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NON-AXISYMMETRIC OSCILLATIONS OF IDEAL
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Abstract

Non-axisymmetric propagation of small amplitude waves in two-phase barotropic
bubble liquid enclosed in elastic cylindrical moment shell is considered. Kirchhoff-
Love plane sections conjecture is used. For numerical calculation in a long
bength approximation, mixture in the form of water involving small addition of
air is taken as an example. Influence of volume content of bubbles and number
of wave formation on wave characteristics is revealed.

While investigating the problems of dynamics of the system ”deformable shell-
liquid”, it is necessary to consider shell equations with regard to influence of liquid
moving in the space on shell dynamics. Specific character of such problems is that
two interconnected problems should be solved: to consider liquid flow and shell
motion under the action of hydrodynamical forces. Furthermore, on the interface,
it is necessary to consider conjugation conditions instead of classic conditions. As
a result, the system ”shell-liquid” is described by such a complicated system of
equations that in general case it is very difficult to solve it. Therefore, in constructing
solutions, it is required a definite schematization of phenomenon by introducing a
conjecture for liquid and shell.

Non-axisymmetric propagation of small amplitude waves in two-phase barotropic
bubble liquid enclosed in elastic thin-shelled cylindrical moment shell whose behavior
is described by equations using Kirchhoff-Love plane sections conjecture is consid-
ered.

For numerical calculation in a long wave length approximation, mixture in the
form of water involving small addition of air is taken as an example.

Influence of volume content of bubbles and number of wave formation on wave
characteristics is revealed.

1. Basic relations and problem statement. A system of equations de-
scribing propagation of waves in liquid containing deformable shell contains shell
and liquid motion equations, boundedness of descred functions and continuity of
velocity components on a liquid and shell contact boundary.

Let an annular shell of radius R and thickness 2h be given in unperturbed state.
In the cylindrical system of coordinates, while considering non-axisymmetric per-
turbations, we write shell motion equation on which hydrodynamical stress (0, 0, q)
of liquid acts, in the form [1]:
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{u (x, θ, t) , ψ (x, θ, t) , w (x, θ, t)} are axial, peripheral and radial components of a
displacement vector, respectively, ρ∗ is material’s density, E is Young’s elasticity
modulus, ν is Poisson ratio, h is a half of shell’s thickness.

Here, by thin-shellness of the shell, the quantity

h2
∗ =

h2

12R2
<< 1.

Mixture’s flow is accepted as potential. Then, for defining velocity potential ϕ (x, θ, r, t)
we have the equation [2]:
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coordinates. For a known potential ϕ hydrodynamic stress and a liquid flow velocity
vector are determined as
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, (1.3)

−→v = grad ϕ. (1.4)

Sound velocity square a2 and gas liquid medium density ρf are written by the
following formulae [3]:
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0
2. (1.6)

In (1.5)-(1.6), α2 is volume content of bubbles, ρ0
1, ρ

0
2 are real densities of carrying

phase and dispersible, p is static pressure in liquid. The index 0 above denotes the
value of the parameter in equilibrium state.

Contact condition.
To complete the problem statement, it is necessary to formulate contact condi-

tions connecting liquid and shell motion. These conditions depend on the adopted
conjecture on thickness of the shell wall and liquid’s model.

In the considered case, kinematic impermeability condition should be fulfilled on
the median surface of the shell. Based on (1.3), the expression for radial component
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of velocity equals ∂ϕ /∂r . Now, taking into account assumption on neutral buoyancy,
the conjugation condition will be of the form [3]:

∂ϕ

∂r
=

∂w

∂t
for r = R. (1.7)

Thus, the considered problem described by equations (1.1),(1.2),(1.3) and (1.7) is
completely formulated.

2. Solution of hydrodynamics equation. In the sequel, we’ll assume all the
desired functions are proportional to time multiplier exp (iωt) , where ω is annular
frequency, i =

√−1 is an imaginary unit. Thus, it is required to find the solution of
equation (1.2) for the case when

ϕ = ϕ1 (x) ϕ2 (r) cos (nθ) exp (iωt) (2.1)

Substituting (2.1) in (1.2), we get:
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The last equality whose left hand side depends only on r, and the right one only
on x is possible only in the case if the common quantity of relations (2.2) will be a
constant. Denote this constant by λ2. Then from equality (2.2) we get two ordinary
differential equations
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Applying the method of separation of variables and considering only the wave trav-
elling in the positive direction of the axis x, finally for the function ϕ we get:
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A is an integration function, n is the number of wave formation.

3. Dispersion equation. Shell motion differential equation (1.1) is satisfied in
substituting therein the solutions of the form
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Here u0, w0 and ψ0 , generally spanking, are complex constants.
Construction of the potential ϕ will be completed if we use formulae (2.5) and

(3.2) in contact condition (1.7). Hence, it directly follows
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Substituting the obtained expression in formula (2.5), we find:
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Using formula (1.3), we define the stress q:
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Further substitution of formulae (3.1)-(3.5) in the system of shell motion equations
(1.1) gives for the coefficients u0, w0 and ψ0 a system of three linear homogeneous
algebraic equations containing ω as a parameter. Introducting the following deno-
tation:
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From the condition on existence of nontrivial solutions for u0, w0 and ψ0 we get that
the determinant of system (3.6) equals zero

det δij = 0
(
i, j = 1, 3

)
, (3.7)
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where the elements δij are calculated by the formulae
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4. Structure of the mixture. Define concretely liquid and consider mixture
consisting of water containing small addition of air bubbles α2 =

{
10−2 − 10−1

}

(the case is interesting from practical point of view).
Such a schematization is very important, as water definitely influences on the

course of many physico-chemical, biological and technological processes. On the
other hand, it always contains ingredients, in particular air bubbles. It is interesting
to notice that blod mostly consists of water. Then accept [4].

ρ0
1 = 1

g

sm3
,

(
ρ0
2 = 10−3 g

sm3

)
, p = 106 dn

sm2
.

5. Numerical experiment and conclusions. We attempt to solve dispersion
equation (3.7) following characteristical test data that correspod to the problem. In
confirmity to rubber shell we have:

ρ∗ = 2 g/sm3, E = 4 · 106 dn

sm2
, R = 2 sm, h = 0, 2sm, λ = 0, 01 sm−1.

In dispersion equation (3.7) there is a quantity Mn that contains Bessel functions
dependent on the wave number λ. Restricting in considerion of the long wave length
process (λ << 1), the quantities Mn may be represented in a polynomial form. Then
for n = 2; 4; 6; 8; 10 (we are restricted in consideration of these cases), the quantities
Mn may be approximately represented in the form
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(n = 0 corresponds to the axysymmetric state).
Dispersion equation (3.7) defines three waves. Two roots of this dispersion equa-

tion defines longitudional waves propagating in the shell and liquid. The third root
defines the torsional wave in the shell, since ideal liquid doesn’t work in shear.

In tables 1,2,3,4, moment (h2∗ << 1) and momentless (h2∗ = 0) cases are com-
pared. Here ω2 and ω1 are the values of frequencies of longitudinal waves propagating
in the shell and liquid, respectively, ω3 are the values of torsional wave frequencies.

Table 1.

Table 2.
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Table 3.

Table 4.

Thus, the calculations allow to formulate the following basic conclusions:
-with increase of volume content of bubbles α2 the frequency ω2 increases (for

n = 2 approximately 10.4%, for n = 10, 11%);
-with increase of α2, the frequency ω1 increases negligibly;
-with increase of volume content of bubbles, ω3 changes negligibly.
For example, for n = 2, ω3 increases approximately 5%.
-from thin-shellness condition we conclude that momentproperty of the shell

practically doesn’t influence on ω2 and ω3. But as it is seen from the table, the
frequency ω1 changes considerably.

-with increase of wave formation number ω1, ω2 and ω3 increase.
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