
Transactions of NAS of Azerbaijan, 2012, vol. XXXII, No 1, pp. 107-116. 107

Rahim M. RZAEV, Ali M. MUSAYEV

ON APPROXIMATION OF FUNCTIONS BY
MELLIN SINGULAR INTEGRALS

Abstract

The results on approximations of functions by singular integrals play an im-
portant part and have numerous applications in various fields of mathematics.
A lot of papers were devoted (see e.g. [1]-[9] and the references) to the in-
vestigation of the problems on approximation of functions by singular integrals
(including by Mellin singular integrals).

In the present paper we investigate approximate properties of Mellin’s sin-
gular integral in the terms of mean oscillation of a locally summable function.

Introduction
Mellin convolution operators occupy an important place in theory of Mellin trans-

formation. Such matters as the problems of theory of approximation of functions,
investigation of boundary value problems for some differential equations require to
study approximate properties of Mellin convolution operators with a kernel of Fejer
type (see e.g. [1], [2]).

Mellin transformation and Mellin convolution are determined by the following
formulae [6], respectively:

f̂ (s) =

∞∫

0

f (x) xs−1dx,

(f ∗ g) (x) =

∞∫

0

f

(
x

y

)
g (y)

dy

y
.

Mellin transformation and Mellin convolution are considered on a multiplicative
group of positive real numbers, where the Haar’s measure invariant with respect to

shears, is of the form
dx

x
, and dx is a Lebesgue measure on (−∞,∞).

Under certain conditions on the functions f and g, the following formula is valid

(f ∗ g) ˆ (s) = f̂ (s) · ĝ (s) .

In the present paper, we study approximate properties of Mellin’e singular inte-
gral with a kernel of Fejer type

Φε (f ; x) =
1
ε

∞∫

0

f
(x

t

)
K

(
t

1
ε

) dt

t

in the terms of mean oscillation of a locally summable function f , where K is a so
called Mellin kernel of Fejer type (see 2).

A lot of papers [1]-[9] have been devoted to the investigation of the matters of
approximation of functions by singular integrals (including Mellin singular integrals).

Necessary definitions, denotation are given, preliminary facts are cited in 1.
The main result of this section is theorem 1.2. In the same place, it is proved
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(theorem 1.3.) that the main condition in theorem 1.2, generally speaking, may not
be removed.

Approximate properties of Mellin singular integral with a kernel of Fejer type are
studied in 2. In this section, theorem 2.1 is the main result. The results on upper
bound of order of approximation of a function by Mellin singular integrals with a
kernel of Fejer type in the terms of mean oscillation of a locally summable function
(theorems 2.2 and 2.3) are obtained from this theorem.

1. Some definitions, denotation and preliminary facts
Let R = (−∞, +∞), R+ = (0, +∞). If E = R or E = R+, then by Lloc (E) we’ll

denote a totality of all functions locally summable on the set E. L (X) = L (X; dx)
is a set of all the functions summable on the set X ⊂ R with respect to Lebesgue
linear measure dx. Further, by L

(
R+; dx

x

)
we’ll denote a set of all the functions f

summable over the linear measure dx
x on the set R+.

Let 0 < τ ≤ 1, x ∈ R+, I (x; τ) :=
{
ρ ∈ R+ : xτ ≤ ρ ≤ x

τ

}
, f ∈ Lloc (R+).

Introduce the following denotation.

fI(x;τ) :=
1

2 |ln τ |

xτ−1∫

xτ

f (ρ)
dρ

ρ
,

ΩM (f, I (x; τ)) :=
1

2 |ln τ |

xτ−1∫

xτ

∣∣f (ρ)− fI(x;τ)

∣∣ dρ

ρ
.

Call the quantity ΩM (f, I (x; τ)) a Mellin mean oscillation of the function f on the
interval I (x; τ).

We introduce the following metric characteristics (see. [8])

mM
f (x; δ) := sup

{
ΩM (f, I (x; τ)) : |ln τ | ≤ δ

}
, x ∈ R+, δ ∈ R+.

It is easy to see that the function mM
f (x; δ) accepts only non-negative values and is

monotonically increasing with respect to the argument δ ∈ (0,+∞).
Theorem 1.1. Let f ∈ Lloc (R+), x0 ∈ R+, 0 < ν1 < ν2 ≤ 1. Then the

following inequality is true:

∣∣fI(x0;ν1) − fI(x0;ν2)

∣∣ ≤ 2
ln 2


mM

f

(
x0; ln

1
ν1

)
+

ln 1
ν1∫

ln 1
ν2

mM
f (x0; t)

t
dt


 . (1.1)

Proof. We can show that if

x0 = e−y0 , (x0 ∈ R+, y0 ∈ R) , τ = e−r (τ ∈ (0, 1) , r ∈ R+) ,

f∗ (t) := f
(
e−t

)
(t ∈ R) , B (y0; r) := {t ∈ R : y0 − r ≤ t ≤ y0 + r} = [y0 − r, y0 + r] ,

then the following equalities are true:

fI(x0;τ) =
1
2r

y0+r∫

y0−r

f ∗ (t) dt =: f∗B(y0:r),



Transactions of NAS of Azerbaijan
[On approximation of functions by Mellin...]

109

ΩM (f, I (x; τ)) =
1
2r

y0+r∫

y0−r

∣∣∣f∗ (t)− f∗B(y0;r)

∣∣∣ dt.

Let ξ = ln 1
ν1

, η = ln 1
ν2

. Then 0 < η < ξ < +∞ and there exists a non-negative

integer p such that it holds the inequality
ξ

2p+1
< η ≤ ξ

2p
.

Then we have
∣∣fI(x0;ν1) − fI(x0;ν2)

∣∣ =
∣∣∣f∗B(y0;ξ) − f∗B(y0;η)

∣∣∣ ≤

≤
p−1∑

i=0

∣∣∣∣f∗B�y0; ξ

2i

� − f∗
B
�
y0; ξ

2i+1

�
∣∣∣∣ +

∣∣∣∣f∗B(y0;η) − f∗
B(y0; ξ

2p )

∣∣∣∣ , (1.2)

If i = 0, 1, ..., p− 1, we get
∣∣∣∣f∗B�y0; ξ

2i

� − f∗
B
�
y0; ξ

2i+1

�
∣∣∣∣ ≤

1(
ξ
2i

)
∫

B
�
y0; ξ

2i+1

�

∣∣∣∣f∗ (t)− f∗
B
�
y0; ξ

2i

�
∣∣∣∣ dt ≤

≤ 2 · 1

2
(

ξ
2i

)
∫

B
�
y0; ξ

2i

�

∣∣∣∣f∗ (t)− f∗
B
�
y0; ξ

2i

�
∣∣∣∣ dt = 2 · ΩM

(
f ; I

(
x.0; e

− ξ

2i

))
. (1.3)

From the definition of the function mM
f (x0; δ) it follows that

mM
f (x0; δ) ≥ ΩM

(
f ; I

(
x.0; e−δ

))
. (1.4)

Taking into account inequality (1.3), from inequality (1.2) we get
∣∣∣∣f∗B�y0; ξ

2i

� − f∗
B
�
y0; ξ

2i+1

�
∣∣∣∣ ≤ 2 ·mM

f

(
x0;

ξ

2i

)
, (1.5)

where i = 0, 1, ..., p− 1.

Taking into attention the inequality 2η >
ξ

2p
, we have

∣∣∣∣f∗B(y0; ξ
2p ) − f∗B(y0;η)

∣∣∣∣ ≤
1
2η

∫

B(y0;η)

∣∣∣∣f∗ (t)− f∗
B(y0; ξ

2p )

∣∣∣∣ dt ≤

≤ 2 · 1

2
(

ξ
2p

)
∫

B(y0; ξ
2p )

∣∣∣∣f∗ (t)− f∗
B(y0; ξ

2p )

∣∣∣∣ dt = 2 · ΩM
(
f ; I

(
x.0; e−

ξ
2p

))
≤

≤ 2 ·mM
f

(
x0;

ξ

2p

)
. (1.6)

From inequalities (1.2), (1.5) and (1.6) we get

∣∣fI(x0;ν1) − fI(x0;ν2)

∣∣ ≤ 2

(
mM

f

(
x0;

ξ

2p

)
+

p−1∑

i=0

mM
f

(
x0;

ξ

2i

))
=
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= 2

(
mM

f (x0; ξ) +
p∑

i=1

mM
f

(
x0;

ξ

2i

))
. (1.7)

If p ≥ 1, we have

ξ∫

ξ
2p

mM
f (x0; t)

t
dt =

p∑

i=1

ξ

2i−1∫

ξ

2i

mM
f (x0; t)

t
dt ≥

p∑

i=1

mM
f

(
x0;

ξ

2i

)
· ln 2.

Furthermore,
ξ∫

η

mM
f (x0; t)

t
dt ≥

ξ∫

ξ
2p

mM
f (x0; t)

t
dt.

Taking into account the last relation, from inequality (1.7) we have

∣∣fI(x0;ν1) − fI(x0;ν2)

∣∣ ≤ 2
ln 2


mM

f

(
x0; ln

1
ν1

)
+

ln 1
ν1∫

ln 1
ν2

mM
f (x0; t)

t
dt


 .

The theorem is proved.
Theorem 1.2. Let f ∈ Lloc (R+), x0 ∈ R+ and the following condition be

fulfilled:
1∫

0

mM
f (x0; t)

t
dt < +∞.

Then there exists the finite limit

df (x0) := lim
ν→1−0

fI(x0,ν)

and it holds the inequality

∣∣fI(x0;ν) − df (x0)
∣∣ ≤ 2

ln 2


mM

f

(
x0; ln

1
ν

)
+

ln 1
ν∫

0

mM
f (x0; t)

t
dt


 , 0 < ν ≤ 1.

The proof follows from the previous theorem.
Remark. Note that if f ∈ Lloc (R+), then almost everywhere in R+ there exists

df (x) and the equality df (x) = f (x) is almost everywhere fulfilled.
Let ϕ (r) be a non-negative, monotonically increasing on (0,+∞) function. De-

note by MOM
ϕ (x0), a class of all the functions f ∈ Lloc (R+) such that

mM
f (x0; r) = O (ϕ (r)) , r > 0.

Theorem 1.3. Let ϕ (r) be a non-negative, monotonically increasing on (0, +∞)
function. If

1∫

0

ϕ (t) dt

t
= +∞,
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then there exists a function f ∈ MOM
ϕ (1) such that

lim
ν→1−0

fI(1;ν) = +∞.

Proof. Consider the function

f (ρ) =

1∫

|ln ρ|

ϕ (u)
u

du, ρ ∈ R+.

Then for ν ∈ (0, 1) we have

fI(1;ν) =
1
2r

r∫

−r

f∗ (t) dt =
1
2r

r∫

−r




1∫

|t|

ϕ (u)
u

du


 dt,

where r = ln 1
ν , f∗ (t) = f

(
e−t

)
.

Further, we get that if 0 < r ≤ 1, then

fI(1;ν) =
1
r

r∫

0




1∫

t

ϕ (u)
u

du


 dt =

1
r

r∫

0

ϕ (x) dx +

1∫

r

ϕ (x)
x

dx,

but if r > 1, then

fI(1;ν) =
1
r

1∫

0




1∫

t

ϕ (x)
x

dx


 dt− 1

r

r∫

1




t∫

1

ϕ (x)
x

dx


 dt =

1
r

r∫

0

ϕ (x) dx +

1∫

r

ϕ (x)
x

dx.

So, for any r ∈ (0, +∞)

fI(1;ν) =
1
r

r∫

0

ϕ (x) dx +

1∫

r

ϕ (x)
x

dx. (1.8)

Taking into account this equality, we have

ΩM (f, I (1; ν)) =
1
2r

r∫

−r

∣∣∣f∗ (t)− f∗B(0,r)

∣∣∣ dt =
1
2r

r∫

−r

∣∣f∗ (t)− fI(1,ν)

∣∣ dt =

=
1
2r

r∫

−r

∣∣∣∣∣∣∣

1∫

|t|

ϕ (x)
x

dx− 1
r

r∫

0

ϕ (x) dx−
1∫

r

ϕ (x)
x

dx

∣∣∣∣∣∣∣
dt =

=
1
r

r∫

0

∣∣∣∣∣∣

r∫

t

ϕ (x)
x

dx− 1
r

r∫

0

ϕ (x) dx

∣∣∣∣∣∣
dt ≤ 1

r

r∫

0




r∫

t

ϕ (x)
x

dx


 dt+

+
1
r

r∫

0

ϕ (x) dx =
1
r

r∫

0

ϕ (x) dx +
1
r

r∫

0

ϕ (x) dx ≤ 2ϕ (r) = 2ϕ (|ln ν|) .
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Hence we get that mM
f (1; δ) ≤ 2ϕ (δ) (δ > 0), i.e. f ∈ MOM

ϕ (1).
By equality (1.8), the following inequality is true

fI(1;ν) ≥
1∫

r

ϕ (x)
x

dx.

Hence, from the condition of the theorem it follows that

lim
ν→1−0

fI(1;ν) = +∞.

The theorem is proved.

2. Mellin singular integral

Let K ∈ L

(
R+;

dx

x

)
, and

∞∫

0

K (x)
dx

x
= 1.

If we denote Kε (x) = 1
εK

(
x

1
ε

)
, ε > 0, we have

∞∫

0

Kε (x)
dx

x
=

1
ε

∞∫

0

K
(
x

1
ε

) dx

x
=

∞∫

0

K (u)
du

u
= 1.

The function of the form Kε (x) is called a Mellin kernel of Fejer type.
Consider a Mellin singular integral with a kernel of Fejer type (see [6]),

Φε (f ; x) =
1
ε

∞∫

0

f
(x

t

)
K

(
t

1
ε

) dt

t
,

where f ∈ Lloc (R+) is such that the integral exists everywhere in R+. By means of
change of variable we can show that

Φε (f ; x) =
1
ε

∞∫

0

f (u) K

((x

u

) 1
ε

)
du

u
=

∞∫

0

f
( x

uε

)
K (u)

du

u
.

In particular, if K (u) = 1
2XI(1; 1

e)
(u), where XE is a characteristic function of

the set E, then we can show that for this kernel

Φε (f ; x) = fI(x;e−ε), where x ∈ R+, ε > 0.

Theorem 2.1. Let f ∈ Lloc (R+), K be a kernel of Fejer type, k (τ) :=
sup {|K (t)| : |ln t| ≥ τ}, τ > 0, k ∈ L (R+), x0 ∈ R+, ε > 0. Then the following
inequality is true:

∣∣Φε (f ; x0)− fI(x0;e−ε)

∣∣ ≤ c (k)


mM

f (x0; ε) +

∞∫

0

k (t)mM
f (x0; 4εt) dt+
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+

ε∫

0

mM
f (x0; t)

t




t
4ε∫

0

k (x) dx


 dt +

∞∫

ε

mM
f (x0; t)

t



∞∫

t
4ε

k (x) dx


 dt


 , (2.1)

where c (k) is a positive constant dependent only on the function k.
Proof. Let x0 = e−y0 (y0 ∈ R), Φ∗ε (f ; y0) = Φε (f ; e−y0) = Φε (f ; x0). Then we

have

Φε (f ;x0) =
1
ε

∞∫

−∞
K∗

(
y0 − t

ε

)
f∗ (t) dt, ε > 0,

where K∗ (u) := K (e−u), f∗ (t) = f
(
e−t

)
. Furthermore, it is easy to see that

fI(x0;e−ε) =
1
2ε

y0+ε∫

y0−ε

f∗ (t) dt =: f∗B(y0;ε).

Taking into account the previous reasonings, we get

∣∣Φε (f ;x0)− fI(x0;e−ε)

∣∣ ≤ 1
ε

∞∫

−∞

∣∣∣∣K∗
(

y0 − t

ε

)∣∣∣∣
∣∣∣f∗ (t)− f∗B(y0;ε)

∣∣∣ dt. (2.2)

As k (τ) = sup {|K∗ (t)| : |y| ≥ τ}, τ ∈ (0, +∞), from (2.2) we have

∣∣Φε (f ; x0)− fI(x0;e−ε)

∣∣ ≤ 1
ε

∞∫

−∞
k

(∣∣∣∣
y0 − t

ε

∣∣∣∣
) ∣∣∣f∗ (t)− f∗B(y0;ε)

∣∣∣ dt,

where x0 = e−y0 (x0 ∈ R+, y0 ∈ R).
It is seen from the definition that k (τ) is a monotonically decreasing on (0,+∞)

function.
Further we get

∣∣Φε (f ; x0)− fI(x0;e−ε)

∣∣ ≤
∞∑

n=−∞

1
ε

∫

B(y0;2n+1ε)\B(y0;2nε)

k

( |y0 − t|
ε

) ∣∣∣f∗ (t)− f∗B(y0;ε)

∣∣∣ dt ≤

≤
∞∑

n=−∞

1
ε

∫

2nε<|y0−t|≤2n+1ε

k

( |y0 − t|
ε

) ∣∣∣f∗ (t)− f∗B(y0;2n+1ε)

∣∣∣ dt+

+
∞∑

n=−∞

∣∣∣f∗B(y0;2n+1ε) − f∗B(y0;ε)

∣∣∣
∫

2nε<|y0−t|≤2n+1ε

1
ε
k

( |y0 − t|
ε

)
dt =

=
∞∑

n=−∞
i1n +

∞∑
n=−∞

i2n. (2.3)

We’ll estimate each of the summands in the right side of relation (2.3).
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If n = 0,±1, ..., we have

i1n ≤ 1
ε
k (2n)

∫

2nε<|x−t|≤2n+1ε

∣∣∣f∗ (t)− f∗B(y0;2n+1ε)

∣∣∣ dt ≤

≤ 2n+2 · k (2n) · 1
2 · 2n+1ε

∫

B(y0;2n+1ε)

∣∣∣f∗ (t)− f∗B(y0;2n+1ε)

∣∣∣ dt =

= 2n+2 · k (2n) · ΩM
(
f, I

(
x0; e−2n+1ε

))
≤ 2n+2 · k (2n) ·mM

f

(
x0; 2n+1ε

)
. (2.4)

Now, consider the summands i2n. If n > −1, we have

i2n ≤ 1
ε
k (2n) 2n+1ε

∣∣∣f∗B(y0;2n+1ε) − f∗B(y0;ε)

∣∣∣ = 2n+1k (2n)
∣∣∣fI(x0;e−2n+1ε) − fI(x0;e−ε)

∣∣∣ .

Hence, by theorem 1.1, we get

i2n ≤ 2n+1 · k (2n) · 2
ln 2


mM

f

(
x0; 2n+1ε

)
+

2n+1ε∫

ε

mM
f (x0; t)

t
dt


 . (2.5)

If n = −1, then i2n = 0.
Finally, consider the case n < −1. Then we have

i2n ≤ 1
ε
k (2n) 2n+1ε

∣∣∣f∗B(y0;ε) − f∗B(y0;2n+1ε)

∣∣∣=2n+1k (2n)
∣∣∣fI(x0;e−ε)−f

I(x0;e−2n+1ε)

∣∣∣ ≤

≤ 2n+1k (2n) · 2
ln 2


mM

f (x0; ε) +

ε∫

2n+1ε

mM
f (x0; t)

t
dt


 . (2.6)

From relations (2.3)-(2.6) we have

∣∣Φε (f ;x0)− fI(x0;e−ε)

∣∣ ≤
∞∑

n=−∞
2n+2 · k (2n) ·mM

f

(
x0; 2n+1ε

)
+

+
1

ln 2

−2∑
n=−∞

2n+2 · k (2n) ·mM
f (x0; ε) +

1
ln 2

−2∑
n=−∞

2n+2 · k (2n) ·
ε∫

2n+1ε

mM
f (x0; t)

t
dt+

+
1

ln 2

∞∑

n=0

2n+2 ·k (2n)·mM
f

(
x0; 2n+1ε

)
+

1
ln 2

∞∑

n=0

2n+2 ·k (2n)·
2n+1ε∫

ε

mM
f (x0; t)

t
dt. (2.7)

We can show that if ϕ (x) is a non-negative function monotonically increasing
on the interval (0,+∞), the following inequalities are true

∞∑
n=−∞

k (2n) · ϕ (
2n+1ε

) · 2n ≤ 2 ·
∞∫

0

k (x)ϕ (4εx) dx, ε > 0; (2.8)
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−2∑
n=−∞

2n · k (2n) ≤ 2 ·
1
4∫

0

k (x) dx; (2.9)

∞∑

n=0

k (2n) · ϕ (
2n+1ε

) · 2n ≤ 2 ·
∞∫

1
2

k (x) ϕ (4εx) dx, ε > 0; (2.10)

Furthermore, if ψ (x) is a non-negative function monotonically decreasing on the
interval (0, +∞), the following inequality is true:

−2∑
n=−∞

k (2n) · ψ (
2n+1ε

) · 2n ≤ 2 ·
1
4∫

0

k (x) ψ (2εx) dx, ε > 0. (2.11)

By means of inequalities (2.8)-(2.11), from inequality (2.7) we get

∣∣Φε (f ;x0)− fI(x0;e−ε)

∣∣ ≤ c (k)


mM

f (x0; ε) +

∞∫

0

k (x) mM
f (x0; 4εx) dx+

+

1
4∫

0

k (x)




ε∫

2εx

mM
f (x0; t)

t
dt


 dx +

∞∫

1
2

k (x)




4εx∫

ε

mM
f (x0; t)

t
dt


 dx


 , (2.12)

where c (k) := 8
ln 2 ·max

{
2,

1
4∫
0

k (x) dx
}

.

Changing the integration order in the integrals of inequality (2.12), after some
elementary transformations we get inequality (2.1). The theorem is proved.

From theorems 1.2 and 2.1 we get .
Theorem 2.2. Let f ∈ Lloc (R+) K, be a kernel of Fejer type, k (τ) :=

sup {|K (t)| : |ln t| ≥ τ}, τ > 0, k ∈ L (R+), x0 ∈ R+, ε > 0. Then under con-
vergence of the integrals in the right side, the following inequality is true

|Φε (f ; x0)− df (x0)| ≤ c
(
mM

f (x0; ε) +

ε∫

0

mM
f (x0; t)

t
dt+

+

∞∫

0

k (x) mM
f (x0; 4εx) dx +

∞∫

ε

mM
f (x0; t)

t

(∞∫

t
4ε

k(x)dx
)
dt

)
,

where c > 0 is a constant dependent only on the function k.
The following theorem is also valid.
Theorem 2.3. Let ϕ be a non-negative function monotonically increasing on

(0, +∞), K and k be the same as in the previous theorem, and the following condi-
tions be fulfilled:

1)
ε∫
0

ϕ(t)
t dt = O (ϕ (ε)), ε > 0;
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2)
∞∫
0

k (x) ϕ (4εx) dx = O (ϕ (ε)), ε > 0;

3)
∞∫
ε

ϕ(t)
t

(∞∫
t
4ε

k (x) dx
)
dt = O (ϕ (ε)), ε > 0.

Then if x0 ∈ R+ and f ∈ MOM
ϕ (x0), the following inequality is true

|Φε (f ; x0)− df (x0)| ≤ c · ‖f‖ · ϕ (ε) , ε > 0,

where ‖f‖ := sup
{

mM
f (x0;t)

ϕ(t) : t > 0
}

, and c > 0 is a constant dependent only on the

function k.

The work of the first author was executed by the support of the Science Devel-
opment Foundation under the President of the Republic of Azerbaijan. (project EIF
- 2010-1(1)-40/06-1).

References

[1]. Bardaro C., Mantellini I. A note on the Voronovskaya theorem for Mellin-
Fejer convolution operators. Appl. Math. Letters, 2011, vol. 24, pp. 2064-2067.

[2]. Bardaro C., Mantellini I. Asymptotic behaviour of Mellin-Fejer convolution
operators. East Journal on Approximations, 2011, vol. 17, No 2, pp. 181-201.

[3]. Butzer P.L., Nessel R.Y. Fourier analysis and approximation. Volume 1:
One-Dimensional Theory. New York and London, 1971.

[4]. Gadjiev A.D., Efendiyev R.O., Jbikli E. On Korovkin type theorem in the
space of locally integrable functions. Czechoslovak Math. J., 2003, vol. 53, No 128,
pp. 45-53.

[5]. Golubov B.I. On asymptotics of multiple singular integrals for differentiable
functions. Matem. Zametki, 1981, vol. 30, No 5, pp. 749-762 (Russian).

[6]. Mamedov R.G. Mellin transformation and approximation theory. Baku,
“Elm”, 1991, 272 p. (Russian).

[7]. Rzaev R.M. On approximation of essentially continuous functions by singular
integrals. Izv. Vuzov, Matematika, 1989, No 3, pp. 57-62 (Russian).

[8]. Rzaev R.M. On approximation of locally summable function by singular
integrals in the terms of mean oscillation and some applications. Preprint of the
Institute of Physics of AS Azerb. Baku, 1992, 43 p. (Russian).

[9]. Stein E.M., Weiss G. Introduction to Fourier analysis on Euclidean spaces.
Princeton, New Jersey, Princeton University Press, 1971 (Russian).

Rahim M. Rzaev
Institute of Mathematics and Mechanics of NAS of Azerbaijan
9, B.Vahabzade str., AZ 1141, Baku, Azerbaijan
Azerbaijan State Economic University
6, Istiglaliyyat str., AZ 1001, Baku, Azerbaijan
e-mail: rrzaev@rambler.ru
Tel.: (99412) 538 72 50 (off.).

Ali M. Musayev
Azerbaijan State Oil Academy
20, Azadlig av. AZ 1601, Baku, Azerbaijan

Received June 08, 2011; Revised October 11, 2011.


