Hikmet T. TAGIYEV

ON THE EXISTENCE OF THE SOLUTION OF NONLOCAL CONDITION OPTIMAL CONTROL PROBLEM FOR HYPERBOLIC TYPE EQUATION

Abstract

In the paper, a nonlocal condition optimal control problem is considered for a second order hyperbolic equation. At first, the existence of the solution of initial boundary value problem is proved for each control. Then a theorem on the existence of optimal control is proved.

1. Problem Statement. Assume that the controlled process is described by the equation

$$
\begin{equation*}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}-\sum_{i, j=1}^{m} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, t) \frac{\partial u(x, t)}{\partial x_{j}}\right)=f(x, t, u(x, t), \vartheta(x, t)) \tag{1.1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=\varphi_{0}(x), \frac{\partial u(x, 0)}{\partial t}=\varphi_{1}(x) \tag{1.2}
\end{equation*}
$$

and nonlocal condition

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}(x, t) \frac{\partial u}{\partial x_{j}} \cos \left(v, x_{i}\right)=\int_{\Omega} K(x, y, t, u(y, t)) d y \text { on } S_{T} \tag{1.3}
\end{equation*}
$$

Here $u(x, t)$ describes the state of the process, $\vartheta(x, t)$ is a control function, $Q_{T}=$ $\{(x, t) \mid x \in \Omega, 0<t<T\}$, where Ω is a bounded domain in R^{m} with smooth boundary $\partial \Omega, S_{T}=\{(x, t) \mid x \in \partial \Omega, 0<t<T\}$ is a lateral surface of the cylinder Q_{T}, v is an external normal to S_{T}.

As a class of admissible controls $U_{a d}$ we take a set of measurable and bounded r - dimensional vector-functions $\vartheta(x, t)$ in Q_{T} such that almost for all (x, t), the values of these functions belong to the compact set $V \subset R^{r}, V \neq \varnothing$.

We state a problem: find an admissible control from $U_{a d}$ that together with appropriate solution of problem (1.1)-(1.3) delivers minimum to the functional

$$
\begin{equation*}
J(\vartheta)=\int_{Q_{T}} f(x, t, u(x, t), \vartheta(x, t)) d x d t \tag{1.4}
\end{equation*}
$$

For the given control function $\vartheta(x, t)$, under the solution of problem (1.1)-(1.3) we understand the function $u(x, t) \in W_{2}^{1}\left(Q_{T}\right)$ that for any function $\Phi(x, t) \in$ $W_{2}^{1}\left(Q_{T}\right)$ such that $\Phi(x, T)=0$ satisfies the integral identity

$$
\int_{Q_{T}}\left(-\frac{\partial u(x, t)}{\partial t} \frac{\partial \Phi(x, t)}{\partial t}+\sum_{i, j=1}^{m} a_{i j}(x, t) \frac{\partial u(x, t)}{\partial x_{j}} \frac{\partial \Phi(x, t)}{\partial x_{i}}\right) d x d t-
$$

$$
\begin{gather*}
-\int_{0}^{T} \int_{\partial \Omega} \Phi(x, t) \int_{\Omega} K(x, y, t, u(y, t)) d y d s d t= \\
=\int_{Q_{T}} f(x, t, u(x, t), \vartheta(x, t)) \Phi(x, t) d x d t+\int_{\Omega} \varphi_{1}(x) \Phi(x, 0) d x \tag{1.5}
\end{gather*}
$$

and the fulfilment of the condition $u(x, 0)=\varphi_{0}(x)$ is understood in the sense $\lim _{t \rightarrow+0} \int_{\Omega}\left(u(x, t)-\varphi_{0}(x)\right)^{2} d x=0$. Such a solution is called a generalized solution of problem (1.1)-(1.3).

We'll assume that the following conditions are fulfilled:
$1^{0} . a_{i j}(x, t), \frac{\partial a_{i j}(x, t)}{\partial t} \in C\left(\bar{Q}_{T}\right), \quad i, j=1,2, \ldots, m$, moreover $\forall \xi \in R^{m}$ and for all $(x, t) \in\left(\bar{Q}_{T}\right)$

$$
\sum_{i, j=1}^{m} a_{i j}(x, t) \xi_{i} \xi_{j} \geq \mu \sum_{i=1}^{m} \xi_{i}^{2}, \mu=\mathrm{const}>0, a_{i j}(x, t)=a_{j i}(x, t)
$$

$2^{0} . \varphi_{0}(x) \in W_{2}^{1}(\Omega), \varphi_{1}(x) \in L_{2}(\Omega) ;$
3^{0}. The functions $f(x, t, u, \vartheta)$ and $f_{0}(x, t, u, \vartheta)$ are continuous on $\bar{Q}_{T} \times R \times$ V, the function $f(x, t, u, \vartheta)$ satisfies the Lipshits condition u uniformly with respect to $(x, t) \in \bar{Q}_{T}$ and $\vartheta \in V$; the function $f_{0}(x, t, u, \vartheta)$ satisfies the condition $\left|f_{0}(x, t, u, \vartheta)\right| \leq a_{0}+b_{0}|u|^{2}$, where $a_{0}, b_{0}=$ const >0; the function $K(x, y, t, u)$ is continuous on $\overline{\partial \Omega} \times \bar{Q}_{T} \times R$ and has continuous derivatives $\frac{\partial K}{\partial t}, \frac{\partial K}{\partial u}$, moreover $K(x, y, t, 0)=0, \frac{\partial K(x, y, t, 0)}{\partial t}=0,\left|\frac{\partial K(x, y, t, u)}{\partial u}\right| \leq M, K(x, y, t, u)$ and $\frac{\partial K(x, y, t, u)}{\partial t}$ satisfy the Lipschits condition with respect to $u, M=$ const >0;
4^{0}. For each point $(x, t, u) \in \bar{Q}_{T} \times R$, the set

$$
R^{+}(x, t, u)=\left\{(\eta, \xi) \in R^{2} \mid \eta \geq f_{0}(x, t, u, \vartheta), \xi=f(x, t, u, \vartheta), \vartheta \in V\right\}
$$

is closed and convex in R^{2}.
The following theorem holds true.
Theorem 1. Subject to conditions $1^{0}, 2^{0}, 3^{0}$, the mixed problem (1.1)-(1.3) for each $\vartheta(x, t) \in U_{a d}$ has a unique solution. And for the aggregate of the solutions of problem (1.1)-(1.3) corresponding to all admissible controls, the following estimation is valid

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(Q_{T}\right)} \leq \text { const } \tag{1.6}
\end{equation*}
$$

Proof. Use the Galerkin method. Let $\left\{\varphi_{k}(x)\right\}$ be a fundamental system in $W_{2}^{1}(\Omega)$, and the following orthonormality property be fulfilled:

$$
\int_{\Omega} \varphi_{k}(x) \varphi_{l}(x) d x=\delta_{k}^{l}
$$

We look for the approximate solution $u^{N}(x, t)$ of problem (1.1)-(1.3) in the form

$$
u^{N}(x, t)=\sum_{k=1}^{N} C_{k}^{N}(t) \varphi_{k}(x)
$$

\qquad from the relations

$$
\begin{gather*}
\int_{\Omega} \frac{\partial^{2} u^{N}(x, t)}{\partial t^{2}} \varphi_{l}(x) d x+\int_{\Omega} \sum_{i, j=1}^{m} a_{i j}(x, t) \frac{\partial u^{N}(x, t)}{\partial x_{j}} \frac{\partial \varphi_{l}(x)}{\partial x_{i}} d x- \\
-\int_{\partial \Omega} \varphi_{l}(x) \int_{\Omega} K\left(x, y, t, u^{N}(y, t)\right) d y d s= \\
=\int_{\Omega} f\left(x, t, u^{N}(x, t), \vartheta(x, t)\right) \varphi_{l}(x) d x, \quad l=1, \ldots, N \tag{1.7}\\
C_{k}^{N}(0)=\alpha_{k}^{N},\left.\quad \frac{d C_{k}^{N}(t)}{d t}\right|_{t=0}=\beta_{k}^{N} \tag{1.8}
\end{gather*}
$$

where α_{k}^{N} and β_{k}^{N} are the coefficients of the $\operatorname{sums} \varphi_{0}^{N}(x)=\sum_{k=1}^{N} \alpha_{k}^{N} \varphi_{k}(x)$ and $\varphi_{1}^{N}(x)=\sum_{k=1}^{N} \beta_{k}^{N} \varphi_{k}(x)$ approximating as $n \rightarrow \infty$ the functions $\varphi_{0}(x)$ and $\varphi_{1}(x)$ in the norms $W_{2}^{1}(\Omega)$ and $L_{2}(\Omega)$, respectively.

It is clear that system (1.7) is a system of second order ordinary differential equations with respect to t for the unknowns $C_{k}^{N}(k), k=1,2, \ldots, N$, solved with respect to $\frac{d^{2} C_{k}^{N}}{d t^{2}}$. Thus, $\forall N$ system (1.7) is uniquely solvable under initial conditions (1.8) [1], moreover, $\frac{d^{2} C_{k}^{N}}{d t^{2}} \in L_{2}(0, T)$.

Show that for $u^{N}(x, t)$ the following estimation is valid:

$$
\begin{equation*}
\int_{\Omega}\left(\left(u^{N}(x, t)\right)^{2}+\sum_{i=1}^{m}\left(\frac{\partial u^{N}(x, t)}{\partial x_{i}}\right)^{2}+\left(\frac{\partial u^{N}(x, t)}{\partial t}\right)^{2}\right) d x \leq C(T), \forall t \in[0, T] \tag{1.9}
\end{equation*}
$$

Indeed, by multiplying each of the equalities $(1,7)$ by its own $\frac{d C_{l}^{N}}{d t}$, we arrive at the equality

$$
\begin{aligned}
\int_{\Omega} \frac{\partial^{2} u^{N}(x, t)}{\partial t^{2}} & \frac{\partial u^{N}(x, t)}{\partial t} d x+\int_{\Omega} \sum_{i, j=1}^{m} a_{i j}(x, t) \frac{\partial u^{N}(x, t)}{\partial x_{j}} \frac{\partial^{2} u^{N}(x, t)}{\partial t \partial x_{i}} d x- \\
& -\int_{\partial \Omega} \frac{\partial u^{N}(x, t)}{\partial t} \int_{\Omega} K\left(x, y, t, u^{N}(y, t)\right) d y d s= \\
& =\int_{\Omega} f\left(x, t, u^{N}(x, t), \vartheta(x, t)\right) \frac{\partial u^{N}(x, t)}{\partial t} d x
\end{aligned}
$$

By integrating it with respect to t from 0 to $t, t \in[0, T]$, we get

$$
\int_{\Omega}\left(\left(\frac{\partial u^{N}(x, t)}{\partial t}\right)^{2}+\sum_{i, j=1}^{m} a_{i j}(x, t) \frac{\partial u^{N}(x, t)}{\partial x_{j}} \frac{\partial u^{N}(x, t)}{\partial x_{i}}\right) d x-
$$

$$
\begin{gathered}
-2 \int_{0}^{t} \int_{\partial \Omega} \frac{\partial u^{N}(x, t)}{\partial t} \int_{\Omega} K\left(x, y, t, u^{N}(y, t)\right) d y d s d t= \\
=\int_{\Omega}\left(\left(\frac{\partial u^{N}(x, 0)}{\partial t}\right)^{2}+\sum_{i, j=1}^{m} a_{i j}(x, 0) \frac{\partial u^{N}(x, 0)}{\partial x_{j}} \frac{\partial u^{N}(x, 0)}{\partial x_{i}}\right) d x+ \\
+\int_{0}^{t} \int_{\Omega^{i, j=1}}^{m} \frac{\partial a_{i j}(x, t)}{\partial t} \frac{\partial u^{N}(x, t)}{\partial x_{j}} \frac{\partial u^{N}(x, t)}{\partial x_{i}} d x d t+ \\
+2 \int_{0}^{t} \int_{\Omega} f\left(x, t, u^{N}(x, t), \vartheta(x, t)\right) \frac{\partial u^{N}(x, t)}{\partial t} d x d t .
\end{gathered}
$$

Further, assuming $y^{N}(t)=\int_{\Omega}\left(\left(\frac{\partial u^{N}(x, t)}{\partial t}\right)^{2}+\sum_{i, j=1}^{m} a_{i j} \frac{\partial u^{N}(x, t)}{\partial x_{i}} \frac{\partial u^{N}(x, t)}{\partial x_{j}}\right) d x$, we get

$$
\begin{align*}
y^{N}(t)= & y^{N}(0)+\int_{0}^{t} \int_{\Omega^{i, j=1}}^{m} \frac{\partial a_{i j}(x, t)}{\partial t} \frac{\partial u^{N}(x, t)}{\partial x_{j}} \frac{\partial u^{N}(x, t)}{\partial x_{i}} d x d t+ \\
& +2 \int_{0}^{t} \int_{\partial \Omega} \frac{\partial u^{N}(x, t)}{\partial t} \int_{\Omega} K\left(x, y, t, u^{N}(y, t)\right) d y d s d t+ \\
& +2 \int_{0}^{t} \int_{\Omega} f\left(x, t, u^{N}(x, t), \vartheta(x, t)\right) \frac{\partial u^{N}(x, t)}{\partial t} d x d t . \tag{1.10}
\end{align*}
$$

Transform the integral along the lateral surface of the cylinder S_{t} in the following way:

$$
\int_{0}^{t} \int_{\partial \Omega} \frac{\partial u^{N}(x, t)}{\partial t} \int_{\Omega} K\left(x, y, t, u^{N}(y, t)\right) d y d s d t=i_{1}+i_{2}+i_{3}+i_{4},
$$

where

$$
\begin{gathered}
i_{1}=-\int_{0}^{t} \int_{\partial \Omega} u^{N}(x, t) \int_{\Omega} \frac{\partial K\left(x, y, t, u^{N}(y, t)\right)}{\partial t} d y d s d t \\
i_{2}=-\int_{0}^{t} \int_{\partial \Omega} u^{N}(x, t) \int_{\Omega} \frac{\partial K\left(x, y, t, u^{N}(y, t)\right)}{\partial u^{N}} \frac{\partial u^{N}(y, t)}{\partial t} d y d s d t \\
i_{3}=\int_{\partial \Omega} u^{N}(x, t) \int_{\Omega} K\left(x, y, t, u^{N}(y, t)\right) d y d s \\
i_{4}=-\int_{\partial \Omega} u^{N}(x, t) \int_{\Omega} K\left(x, y, 0, u^{N}(y, 0)\right) d y d s
\end{gathered}
$$

\qquad
Using the known inequality [2]

$$
\begin{equation*}
\int_{\partial \Omega}|W(x, t)| d s \leq \alpha \int_{\Omega}(|W(x, t)|+|\nabla W(x, t)|) d x \tag{1.11}
\end{equation*}
$$

and the Cauchy- Bunyakowsky inequality, we get

$$
\begin{gathered}
\left|i_{1}\right|=\left|-\int_{0}^{t} \int_{\partial \Omega} u^{N}(x, t) \int_{\Omega} \frac{\partial K\left(x, y, t, u^{N}(y, t)\right)}{\partial t} d y d s d t\right| \leq \\
\left.\leq L \int_{0}^{t} \int_{\partial \Omega}\left|u^{N}(x, t)\right| d s \int_{\Omega}\left|u^{N}(y, t)\right| d y\right) d t \leq \\
\leq L \alpha \int_{0}^{t} \int_{\Omega}\left(\left|u^{N}(x, t)\right| \int_{\Omega}\left|u^{N}(x, t)\right| d x+\left|\nabla u^{N}(x, t)\right| \int_{\Omega}\left|u^{N}(x, t)\right| d x\right) d x d t \leq \\
\leq \frac{L \alpha}{2} \int_{0}^{t} \int_{\Omega}\left(\left|u^{N}(x, t)\right|^{2}+\left|\nabla u^{N}(x, t)\right|^{2}\right) d x d t+ \\
\quad+L \alpha(m e s \Omega)^{2} \int_{0}^{t} \int_{\Omega}\left|u^{N}(x, t)\right|^{2} d x d t
\end{gathered}
$$

where L is Lipschits coefficient, mes Ω is the measure of the domain Ω.
Now estimate i_{2} :

$$
\begin{aligned}
& \left|i_{2}\right| \leq M \int_{0}^{t} \int_{\partial \Omega}\left|u^{N}(x, t)\right| \int_{\Omega}\left|\frac{\partial u^{N}(y, t)}{\partial t}\right| d y d s d t \leq \\
& \leq \frac{M \alpha}{2} \int_{0}^{t} \int_{\Omega}\left(\left|u^{N}(x, t)\right|^{2}+\left|\nabla u^{N}(x, t)\right|^{2}\right) d x d t+ \\
& \quad+M \alpha(\text { mes } \Omega)^{2} \int_{0}^{t} \int_{\Omega}\left|\frac{\partial u^{N}(x, t)}{\partial t}\right|^{2} d x d t
\end{aligned}
$$

Further estimate i_{3} :

$$
\begin{aligned}
& \left|i_{3}\right| \leq \int_{\partial \Omega}\left|u^{N}(x, t)\right| \int_{\Omega}\left|K\left(x, y, t, u^{N}(y, t)\right)\right| d y d s \leq \\
& \quad \leq L \int_{\partial \Omega}\left|u^{N}(x, t)\right| \int_{\Omega}\left|u^{N}(y, t)\right| d y d s \leq
\end{aligned}
$$

$$
\begin{gather*}
\leq L \alpha \int_{\Omega}\left(\left|u^{N}(x, t)\right| \int_{\Omega}\left|u^{N}(x, t)\right| d x+\left|\nabla u^{N}(x, t)\right| \int_{\Omega}\left|u^{N}(x, t)\right| d x\right) d x \leq \\
\leq \frac{L \alpha}{2} \int_{\Omega}\left(\left|u^{N}(x, t)\right|^{2}+\left|\nabla u^{N}(x, t)\right|^{2}\right) d x+ \\
+L \alpha(\operatorname{mes} \Omega)^{2} \int_{\Omega}\left|u^{N}(x, t)\right|^{2} d x \tag{1.12}
\end{gather*}
$$

Introduce the denotation

$$
Z^{N}(t) \equiv \int_{\Omega}\left(\left|u^{N}(x, t)\right|^{2}+\left|\nabla u^{N}(x, t)\right|^{2}+\left|\frac{\partial u^{N}(x, t)}{\partial t}\right|^{2}\right) d x
$$

Let $A=L \alpha\left(\frac{1}{2}+(\text { mes } \Omega)^{2}\right)<1$.
Here and in the sequel, c will denotes different constants.
Then by means of (1.12) we can estimate i_{4} :

$$
\left|i_{4}\right| \leq Z^{N}(0)
$$

It is clear that

$$
\begin{equation*}
\int_{\Omega}\left(u^{N}(x, t)\right)^{2} d x \leq 2 \int_{\Omega}\left(u^{N}(x, 0)\right)^{2} d x+2 t \int_{0}^{t} y^{N}(t) d t \tag{1.13}
\end{equation*}
$$

Now, putting together (1.10) and (1.13), we get

$$
\begin{aligned}
& y^{N}(t)+\int_{\Omega}\left(u^{N}(x, t)\right)^{2} d x \leq y^{N}(0)+2 \int_{\Omega}\left(u^{N}(x, 0)\right)^{2} d x+2 t \int_{0}^{t} y^{N}(t) d t+ \\
&+\int_{0}^{t} \int_{\Omega} \sum_{i, j=1}^{m} \frac{\partial a_{i j}(x, t)}{\partial t} \frac{\partial u^{N}(x, t)}{\partial x_{j}} \frac{\partial u^{N}(x, t)}{\partial x_{i}} d x d t \\
&+2 \int_{0}^{t} \int_{\partial \Omega} \frac{\partial u^{N}(x, t)}{\partial t} \int_{\Omega} K\left(x, y, t, u^{N}(y, t)\right) d y d s d t+ \\
&+2 \int_{0}^{t} \int_{\Omega} f\left(x, t, u^{N}(x, t), \vartheta(x, t)\right) \frac{\partial u^{N}(x, t)}{\partial t} d x d t
\end{aligned}
$$

Hence, under the conditions on the coefficients $a_{i j}(x, t)$ and on $f(x, t, u, \vartheta)$, allowing for the estimations $i_{1}, i_{2}, i_{3}, i_{4}$ we have:

$$
Z^{N}(t) \leq c Z^{N}(0)+(c+c t) \int_{0}^{t} Z^{N}(t) d t+c \int_{0}^{t} \int_{\Omega}(f(x, t, 0, \vartheta(x, t)))^{2} d x d t
$$

[On the existence of the solution of ...]
Applying the Gronwall lemma to this inequality, we get

$$
Z^{N}(t) \leq c(T), \quad t \in[0, T] .
$$

Hence estimation (1.9) follows.
Integrating with respect to t, from (1.9) we can get the estimation

$$
\begin{equation*}
\left\|u^{N}(x, t)\right\|_{W_{2}^{1}\left(Q_{T}\right)} \leq \text { const } \tag{1.9'}
\end{equation*}
$$

It should be noted that estimation (1.19) was obtained uniformly for $\vartheta \in U_{a d}$.
By (1.9), from the sequence $\left\{u^{N}(x, t)\right\}$ we can choose a subsequence converging weakly in $W_{2}^{1}\left(Q_{T}\right)$ to some element $u(x, t) \in W_{2}^{1}\left(Q_{T}\right)$. Then by the imbedding theorem $W_{2}^{1}\left(Q_{T}\right) \subset L_{2}\left(Q_{T}\right)$ the same subsequence $u^{N}(x, t)$ converges strongly in $L_{2}\left(Q_{T}\right)$ to the element $u(x, t)$. Therefore, by the conditions on $f(x, t, u, \vartheta)$

$$
f(x, t, u(x, t), \vartheta(x, t)) \text { strongly in } L_{2}\left(Q_{T}\right) .
$$

Show that $u(x, t)$ is a generalized solution of problem (1.1)-(1.3). In order to prove the validity of identity (1.5) for the limit function $u(x, t)$, multiply each of the equations of (1.7) by its own function $\chi_{l}(t) \in W_{2}^{1}(0, T), \chi_{l}(T)=0$, sum up the obtained equality on all l from 1 to N, integrate with respect to t from 0 to T, then in the first term integrate by parts carrying over $\frac{\partial}{\partial t}$ from u^{N} on $\eta \equiv \sum_{l=1}^{N} \chi_{l}(t) \varphi_{l}(x)$. This gives us the identity

$$
\begin{gather*}
\int_{Q_{T}}\left(-\frac{\partial u^{N}(x, t)}{\partial t} \frac{\partial \eta(x, t)}{\partial t}+\sum_{i, j=1}^{m} a_{i j} \frac{\partial u^{N}(x, t)}{\partial x_{j}} \frac{\partial \eta(x, t)}{\partial x_{i}}\right) d x d t- \\
-\int_{0}^{T} \int_{\partial \Omega} \eta(x, t) \int_{\Omega} K\left(x, y, t, u^{N}(y, t)\right) d y d s d t= \\
=\int_{Q_{T}} f\left(x, t, u^{N}(x, t), \vartheta(x, t)\right) \eta(x, t) d x d t+\int_{\Omega} \frac{\partial u^{N}(x, t)}{\partial t} \eta(x, 0) d x, \tag{1.14}
\end{gather*}
$$

valid $\forall \eta$ of the form $\sum_{l=1}^{N} \chi_{l}(t) \varphi_{l}(x)$. Denote the aggregate of such η by m_{N}. In (1.14) we can pass to limit by the subsequence chosen above for the fixed η from any m_{N}. This leads to identity (1.5) for the limit function $u(x, t)$ for any $\eta \in m_{N}$. Since $u(x, t) \in W_{2}^{1}\left(Q_{T}\right)$, (1.5) will be fulfilled for $u(x, t)$ at $\forall \eta(x, t) \in W_{2}^{1}\left(Q_{T}\right)$, $\eta(x, T)=0$.

So, we proved that the limit function $u(x, t)$ is a generalized solution of problem (1.1)-(1.3) from $W_{2}^{1}\left(Q_{T}\right)$.

The uniqueness of the solution of problem (1.1)-(1.3) is proved in standard way.

Since the norm in the Hilbert space is weakly lower semi-continuous, it follows from (1.9) that for the limit function $u(x, t)$ the following estimation is valid:

$$
\int_{\Omega}\left((u(x, t))^{2}+\sum_{i=1}^{m}\left(\frac{\partial u(x, t)}{\partial x_{i}}\right)^{2}+\left(\frac{\partial u(x, t)}{\partial t}\right)^{2}\right) d x \leq c(T), \quad \forall t \in[0, T]
$$

Hence the estimation (1.6) follows.
The theorem is proved.

2. On the existence of optimal control

Theorem 2. Let conditions $1^{0}-4^{0}$ be fulfilled. Then an optimal control exists in problem (1.1)-(1.4).

Proof. Denote by γ the lower bound of the functional $J(\vartheta)$ in the set $U_{a d}$:

$$
\gamma=\inf _{\vartheta \in U_{a d}} J(\vartheta)
$$

From the condition $U_{a d} \neq \varnothing$ it follows that $\gamma<+\infty$. Show that $\gamma>-\infty$ Assume that $\left\{\vartheta_{k}(x, t)\right\}$ is a minimizing sequence of admissible controls. Denote by $u_{k}(x, t)$ the solution of problem (1.1)-(1.3) corresponding to $\vartheta_{k}(x, t)$.

Then $\gamma=\lim _{k \rightarrow \infty} J\left(\vartheta_{k}\right)=\lim _{k \rightarrow \infty_{Q_{T}}} \int_{0}\left(x, t, u_{k}(x, t), \vartheta_{k}(x, t)\right) d x d t$.
Since by theorem $1,\left\|u_{k}\right\|_{W_{2}^{1}\left(Q_{T}\right)} \leq$ const, then from the sequence $\left\{u_{k}(x, t)\right\}$ we can choose such a sub sequence (denote it also by $\left\{u_{k}(x, t)\right\}$) that

$$
\begin{equation*}
u_{k} \rightarrow u_{0} \quad \text { weakly in } \quad W_{2}^{1}\left(Q_{T}\right) \text { as } k \rightarrow \infty \tag{2.1}
\end{equation*}
$$

Then by the theorem on compactness of the imbedding [2], as $k \rightarrow \infty$ we have:

$$
\begin{equation*}
u_{k} \rightarrow u_{0} \quad \text { strongly in } L_{2}\left(Q_{T}\right) \tag{2.2}
\end{equation*}
$$

According to (2.1), as $k \rightarrow \infty$

$$
\begin{gather*}
\frac{\partial u_{k}}{\partial t} \rightarrow \frac{\partial u_{0}}{\partial t} \text { weakly in } L_{2}\left(Q_{T}\right) \tag{2.3}\\
\frac{\partial u_{k}}{\partial x_{i}} \rightarrow \frac{\partial u_{0}}{\partial x_{i}} \text { weakly in } L_{2}\left(Q_{T}\right) i=1,2, \ldots, m
\end{gather*}
$$

From the conditions imposed on the function $f_{0}(x, t, u, \vartheta)$, and from the conditions $\left\|u_{k}(x, t)\right\|_{W_{2}^{1}\left(Q_{T}\right)} \leq$ const it follows that $-\infty<\gamma<+\infty$. Further, from (2.2) it follows that the sequence $\left\{u_{k}(x, t)\right\}$ as $k \rightarrow \infty$ converges to the measure $u_{0}(x, t)$. Consequently, from this sequence we can choose such a subsequence (denote it also by $\left.\left\{u_{k}(x, t)\right\}\right)$ that as $k \rightarrow \infty \quad u_{k}(x, t) \rightarrow u_{0}(x, t)$ almost everywhere in Q_{T}. From the condition imposed on $f(x, t, u, \vartheta)$ we get that the sequence $\left\{f\left(x, t, u_{k}(x, t), \vartheta_{k}(x, t)\right)\right\}$ is bounded in $L_{2}\left(Q_{T}\right)$ and we can assume that as $k \rightarrow \infty$

$$
\begin{equation*}
f\left(x, t, u_{k}(x, t), \vartheta_{k}(x, t)\right) \rightarrow Z(x, t) \text { weakly in } L_{2}\left(Q_{T}\right) . \tag{2.4}
\end{equation*}
$$

Then by Mazur's theorem [3] one can construct such a convex combination

$$
\begin{equation*}
\psi_{s}(x, t)=\sum_{l=1}^{k} \alpha_{l s} f\left(x, t, u_{n_{s}+l}(x, t), \vartheta_{n_{s}+l}(x, t)\right)\left(\alpha_{l s} \geq 0, \sum_{l=1}^{k} \alpha_{l s}=1\right) \tag{2.5}
\end{equation*}
$$

that as $s \rightarrow \infty$ it strongly converges to $Z(x, t)$ in $L_{2}\left(Q_{T}\right)$ (generally speaking, k depends on s). Hence it follows that there is a sequence $\left\{\psi_{s}(x, t)\right\}$ that converges to $Z(x, t)$ almost everywhere in Q_{T}.

Assume

$$
\begin{equation*}
\lambda_{s}(x, t)=\sum_{l=1}^{k} \alpha_{l s} f_{0}\left(x, t, u_{n_{s}+l}(x, t), \vartheta_{n_{s}+l}(x, t)\right) \tag{2.6}
\end{equation*}
$$

and denote $\lim _{s \rightarrow \infty} \lambda_{s}(x, t)=Z_{0}(x, t)$. From the conditions on the function $f_{0}(x, t, u, \vartheta)$ it follows that $Z_{0}(x, t)$ is integrable and finite almost everywhere in Q_{T}.

By the Fatou lemma it is clear that

$$
\begin{gathered}
\int_{Q_{T}} Z_{0}(x, t) d x d t \leq \underline{\lim }_{s \rightarrow \infty} \int_{Q_{T}} \lambda_{s}(x, t) d x d t= \\
=\underline{\lim }_{s \rightarrow \infty} \sum_{l=1}^{k} \alpha_{l s} \int_{Q_{T}} f_{0}\left(x, t, u_{n_{s}+l}(x, t), \vartheta_{n_{s}+l}(x, t)\right) d x d t=\varliminf_{s \rightarrow \infty} \sum_{l=1}^{k} \alpha_{l s} J\left(\vartheta_{n_{s}+l}\right) .
\end{gathered}
$$

On the other hand

$$
\varliminf_{k \rightarrow \infty} J\left(\vartheta_{k}\right)=\lim _{k \rightarrow \infty} J\left(\vartheta_{k}\right)=\lim _{k \rightarrow \infty} \int_{Q_{T}} f_{0}\left(x, t, u_{k}(x, t), \vartheta_{k}(x, t)\right) d x d t=\gamma
$$

Hence we get

$$
\varliminf_{k \rightarrow \infty} \sum_{l=1}^{k} \alpha_{l s} J\left(\vartheta_{n_{s}+l}\right)=\varliminf_{k \rightarrow \infty} \sum_{l=1}^{k} \alpha_{l s} \int_{Q_{T}} f_{0}\left(x, t, u_{n_{s}+l}(x, t), \vartheta_{n_{s}+l}(x, t)\right) d x d t=\gamma
$$

So,

$$
\begin{equation*}
\int_{Q_{T}} Z_{0}(x, t) d x d t \leq \gamma \tag{2.7}
\end{equation*}
$$

Now, show that $\left(Z_{0}(x, t), Z(x, t)\right) \in R^{+}\left(x, t, u_{0}(x, t)\right)$. Denote by Q_{1} the set of such points $(x, t) \in Q_{T}$ for which $Z_{0}(x, t)$ is finite as $s \rightarrow \infty \psi_{s}(x, t) \rightarrow Z(x, t)$ and as $k \rightarrow \infty \quad u_{k}(x, t) \rightarrow u_{0}(x, t)$.

It is clear that mes $Q_{1}=m e s Q_{T}$. For each k determine the set $E_{k}=\left\{(x, t) \mid(x, t) \in Q_{T}, \vartheta_{k}(x, t) \bar{\in}\right\}, k=1,2, \ldots$. By definition of admissible controls mes $E_{k}=0, k=1,2, \ldots$. Let $E=\bigcup_{k=1}^{\infty} E_{k}, Q_{2}=\left\{(x, t) \mid(x, t) \in Q_{T},(x, t) \bar{\in} E\right\}$, $Q_{0}=Q_{1} \cap Q_{2}$. It is clear that mes $Q_{0}=m e s Q_{T}$.

Suppose that $(x, t) \in Q_{0}$. Since $\varliminf_{s=\infty}^{\lim } \lambda_{s}(x, t)=Z_{0}(x, t)$, then there is such a subsequence (denote it also by $\left\{\lambda_{s}(x, t)\right\}$), that for $\left\{\lambda_{s}(x, t)\right\}$ and appropriate sequence
$\left\{\psi_{s}(x, t)\right\}, \psi_{s}(x, t) \rightarrow Z(x, t)$ as $s \rightarrow \infty$. From $u_{k}(x, t) \rightarrow u_{0}(x, t)$ it follows that for any $\delta>0$ there exists such $k_{0}(\delta)>0$ that $k>k_{0}\left|u_{k}(x, t)-u_{0}(x, t)\right|<\delta$.

Then for $k>k_{0}\left(x, t, u_{k}(x, t)\right) \in N\left(x, t, u_{0}(x, t), \delta\right)$, where by $N\left(x, t, u_{0}, \delta\right)$ we denote a points set (x, t, u) for which $\left|u-u_{0}\right| \leq \delta$. Therefore, for all $n_{s}+l>k_{0}$

$$
\begin{gathered}
\left(f_{0}\left(x, t, u_{n_{s}+l}(x, t), \vartheta_{n_{s}+l}(x, t)\right), f\left(x, t, u_{n_{s}+l}(x, t), \vartheta_{n_{s}+l}(x, t)\right)\right) \in \\
\in R^{+}\left(N\left(x, t, u_{0}(x, t), \delta\right)\right)
\end{gathered}
$$

Here

$$
R^{+}\left(N\left(x, t, u_{0}(x, t), \delta\right)\right)=\underset{\left|u-u_{0}\right|<\delta}{U}\left\{R^{+}(x, t, u) \mid(x, t, u) \in N\left(x, t, u_{0}, \delta\right)\right\} .
$$

From (2.5) and (2.6) it follows that

$$
\left(\lambda_{s}(x, t), \psi_{s}(x, t)\right) \in \operatorname{co}^{+}\left(N\left(x, t, u_{0}(x, t), \delta\right)\right)
$$

Since as $s \rightarrow \infty \lambda_{s}(x, t) \rightarrow Z_{0}(x, t), \psi_{s}(x, t) \rightarrow Z(x, t)$ then $\left(Z_{0}(x, t), Z(x, t)\right) \in$ clcoR ${ }^{+}\left(N\left(x, t, u_{0}(x, t), \delta\right)\right), \forall \delta>0$, where $\operatorname{clco} B$ denotes a convex closed hull of the set B. Under the conditions imposed on the problem data, the Chesari condition [4] is fulfilled, i.e. in the given case

$$
R^{+}\left(x, t, u_{0}(x, t)\right) \bigcap_{\delta>0}^{\cap} U_{\left|u-u_{0}\right|<\delta}^{U}\left\{R^{+}(x, t, u) \mid(x, t, u) \in N\left(x, t, u_{0}, \delta\right)\right\} .
$$

Then hence it follows that

$$
\left(Z_{0}(x, t), Z(x, t)\right) \in R^{+}\left(x, t, u_{0}(x, t)\right)
$$

By definition of the set $R(x, t, u)$ there exists a function $\vartheta(x, t)$ such that it accepts the values from V, and

$$
\begin{aligned}
Z_{0}(x, t) & \geq f_{0}\left(x, t, u_{0}(x, t), \vartheta(x, t)\right) \\
Z(x, t) & =f\left(x, t, u_{0}(x, t), \vartheta(x, t)\right)
\end{aligned}
$$

Then, by the Filippov's generalized lemma $[5,6]$, there is a measurable function $\vartheta(x, t)$ such that

$$
\begin{gather*}
\vartheta_{0}(x, t) \in V \\
Z_{0}(x, t) \geq f_{0}\left(x, t, u_{0}(x, t), \vartheta_{0}(x, t)\right) \\
Z(x, t)=f\left(x, t, u_{0}(x, t), \vartheta_{0}(x, t)\right) \tag{2.8}
\end{gather*}
$$

Show that the function $u_{0}(x, t)$ is a solution of problem (1.1)-(1.3) corresponding to the control $\vartheta_{0}(x, t)$. By definition of the generalized solution of problem (1.1)(1.3), for any function $\Phi(x, t) \in W_{2}^{1}\left(Q_{T}\right)$ such that $\Phi(x, T)=0$ the following integral identity is fulfilled:

$$
\int_{Q_{T}} \sum_{l=1}^{k} \alpha_{l s}\left(-\frac{\partial u_{n_{s}+l}}{\partial t} \frac{\partial \Phi}{\partial t}+\sum_{i, j=1}^{m} a_{i j} \frac{\partial u_{n_{s}+l}}{\partial x_{j}} \frac{\partial \Phi}{\partial x_{i}}\right) d x d t-
$$

$$
\begin{gather*}
-\int_{0}^{T} \int_{\partial \Omega} \Phi(x, t) \int_{\Omega} \sum_{l=1}^{k} \alpha_{l s} K\left(x, y, t, u_{n_{s}+l}(y, t)\right) d y d s d t- \\
-\int_{\Omega} \varphi_{1}(x) \Phi(x, 0) d x=\int_{Q_{T}} \sum_{l=1}^{k} \alpha_{l s} f\left(x, t, u_{n_{s}+l}(x, t), \vartheta_{n_{s}+l}(x, t)\right) \Phi(x, t) d x d t \tag{2.9}
\end{gather*}
$$

Passing to limit in (2.9) as $s \rightarrow \infty$, and taking into account (2.2),(2.3),(2.4),(2.5), we have

$$
\begin{gathered}
\int_{Q_{T}}\left(-\frac{\partial u(x, t)}{\partial t} \frac{\partial \Phi(x, t)}{\partial t}+\sum_{i, j=1}^{m} a_{i j}(x, t) \frac{\partial u(x, t)}{\partial x_{j}} \frac{\partial \Phi(x, t)}{\partial x_{i}}\right) d x d t- \\
\quad-\int_{0}^{T} \int_{\partial \Omega} \Phi(x, t) \int_{\Omega} K(x, y, t, u(y, t)) d y d s d t- \\
-\int_{\Omega} \varphi_{1}(x) \Phi(x, 0) d x=\int_{Q_{T}} Z(x, t) \Phi(x, t) d x d t
\end{gathered}
$$

If here we take into account the third one from relations (2.8), we get that $u_{0}(x, t)$ is a generalized solution of problem (1.1)-(1.3) corresponding to $\vartheta_{0}(x, t)$.

Therefore

$$
\begin{equation*}
J\left(\vartheta_{0}\right) \geq \gamma \tag{2.10}
\end{equation*}
$$

Above we showed that $f_{0}\left(x, t, u_{0}(x, t), \vartheta_{0}(x, t)\right) \leq Z_{0}(x, t)$. Then taking into account the last relation and (2.7), we have:

$$
\begin{equation*}
J\left(\vartheta_{0}\right)=\int_{Q_{T}} f_{0}\left(x, t, u_{0}(x, t), \vartheta_{0}(x, t)\right) d x d t \leq \int_{Q_{T}} Z_{0}(x, t) d x d t \leq \gamma \tag{2.11}
\end{equation*}
$$

From (2.10) and (2.11) it follows that $J\left(\vartheta_{0}\right)=\gamma$, i.e. $\left(u_{0}(x, t), \vartheta_{0}(x, t)\right)$ is an optimal pair, $\vartheta_{0}(x, t)$ is an optimal control. The theorem is proved.

References

[1]. Pontryagin L.S. Ordinary differential Equations. M. Nauka, 1974, 331 p. (Russian).
[2]. Ladyzhenskaya O.A. Boundary value problems of mathematical physics. M. Nauka, 1973, 408 p. (Russian).
[3]. Hille E., Fiblips R. Functional analysis and semigroup. M. IL, 1962, 826 p. (Russian).
[4]. Cesari L. Existence theorems for abstract multidimentional control problems.Your. Opt. theory and Appl., 1970, 6, No 3, pp. 210-236
[5]. Filippov A.F. On some problems of optimal control problem. Vestnik MGU, ser. mat. mekh. Astr., 1959, 2, No 1, pp. 25-32 (Rusian).
[6]. Mc. Shane E.J. and Warfield R.B. On Filippov implicit functions lemma. Proc. Amer. Math. Soc., 1967, 18, No 1, pp. 41-47.

Hikmet T. Tagiyev

Sumgayit branch of Azerbaijan Teacher's Institute.
16, apt. 38^{a}, AZ 3200, Sumgayit, Azerbaijan
Tel.: (99412) 5394720 (off.).
Received September 14, 2011; Revised December 08, 2011.

