

satisfy the Lipschits condition with respect to u, M = const > 0;

40. For each point (x, t, u) ∈ QT ×R, the set

R+ (x, t, u) =
{
(η, ξ) ∈ R2|η ≥ f0 (x, t, u, ϑ) , ξ = f (x, t, u, ϑ) , ϑ ∈ V

}

is closed and convex in R2.
The following theorem holds true.
Theorem 1. Subject to conditions 10, 20, 30, the mixed problem (1.1)-(1.3) for

each ϑ (x, t) ∈ Uad has a unique solution. And for the aggregate of the solutions of
problem (1.1)-(1.3) corresponding to all admissible controls, the following estimation
is valid

‖u‖W 1
2 (QT ) ≤ const. (1.6)

Proof. Use the Galerkin method. Let {ϕk (x)} be a fundamental system in
W 1

2 (Ω), and the following orthonormality property be fulfilled:
∫

Ω

ϕk (x) ϕl (x) dx = δl
k.

We look for the approximate solution uN (x, t) of problem (1.1)-(1.3) in the form

uN (x, t) =
N∑

k=1

CN
k (t) ϕk (x)
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from the relations
∫

Ω

∂2uN (x, t)
∂t2

ϕl (x) dx +
∫

Ω

m∑

i,j=1

aij (x, t)
∂uN (x, t)

∂xj

∂ϕl (x)
∂xi

dx−

−
∫

∂Ω

ϕl (x)
∫

Ω

K
(
x, y, t, uN (y, t)

)
dyds =

=
∫

Ω

f
(
x, t, uN (x, t) , ϑ (x, t)

)
ϕl (x) dx, l = 1, ..., N, (1.7)

CN
k (0) = αN

k ,
dCN

k (t)
dt

∣∣∣∣
t=0

= βN
k , (1.8)

where αN
k and βN

k are the coefficients of the sums ϕN
0 (x) =

N∑
k=1

αN
k ϕk (x) and

ϕN
1 (x) =

N∑
k=1

βN
k ϕk (x) approximating as n → ∞ the functions ϕ0 (x) and ϕ1 (x)

in the norms W 1
2 (Ω) and L2 (Ω), respectively.

It is clear that system (1.7) is a system of second order ordinary differential
equations with respect to t for the unknowns CN

k (k), k = 1, 2, ..., N, solved with

respect to
d2CN

k

dt2
. Thus, ∀N system (1.7) is uniquely solvable under initial conditions

(1.8) [1], moreover,
d2CN

k

dt2
∈ L2 (0, T ).

Show that for uN (x, t) the following estimation is valid:

∫

Ω

(
(
uN (x, t)

)2
+

m∑

i=1

(
∂uN (x, t)

∂xi

)2

+
(

∂uN (x, t)
∂t

)2
)

dx≤C (T ) , ∀t ∈ [0, T ] . (1.9)

Indeed, by multiplying each of the equalities (1,7) by its own
dCN

l

dt
, we arrive at

the equality
∫

Ω

∂2uN (x, t)
∂t2

∂uN (x, t)
∂t

dx +
∫

Ω

m∑

i,j=1

aij (x, t)
∂uN (x, t)

∂xj

∂2uN (x, t)
∂t∂xi

dx−

−
∫

∂Ω

∂uN (x, t)
∂t

∫

Ω

K
(
x, y, t, uN (y, t)

)
dyds =

=
∫

Ω

f
(
x, t, uN (x, t) , ϑ (x, t)

) ∂uN (x, t)
∂t

dx.

By integrating it with respect to t from 0 to t, t ∈ [0, T ], we get

∫

Ω




(
∂uN (x, t)

∂t

)2

+
m∑

i,j=1

aij (x, t)
∂uN (x, t)

∂xj

∂uN (x, t)
∂xi


 dx−
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−2

t∫

0

∫

∂Ω

∂uN (x, t)
∂t

∫

Ω

K
(
x, y, t, uN (y, t)

)
dydsdt =

=
∫

Ω




(
∂uN (x, 0)

∂t

)2

+
m∑

i,j=1

aij (x, 0)
∂uN (x, 0)

∂xj

∂uN (x, 0)
∂xi


 dx+

+

t∫

0

∫

Ω

m∑

i,j=1

∂aij (x, t)
∂t

∂uN (x, t)
∂xj

∂uN (x, t)
∂xi

dxdt+

+2

t∫

0

∫

Ω

f
(
x, t, uN (x, t) , ϑ (x, t)

) ∂uN (x, t)
∂t

dxdt.

Further, assuming yN (t) =
∫
Ω

((
∂uN (x, t)

∂t

)2

+
m∑

i,j=1
aij

∂uN (x, t)
∂xi

∂uN (x, t)
∂xj

)
dx,

we get

yN (t) = yN (0) +

t∫

0

∫

Ω

m∑

i,j=1

∂aij (x, t)
∂t

∂uN (x, t)
∂xj

∂uN (x, t)
∂xi

dxdt+

+2

t∫

0

∫

∂Ω

∂uN (x, t)
∂t

∫

Ω

K
(
x, y, t, uN (y, t)

)
dydsdt+

+2

t∫

0

∫

Ω

f
(
x, t, uN (x, t) , ϑ (x, t)

) ∂uN (x, t)
∂t

dxdt. (1.10)

Transform the integral along the lateral surface of the cylinder St in the following
way:

t∫

0

∫

∂Ω

∂uN (x, t)
∂t

∫

Ω

K
(
x, y, t, uN (y, t)

)
dydsdt = i1 + i2 + i3 + i4,

where

i1 = −
t∫

0

∫

∂Ω

uN (x, t)
∫

Ω

∂K
(
x, y, t, uN (y, t)

)

∂t
dydsdt,

i2 = −
t∫

0

∫

∂Ω

uN (x, t)
∫

Ω

∂K
(
x, y, t, uN (y, t)

)

∂uN

∂uN (y, t)
∂t

dydsdt,

i3 =
∫

∂Ω

uN (x, t)
∫

Ω

K
(
x, y, t, uN (y, t)

)
dyds,

i4 = −
∫

∂Ω

uN (x, t)
∫

Ω

K
(
x, y, 0, uN (y, 0)

)
dyds.
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Using the known inequality [2]
∫

∂Ω

|W (x, t)| ds ≤ α

∫

Ω

(|W (x, t)|+ |OW (x, t)|) dx (1.11)

and the Cauchy- Bunyakowsky inequality, we get

|i1| =
∣∣∣∣∣∣
−

t∫

0

∫

∂Ω

uN (x, t)
∫

Ω

∂K
(
x, y, t, uN (y, t)

)

∂t
dydsdt

∣∣∣∣∣∣
≤

≤ L

t∫

0




∫

∂Ω

∣∣uN (x, t)
∣∣ ds

∫

Ω

∣∣uN (y, t)
∣∣ dy


 dt ≤

≤ Lα

t∫

0

∫

Ω


∣∣uN (x, t)

∣∣
∫

Ω

∣∣uN (x, t)
∣∣ dx +

∣∣OuN (x, t)
∣∣
∫

Ω

∣∣uN (x, t)
∣∣ dx


 dxdt ≤

≤ Lα

2

t∫

0

∫

Ω

(∣∣uN (x, t)
∣∣2 +

∣∣OuN (x, t)
∣∣2

)
dxdt+

+Lα (mesΩ)2
t∫

0

∫

Ω

∣∣uN (x, t)
∣∣2 dxdt,

where L is Lipschits coefficient, mesΩ is the measure of the domain Ω.
Now estimate i2:

|i2| ≤ M

t∫

0

∫

∂Ω

∣∣uN (x, t)
∣∣
∫

Ω

∣∣∣∣
∂uN (y, t)

∂t

∣∣∣∣ dydsdt ≤

≤ Mα

2

t∫

0

∫

Ω

(∣∣uN (x, t)
∣∣2 +

∣∣OuN (x, t)
∣∣2

)
dxdt+

+Mα (mes Ω)2
t∫

0

∫

Ω

∣∣∣∣
∂uN (x, t)

∂t

∣∣∣∣
2

dxdt.

Further estimate i3:

|i3| ≤
∫

∂Ω

∣∣uN (x, t)
∣∣
∫

Ω

∣∣K (
x, y, t, uN (y, t)

)∣∣ dyds ≤

≤ L

∫

∂Ω

∣∣uN (x, t)
∣∣
∫

Ω

∣∣uN (y, t)
∣∣ dyds ≤
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≤ Lα

∫

Ω


∣∣uN (x, t)

∣∣
∫

Ω

∣∣uN (x, t)
∣∣ dx +

∣∣OuN (x, t)
∣∣
∫

Ω

∣∣uN (x, t)
∣∣ dx


 dx ≤

≤ Lα

2

∫

Ω

(∣∣uN (x, t)
∣∣2 +

∣∣OuN (x, t)
∣∣2

)
dx+

+Lα (mes Ω)2
∫

Ω

∣∣uN (x, t)
∣∣2 dx. (1.12)

Introduce the denotation

ZN (t) ≡
∫

Ω

(
∣∣uN (x, t)

∣∣2 +
∣∣OuN (x, t)

∣∣2 +
∣∣∣∣
∂uN (x, t)

∂t

∣∣∣∣
2
)

dx.

Let A = Lα

(
1
2

+ (mes Ω)2
)

< 1.

Here and in the sequel, c will denotes different constants.
Then by means of (1.12) we can estimate i4:

|i4| ≤ ZN (0) .

It is clear that

∫

Ω

(
uN (x, t)

)2
dx ≤ 2

∫

Ω

(
uN (x, 0)

)2
dx + 2t

t∫

0

yN (t) dt. (1.13)

Now, putting together (1.10) and (1.13), we get

yN (t) +
∫

Ω

(
uN (x, t)

)2
dx ≤ yN (0) + 2

∫

Ω

(
uN (x, 0)

)2
dx + 2t

t∫

0

yN (t) dt+

+

t∫

0

∫

Ω

m∑

i,j=1

∂aij (x, t)
∂t

∂uN (x, t)
∂xj

∂uN (x, t)
∂xi

dxdt

+2

t∫

0

∫

∂Ω

∂uN (x, t)
∂t

∫

Ω

K
(
x, y, t, uN (y, t)

)
dydsdt+

+2

t∫

0

∫

Ω

f
(
x, t, uN (x, t) , ϑ (x, t)

) ∂uN (x, t)
∂t

dxdt.

Hence, under the conditions on the coefficients aij (x, t) and on f (x, t, u, ϑ),
allowing for the estimations i1, i2, i3, i4 we have:

ZN (t) ≤ cZN (0) + (c + ct)

t∫

0

ZN (t) dt + c

t∫

0

∫

Ω

(f (x, t, 0, ϑ (x, t)))2 dxdt.
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Applying the Gronwall lemma to this inequality, we get

ZN (t) ≤ c (T ) , t ∈ [0, T ] .

Hence estimation (1.9) follows.
Integrating with respect to t, from (1.9) we can get the estimation

∥∥uN (x, t)
∥∥

W 1
2 (QT )

≤ const (1.9′)

It should be noted that estimation (1.19) was obtained uniformly for ϑ ∈ Uad.
By (1.9), from the sequence

{
uN (x, t)

}
we can choose a subsequence converging

weakly in W 1
2 (QT ) to some element u (x, t) ∈ W 1

2 (QT ). Then by the imbedding
theorem W 1

2 (QT ) ⊂ L2 (QT ) the same subsequence uN (x, t) converges strongly in
L2 (QT ) to the element u (x, t). Therefore, by the conditions on f (x, t, u, ϑ)

f (x, t, u (x, t) , ϑ (x, t)) strongly in L2 (QT ) .

Show that u (x, t) is a generalized solution of problem (1.1)-(1.3). In order to
prove the validity of identity (1.5) for the limit function u (x, t), multiply each of
the equations of (1.7) by its own function χl (t) ∈ W 1

2 (0, T ), χl (T ) = 0, sum up the
obtained equality on all l from 1 to N , integrate with respect to t from 0 to T , then

in the first term integrate by parts carrying over ∂
∂t from uN on η ≡

N∑

l=1

χl (t) ϕl (x).

This gives us the identity

∫

QT


−∂uN (x, t)

∂t

∂η (x, t)
∂t

+
m∑

i,j=1

aij
∂uN (x, t)

∂xj

∂η (x, t)
∂xi


 dxdt−

−
T∫

0

∫

∂Ω

η (x, t)
∫

Ω

K
(
x, y, t, uN (y, t)

)
dydsdt =

=
∫

QT

f
(
x, t, uN (x, t) , ϑ (x, t)

)
η (x, t) dxdt +

∫

Ω

∂uN (x, t)
∂t

η (x, 0) dx, (1.14)

valid ∀η of the form
N∑

l=1

χl (t) ϕl (x). Denote the aggregate of such η by mN . In

(1.14) we can pass to limit by the subsequence chosen above for the fixed η from
any mN . This leads to identity (1.5) for the limit function u (x, t) for any η ∈ mN .
Since u (x, t) ∈ W 1

2 (QT ), (1.5) will be fulfilled for u (x, t) at ∀η (x, t) ∈ W 1
2 (QT ),

η (x, T ) = 0.
So, we proved that the limit function u (x, t) is a generalized solution of problem

(1.1)-(1.3) from W 1
2 (QT ).

The uniqueness of the solution of problem (1.1)-(1.3) is proved in standard way.
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Since the norm in the Hilbert space is weakly lower semi-continuous, it follows
from (1.9) that for the limit function u (x, t) the following estimation is valid:

∫

Ω

(
(u (x, t))2 +

m∑

i=1

(
∂u (x, t)

∂xi

)2

+
(

∂u (x, t)
∂t

)2
)

dx ≤ c (T ) , ∀t ∈ [0, T ] .

Hence the estimation (1.6) follows.
The theorem is proved.

2. On the existence of optimal control
Theorem 2. Let conditions 1 0-4 0 be fulfilled. Then an optimal control exists

in problem (1.1)-(1.4).
Proof. Denote by γ the lower bound of the functional J (ϑ) in the set Uad:

γ = inf
ϑ∈Uad

J (ϑ) .

From the condition Uad 6= ∅ it follows that γ < +∞. Show that γ > −∞
Assume that {ϑk (x, t)} is a minimizing sequence of admissible controls. Denote by
uk (x, t) the solution of problem (1.1)-(1.3) corresponding to ϑk (x, t).

Then γ = lim
k→∞

J (ϑk) = lim
k→∞

∫
QT

f0 (x, t, uk (x, t) , ϑk (x, t)) dxdt.

Since by theorem 1, ‖uk‖W 1
2 (QT ) ≤ const, then from the sequence {uk (x, t)} we

can choose such a sub sequence (denote it also by {uk (x, t)}) that

uk → u0 weakly in W 1
2 (QT ) as k →∞. (2.1)

Then by the theorem on compactness of the imbedding [2], as k →∞ we have:

uk → u0 strongly in L2 (QT ) . (2.2)

According to (2.1), as k →∞

∂uk

∂t
→ ∂u0

∂t
weakly in L2 (QT ) , (2.3)

∂uk

∂xi
→ ∂u0

∂xi
weakly in L2 (QT ) i = 1, 2, ...,m.

From the conditions imposed on the function f0 (x, t, u, ϑ), and from the con-
ditions ‖uk (x, t)‖W 1

2 (QT ) ≤ const it follows that −∞ < γ < +∞. Further, from
(2.2) it follows that the sequence {uk (x, t)} as k → ∞ converges to the measure
u0 (x, t). Consequently, from this sequence we can choose such a subsequence (de-
note it also by {uk (x, t)}) that as k → ∞ uk (x, t) → u0 (x, t) almost every-
where in QT . From the condition imposed on f (x, t, u, ϑ) we get that the sequence
{f (x, t, uk (x, t) , ϑk (x, t))} is bounded in L2 (QT ) and we can assume that as k →∞

f (x, t, uk (x, t) , ϑk (x, t)) → Z (x, t) weakly in L2 (QT ) . (2.4)
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Then by Mazur’s theorem [3] one can construct such a convex combination

ψs (x, t) =
k∑

l=1

αlsf (x, t, uns+l (x, t) , ϑns+l (x, t))

(
αls ≥ 0,

k∑

l=1

αls = 1

)
, (2.5)

that as s → ∞ it strongly converges to Z (x, t) in L2 (QT ) (generally speaking, k

depends on s). Hence it follows that there is a sequence {ψs (x, t)} that converges
to Z (x, t) almost everywhere in QT .

Assume

λs (x, t) =
k∑

l=1

αlsf0 (x, t, uns+l (x, t) , ϑns+l (x, t)) (2.6)

and denote lim
s→∞

λs (x, t) = Z0 (x, t) . From the conditions on the function f0 (x, t, u, ϑ)

it follows that Z0 (x, t) is integrable and finite almost everywhere in QT .
By the Fatou lemma it is clear that

∫

QT

Z0 (x, t) dxdt ≤ lim
s→∞

∫

QT

λs (x, t) dxdt =

= lim
s→∞

k∑

l=1

αls

∫

QT

f0 (x, t, uns+l (x, t) , ϑns+l (x, t)) dxdt = lim
s→∞

k∑

l=1

αlsJ (ϑns+l) .

On the other hand

lim
k→∞

J (ϑk) = lim
k→∞

J (ϑk) = lim
k→∞

∫

QT

f0 (x, t, uk (x, t) , ϑk (x, t)) dxdt = γ.

Hence we get

lim
k→∞

k∑

l=1

αlsJ (ϑns+l) = lim
k→∞

k∑

l=1

αls

∫

QT

f0 (x, t, uns+l (x, t) , ϑns+l (x, t)) dxdt = γ.

So, ∫

QT

Z0 (x, t) dxdt ≤ γ. (2.7)

Now, show that (Z0 (x, t) , Z (x, t)) ∈ R+ (x, t, u0 (x, t)). Denote by Q1 the set of
such points (x, t) ∈ QT for which Z0 (x, t) is finite as s → ∞ ψs (x, t) → Z (x, t)
and as k →∞ uk (x, t) → u0 (x, t).

It is clear that mesQ1 = mesQT . For each k determine the set
Ek = {(x, t) | (x, t) ∈ QT , ϑk (x, t)∈V }, k = 1, 2, .... By definition of admissible con-

trols mesEk = 0, k = 1, 2, .... Let E =
∞
U

k=1
Ek, Q2 = {(x, t) | (x, t) ∈ QT , (x, t)∈E},

Q0 = Q1 ∩Q2. It is clear that mesQ0 = mesQT .
Suppose that (x, t) ∈ Q0. Since lim

s→∞
λs (x, t) = Z0 (x, t), then there is such a sub-

sequence (denote it also by {λs (x, t)}), that for {λs (x, t)} and appropriate sequence
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{ψs (x, t)}, ψs (x, t) → Z (x, t) as s → ∞. From uk (x, t) → u0 (x, t) it follows that
for any δ > 0 there exists such k0 (δ) > 0 that k > k0 |uk (x, t)− u0 (x, t)| < δ.

Then for k > k0 (x, t, uk (x, t)) ∈ N (x, t, u0 (x, t) , δ), where by N (x, t, u0, δ) we
denote a points set (x, t, u) for which |u− u0| ≤ δ. Therefore, for all ns + l > k0

(f0 (x, t, uns+l (x, t) , ϑns+l (x, t)) , f (x, t, uns+l (x, t) , ϑns+l (x, t))) ∈

∈ R+ (N (x, t, u0 (x, t) , δ)) .

Here

R+ (N (x, t, u0 (x, t) , δ)) = U
|u−u0|<δ

{
R+ (x, t, u) | (x, t, u) ∈ N (x, t, u0, δ)

}
.

From (2.5) and (2.6) it follows that

(λs (x, t) , ψs (x, t)) ∈ coR+ (N (x, t, u0 (x, t) , δ)) .

Since as s →∞ λs (x, t) → Z0 (x, t), ψs (x, t) → Z (x, t) then (Z0 (x, t) , Z (x, t)) ∈
clcoR+ (N (x, t, u0 (x, t) , δ)), ∀δ > 0, where clcoB denotes a convex closed hull of
the set B. Under the conditions imposed on the problem data, the Chesari condition
[4] is fulfilled, i.e. in the given case

R+ (x, t, u0 (x, t)) ∩
δ>0

U
|u−u0|<δ

{
R+ (x, t, u) | (x, t, u) ∈ N (x, t, u0, δ)

}
.

Then hence it follows that

(Z0 (x, t) , Z (x, t)) ∈ R+ (x, t, u0 (x, t)) .

By definition of the set R (x, t, u) there exists a function ϑ (x, t) such that it
accepts the values from V , and

Z0 (x, t) ≥ f0 (x, t, u0 (x, t) , ϑ (x, t)) ,

Z (x, t) = f (x, t, u0 (x, t) , ϑ (x, t)) .

Then, by the Filippov’s generalized lemma [5,6], there is a measurable function
ϑ (x, t) such that

ϑ0 (x, t) ∈ V,

Z0 (x, t) ≥ f0 (x, t, u0 (x, t) , ϑ0 (x, t)) ,

Z (x, t) = f (x, t, u0 (x, t) , ϑ0 (x, t)) . (2.8)

Show that the function u0 (x, t) is a solution of problem (1.1)-(1.3) corresponding
to the control ϑ0 (x, t). By definition of the generalized solution of problem (1.1)-
(1.3), for any function Φ (x, t) ∈ W 1

2 (QT ) such that Φ (x, T ) = 0 the following
integral identity is fulfilled:

∫

QT

k∑

l=1

αls


−∂uns+l

∂t

∂Φ
∂t

+
m∑

i,j=1

aij
∂uns+l

∂xj

∂Φ
∂xi


 dxdt−
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−
T∫

0

∫

∂Ω

Φ(x, t)
∫

Ω

k∑

l=1

αlsK (x, y, t, uns+l (y, t)) dydsdt−

−
∫

Ω

ϕ1 (x)Φ (x, 0) dx =
∫

QT

k∑

l=1

αlsf (x, t, uns+l (x, t) , ϑns+l (x, t))Φ (x, t) dxdt. (2.9)

Passing to limit in (2.9) as s →∞, and taking into account (2.2),(2.3),(2.4),(2.5),
we have

∫

QT


−∂u (x, t)

∂t

∂Φ (x, t)
∂t

+
m∑

i,j=1

aij (x, t)
∂u (x, t)

∂xj

∂Φ(x, t)
∂xi


 dxdt−

−
T∫

0

∫

∂Ω

Φ(x, t)
∫

Ω

K (x, y, t, u (y, t)) dydsdt−

−
∫

Ω

ϕ1 (x)Φ (x, 0) dx =
∫

QT

Z (x, t)Φ (x, t) dxdt.

If here we take into account the third one from relations (2.8), we get that u0 (x, t)
is a generalized solution of problem (1.1)-(1.3) corresponding to ϑ0 (x, t).

Therefore
J (ϑ0) ≥ γ. (2.10)

Above we showed that f0 (x, t, u0 (x, t) , ϑ0 (x, t)) ≤ Z0 (x, t). Then taking into
account the last relation and (2.7), we have:

J (ϑ0) =
∫

QT

f0 (x, t, u0 (x, t) , ϑ0 (x, t)) dxdt ≤
∫

QT

Z0 (x, t) dxdt ≤ γ. (2.11)

From (2.10) and (2.11) it follows that J (ϑ0) = γ, i.e. (u0 (x, t) , ϑ0 (x, t)) is an
optimal pair, ϑ0 (x, t) is an optimal control. The theorem is proved.
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