Valeh H. HAJIYEV

ON FOURIER TRANSFORMATION OF SOME CLASSES OF SQUARE SUMMABLE FUNCTIONS ON A HILBERT SPACE WITH GAUSS MEASURE

Abstract

In the paper we distinguish three classes of functions possessing n-th order derivatives with respect to finite and denumerable number of directions with square summable different expressions.

Necessary and sufficient conditions are imposed on an analytic function of a Hilbert space so that it be a Fourier transformation with respect to Gauss measure of the indicated classes of functions.

Introduction. Let X be a Hilbert space with a scalar product $(x, y), x, y \in$ $X, F-\sigma$ be algebra of Borel sets from X, μ be a Gauss measure on F given by the characteristic functional $\varphi_{0}(z)=\exp \left\{-\frac{1}{2}(B z, z)\right\}$, where B is positive kernel operator. By $L_{2}(X, \mu)$ we denote a space of square summable functions on X. The function $f(x) \in L_{2}(X, \mu)$ determined by the formula $\varphi(z)=\int e^{i(z, x)} f(x) \mu(d x)$ is said to be a Fourier transformation of the function $\varphi(x)$.

It is easy to establish that $\varphi(z)$ is extendable on complex extension of the space X and $\varphi(x+\lambda y)$ is an entire analytic function with respect to a complex variable λ for any fixed $x, y \in X$, at each point of $x \in X$ has a Frechet derivative $\varphi^{(k)}\left(x ; y_{1}, y_{2}, \ldots, y_{k}\right)$ that is a bounded k variable form. In [1] the following inverse problem is solved: under which conditions the entire analytic functions are the Fourier transformations of the functions from $L_{2}(X, \mu)$ and of some narrow subclasses. In the present paper we find necessary and sufficient conditions on an entire analytic function $\varphi(z)$ for it to be transformation of the following classes:

1. Of functions $f(x) \in L_{2}(X, \mu)$ for which

$$
\sum_{m_{1}, m_{2}, \ldots, m_{r}=1}^{\infty} \int\left[f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right]^{2} \mu(d x)<\infty
$$

where $\left\{e_{1}^{m_{1}}\right\},\left\{e_{2}^{m_{2}}\right\}, \ldots,\left\{e_{r}^{m_{r}}\right\}$ are some systems of vectors in $X, m_{1}, m_{2}, \ldots, m_{r}=$ $1,2,3 \ldots$
2. Of functions of the form $f(x)\|x\|^{m}, f(x) \in L_{2}(X, \mu)$
3. Of the functions $f(x) \in L_{2}(X, \mu)$ for which

$$
\left(S p\left[f^{(r)}(x ; \cdot)^{2}\right]\right)^{\frac{1}{2}}\|x\|^{q} \in L_{2}(X, \mu)
$$

where $S p\left[f^{(r)}(x ; \cdot)^{2}\right]=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{\infty}\left[f^{(r)}\left(x ; h_{1}, h_{2}, \ldots, h_{i_{r}}=1\right)\right]^{2}$ and $\left\{h_{i}\right\}$ is some orthonormed basis in X.

1. To each polynomial function

$$
P_{n}(x)=\sum_{k=1}^{n} \sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} c_{i_{1} i_{2} \ldots i_{k}}\left(x, e_{i_{1}}\right)\left(x, e_{i_{2}}\right) \ldots\left(x, e_{i_{k}}\right),
$$

where $n \geq 1, c_{i_{1} i_{2} \ldots i_{k}}$ are the numbers $e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}} \in X$ we associate a differential operator:

$$
P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \varphi(z)=\sum_{k=0}^{n} \sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{n} c_{i_{1} i_{2} \ldots i_{k}} \varphi^{(k)}\left(z ; e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}\right)
$$

Theorem 1. In order the analytic function $\varphi(z)$ on X be a Fourier transformation of the function $f(x) \in L_{2}(X, \mu)$ for which

$$
\begin{equation*}
\sum_{m_{1}, m_{2}, \ldots, m_{r}=1}^{\infty} \int\left[f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right]^{2} \mu(d x)<\infty \tag{1}
\end{equation*}
$$

where $\left\{e_{1}^{m_{1}}\right\},\left\{e_{2}^{m_{2}}\right\}, \ldots,\left\{e_{r}^{m_{r}}\right\}$ are some systems of vectors in X, it is sufficient and necessary that

1. There exist a constant $C>0$ such that for any polynomial $P_{n}(x)$

$$
\left.\left|P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \varphi(z)\right|_{z=0}\right|^{2} \leq C \int P_{n}^{2}(x) \mu(d x)
$$

2. There exist constants $c_{m_{1} m_{2} \ldots m_{k}}>0$ such that

$$
\sum_{m_{1}, m_{2}, \ldots, m_{r}=1}^{\infty} c_{m_{1} m_{2} \ldots m_{k}}<\infty
$$

and for any polynomial $P_{n}(x)$ the linear functionals

$$
\begin{gathered}
l_{m_{1} m_{2} \ldots m_{k}}\left(P_{n}\right)=\left[\sum P_{n, e_{i_{1}}, \ldots, e_{r_{1}}}^{r_{1}}\left(\frac{1}{i} \frac{d}{d z}\right) \prod_{v=1}^{m_{2}} \times\right. \\
\left.\times\left(\frac{1}{i} \frac{d}{d z} ; B^{-1} e_{j_{v}}^{m_{j_{v}}}\right) \prod_{\mu=1}^{r_{3}}\left(B^{-1} e_{k_{\mu-1}}^{m_{k_{\mu}-1}}, e_{k_{\mu}}^{m_{k_{\mu}}}\right)\right]\left.\cdot \varphi(z)\right|_{z=0}
\end{gathered}
$$

be restricted

$$
\left|l_{m_{1} m_{2} \ldots m_{k}}\left(P_{n}\right)\right|^{2} \leq c_{m_{1} m_{2} \ldots m_{k}} \int P_{n}^{2}(x) \mu(d x)
$$

where summation is taken over all collections

$$
\left(i, \ldots, i_{r_{1}}\right) U\left(j_{1}, \ldots, j_{r_{1}}\right) \cup\left(k_{1}, \ldots, k_{r_{1}}\right)=(1,2,3, \ldots, r)
$$

and appropriate

$$
\left(m_{i_{1}}, m_{i_{2}} \ldots, m_{i_{r_{1}}}\right) \cup\left(m_{j_{1}}, m_{j_{2}} \ldots, m_{j_{r_{2}}}\right)\left(m_{k_{1}}, m_{k_{2}} \ldots, m_{k_{r_{3}}}\right)=\left(m_{1}, m_{2} \ldots, m_{r}\right)
$$

Proof. On the proof of the first statement see[1].

Let's prove the second part.
Necessity:
Let for $f(x) \in L_{2}(X, \mu)$ it hold (1). Then $f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right) \in L_{2}(X, \mu)$ and the Fourier transformation

$$
\begin{equation*}
\psi\left(z ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)=\int e^{i(z, x)} f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right) \mu(d x) \tag{2}
\end{equation*}
$$

is determined for it.
Acting by the operator $P_{n}\left(\frac{1}{i} \frac{d}{d x}\right)$ on both hand sides of (2) and equating to $z=0$ we get

$$
\begin{align*}
& \left.P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \psi\left(z ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right|_{z=0}= \tag{3}\\
& =\int f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right) P_{n}(x) \mu(d x)
\end{align*}
$$

Hence

$$
\begin{gather*}
\left.\left|P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \psi\left(z ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right|_{z=0}\right|^{2} \leq \tag{4}\\
\leq \int\left[f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right]^{2} \mu(d x) \cdot \int P_{n}^{2}(x) \mu(d x)
\end{gather*}
$$

Integrating the first hand side of (2) by parts ([2]) and acting by the operator $P_{n}\left(\frac{1}{i} \frac{d}{d x}\right)$ on the both hand sides after integration by parts we get

$$
\begin{gathered}
\left.P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \psi\left(z ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right|_{z=0}= \\
=\left[\sum P_{n, e_{i_{1}}}^{\left(r_{1}\right)}, \ldots, e_{r_{1}}^{m_{i_{1}}}\left(\frac{1}{i} \frac{d}{d z}\right) \prod_{v=1}^{r_{2}}\left(\frac{1}{i} \frac{d}{d z} ; B^{-1} e_{j_{v}}^{m_{j_{v}}}\right) \times\right. \\
\left.\times \prod_{\mu=1}^{r_{3}}\left(B^{-1} e_{k_{\mu-1}}^{m_{k_{\mu-1}}}, e_{k_{\mu}}^{m_{k_{\mu}}}\right)\right]\left.\cdot \varphi(z)\right|_{z=0}=l_{m_{1} m_{2} \ldots m_{k}}\left(P_{n}\right) .
\end{gathered}
$$

Taking into account (3) and (4) we get

$$
\begin{gathered}
\left|l_{m_{1} m_{2} \ldots m_{k}}\left(P_{n}\right)\right|^{2}=\left.\left|P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \psi\left(z ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right|_{z=0}\right|^{2} \leq \\
=\int\left[f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right]^{2} \cdot \mu(d x) \cdot \int P_{n}^{2}(x) \mu(d x)
\end{gathered}
$$

Having denoted

$$
c_{m_{1} m_{2} \ldots m_{k}}=\int\left[f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right]^{2} \mu(d x)
$$

we get $\left|l_{m_{1} m_{2} \ldots m_{k}}\left(P_{n}\right)\right|^{2} \leq c_{m_{1} m_{2} \ldots m_{k}}\left\|P_{n}\right\|^{2} \quad$ and $\sum_{m_{1}, m_{2}, \ldots, m_{r} \geq 1}^{n} c_{m_{1} m_{2} \ldots m_{r}}<\infty$

Sufficiency.

Let is given $\left|l_{m_{1} m_{2} \ldots m_{k}}\left(P_{n}\right)\right|^{2} \leq c_{m_{1} m_{2} \ldots m_{k}}\left\|P_{n}\right\|^{2}$ and

$$
\sum_{m_{1}, m_{2}, \ldots, m_{r} \geq 1}^{n} c_{m_{1} m_{2} \ldots m_{r}}<\infty
$$

Then it is known that ([2]) this functional has the representation

$$
l_{m_{1} m_{2} \ldots m_{k}}\left(P_{n}\right)=\int f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right) P_{n}(x) \mu(d x)
$$

where $f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)$ is a generalized derivative of $f(x)$ and is square summable with respect to measure μ. From the general theory on representation of a linear continuous functional it is known that the norm

$$
\left\|f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right\|^{2} \leq c_{m_{1} m_{2} \ldots m_{k}}
$$

Consequently,

$$
\begin{gathered}
\sum_{m_{1}, m_{2}, \ldots, m_{r} \geq 1}^{\infty} \int\left[f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right]^{2} \mu(d x)= \\
=\sum\left\|f^{(r)}\left(x ; e_{1}^{m_{1}}, e_{2}^{m_{2}}, \ldots, e_{r}^{m_{r}}\right)\right\|^{2} \leq \sum_{m_{1}, m_{2}, \ldots, m_{r} \geq 1} c_{m_{1} m_{2} \ldots m_{r}}<\infty .
\end{gathered}
$$

Theorem 2. In order an analytic function $\varphi(z)$ be a Fourier transformation of $f(x)$ on X such that $f(x)\|x\|^{m} \in L_{2}(X, \mu)$, it is necessary and sufficient that there exist the constants $c_{i_{1} i_{2} \ldots i_{r}}, \sum_{i_{1}, i_{2}, \ldots, i_{m}}^{\infty} c_{i_{1}, i_{2}, \ldots, i_{m}}<\infty$ such that

$$
\begin{equation*}
\left.\left|\prod_{s=1}^{m}\left(\frac{1}{i} \frac{d}{d z} ; e_{i_{s}}\right) P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \varphi(z)\right|_{z=0}\right|^{2} \leq c_{i_{1} i_{2} \ldots i_{m}} \int P_{n}^{2}(x) \mu(d x) \tag{5}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ is some orthonormed basis in X.
Proof. Necessity. Let $\varphi(z)$ be a Fourier transformation of the function $f(x)$. Then

$$
\varphi(z)=\int e^{i(z, x)} f(x) \mu(d x)
$$

and

$$
\begin{gathered}
\prod_{s=1}^{m}\left(\frac{1}{i} \frac{d}{d z} ; e_{i_{s}}\right) P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \varphi(z)= \\
=\int e^{i(z, x)} f(x) \cdot P_{n}(x) \cdot\left(x, e_{i_{1}}\right)\left(x, e_{i_{2}}\right) \ldots\left(x, e_{i_{s}}\right) \mu(d x)
\end{gathered}
$$

Consequently,

$$
\begin{gathered}
\left.\prod_{s=1}^{m}\left(\frac{1}{i} \frac{d}{d z} ; e_{i_{s}}\right) P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \varphi(z)\right|_{z=0}= \\
=\int f(x) \cdot P_{n}(x) \cdot\left(x, e_{i_{1}}\right)\left(x, e_{i_{2}}\right) \ldots\left(x, e_{i_{s}}\right) \mu(d x) .
\end{gathered}
$$

Taking modulus of both hand sides and having applied the Schwartz inequality we get (5), where

$$
c_{i_{1} i_{2} \ldots i_{m}}=\int f^{2}(x) \cdot\left(x, e_{i_{1}}\right)^{2}\left(x, e_{i_{2}}\right)^{2} \ldots\left(x, e_{i_{s}}\right)^{2} \mu(d x)
$$

Having summed up with respect to $i_{1}, i_{2}, \ldots, i_{k}=1,2, \ldots$ we find

$$
\begin{aligned}
& \sum_{i_{1}, i_{2}, \ldots, i_{m}}^{\infty} c_{i_{1}, i_{2}, \ldots, i_{m}}=\int f^{2}(x) \cdot \sum_{i=1}^{\infty}\left(x, e_{i_{1}}\right)^{2} \ldots \sum_{i_{m}}^{\infty}\left(x, e_{i_{s}}\right)^{2} \mu(d x)= \\
= & \int f^{2}(x) \cdot\|x\|^{2} \cdot \ldots \cdot\|x\|^{2} \mu(d x)=\int f^{2}(x) \cdot\|x\|^{2 m} \mu(d x)<\infty .
\end{aligned}
$$

Sufficiency.

Let (1) be fulfilled and $\sum_{i_{1}, i_{2}, \ldots, i_{m} \geq 1}^{\infty} c_{i_{1} i_{2} \ldots i_{m}}<\infty$. The linear bounded functional

$$
l_{\varphi}\left(P_{n}\right)=\left.\prod_{s=1}^{m}\left(\frac{1}{i} \frac{d}{d z} ; e_{i_{s}}\right) P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \varphi(z)\right|_{z=0}
$$

is determined on all polynomials $\left\{P_{n}(x)\right\}$. Consequently, it has continuation on $L_{2}(X, \mu)$ with the same constants $c_{i_{1} i_{2} \ldots i_{m}}>0$. Then $l_{\varphi}\left(P_{n}\right)$ has a representation $l_{\varphi}\left(P_{n}\right)=\int \rho_{i_{1} \ldots i_{m}}(x) P_{n}(x) \mu(d x)$, where $\rho_{i_{1} \ldots i_{m}}(x) \in L_{2}(X, \mu)$ and $\int \rho_{i_{1} \ldots i_{m}}^{2}(x) \mu(d x)=$ $c_{i_{1} i_{2} \ldots i_{m}}$.

Let's consider $\psi(z)=\int e^{i(z, x)} \rho_{i_{1} \ldots i_{m}}(x) \mu(d x)$. Then $\psi(z)$ is an analytical function and for any polynomial $P_{n}(x)$

$$
l_{\varphi}\left(P_{n}\right)=\left.P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \psi(z)\right|_{z=0}=\int \rho_{i_{1} \ldots i_{m}}(x) P_{n}(x) \mu(d x)
$$

On the other hand

$$
\begin{aligned}
& l_{\varphi}\left(P_{n}\right)=\left.\prod_{s=1}^{m}\left(\frac{1}{i} \frac{d}{d z} ; e_{i_{s}}\right) P_{n}\left(\frac{1}{i} \frac{d}{d x}\right) \varphi(z)\right|_{z=0}= \\
& =\int f(x) \cdot P_{n}(x) \cdot\left(x, e_{i_{1}}\right)\left(x, e_{i_{2}}\right) \ldots\left(x, e_{i_{s}}\right) \mu(d x) .
\end{aligned}
$$

By the uniqueness theorem, from these equalities we'll have

$$
\rho_{i_{1} \ldots i_{m}}(x)=f(x) \cdot\left(x, e_{i_{1}}\right)\left(x, e_{i_{2}}\right) \ldots\left(x, e_{i_{s}}\right) \quad(\bmod \mu)
$$

and

$$
\int f^{2}(x) \cdot\left(x, e_{i_{1}}\right)^{2}\left(x, e_{i_{2}}\right)^{2} \ldots\left(x, e_{i_{s}}\right)^{2} \mu(d x) \leq c_{i_{1} i_{2} \ldots i_{m}}
$$

Then

$$
\begin{gathered}
\int f^{2}(x) \cdot\|x\|^{2} \mu(d x)= \\
=\sum \int f^{2}(x) \cdot\left(x, e_{i_{1}}\right)^{2}\left(x, e_{i_{2}}\right)^{2} \ldots\left(x, e_{i_{s}}\right)^{2} \mu(d x)= \\
=\sum_{i_{1}, i_{2}, \ldots, i_{m} \geq 1}^{\infty} c_{i_{1} i_{2} \ldots i_{m}}<\infty .
\end{gathered}
$$

The $(k+l)$-linear form $f^{(k)}\left(x ; h_{1}, h_{2}, \ldots, h_{k}\right) \times g^{(l)}\left(x ; h_{1}^{1}, h_{2}^{1}, \ldots, h_{l}^{1}\right)$ is called a product of two derivatives $f^{(k)}\left(x ; h_{1}, h_{2}, \ldots, h_{k}\right)$ and $g^{(k)}\left(x ; h_{1}^{1}, h_{2}^{1}, \ldots, h_{l}^{1}\right)$.

We consider the expression

$$
\sum\left[f^{(k)}\left(x ; h_{i_{1}}, h_{i_{2}}, \ldots, h_{i_{k}}\right)\right]^{2}
$$

where summation is taken with respect to some orthonormal basis $\left\{h_{i}\right\}$ of the space X. It this sum is finite for all bases its quantity is independent of the chosen basis, is said to be a trace of $2 k$-linear form and denoted by $S p\left[f^{(k)}(x ; \cdot)\right]^{2}$.

Theorem 3. In order $\varphi(z)$ be a Fourier transformation of the function $f(x)$ such that

$$
\left(S p\left[f^{(r)}(x ; \cdot)\right]^{2}\right)^{\frac{1}{2}}\|x\|^{q} \in L_{2}(X, \mu)
$$

it is necessary and sufficient that there exist the constants $c_{m_{1}, m_{2}, \ldots, m_{r} l_{1} \ldots l_{q}}>0$ such that $\sum_{\substack{m_{1}, m_{2}, \ldots, m_{r}=1 \\ l_{1}, l_{2}, \ldots, l_{r}=1}}^{\infty} c_{m_{1} m_{2} \ldots m_{r} l_{1} l_{2} \ldots l_{q}}<\infty$, and for any polynomial $P_{n}(x), n \geq 1$.

$$
\begin{aligned}
& \left\lvert\, \prod_{s=1}^{m}\left(\frac{1}{i} \frac{d}{d z} ; e_{l_{s}}\right)\left[\sum P_{n, a_{i_{1}}, \ldots, a_{r_{1}}}^{\left(r_{1}\right)}\left(\frac{1}{i} \frac{d}{d z}\right) \prod_{v=1}^{m_{i_{1}}}\left(\frac{1}{i} \frac{d}{d z} ; B^{-1} a_{j_{v}}^{m_{j_{v}}}\right) \times\right.\right. \\
\times & \left.\prod_{\mu=1}^{r_{3}}\left(B^{-1} a_{k_{\mu-1}}^{m_{k_{\mu-1}}}, a_{k_{\mu}}^{m_{k_{\mu}}}\right)\right]\left.\left.\cdot \varphi(z)\right|_{z=0}\right|^{2} \leq c_{m_{1} m_{2} \ldots m_{r} l_{1} l_{2} \ldots l_{q}} \int P_{n}^{2}(x) \mu(d x),
\end{aligned}
$$

where summation is taken over all collections

$$
\left(i_{1}, \ldots, i_{r_{1}}\right) \cup\left(j_{1}, \ldots, j_{r_{2}}\right) \cup\left(k_{1}, \ldots, k_{r_{3}}\right)=(1,2,3, \ldots, r)
$$

and appropriate

$$
\begin{gathered}
\left(m_{i_{1}}, m_{i_{2}}, \ldots, m_{i_{r_{1}}}\right) \cup\left(m_{j_{1}}, m_{j_{2}}, \ldots, m_{j_{r_{2}}}\right)\left(m_{k_{1}}, m_{k_{2}}, \ldots, m_{k_{r_{3}}}\right)=\left(m_{1}, m_{2}, \ldots, m_{r}\right) \\
r_{1}+r_{2}+r_{3}=r \quad\left\{e_{l}\right\}, l=1,2, \ldots \quad\left\{a_{1}^{m_{1}}\right\},\left\{a_{2}^{m_{2}}\right\}, \ldots,\left\{a_{r}^{m_{r}}\right\}
\end{gathered}
$$

are orthonormed bases.

Proof. Sufficiency. Denote by

$$
A\left(e_{l_{1}}, e_{l_{2}}, \ldots, e_{l_{q}}, a_{1}^{m_{1}}, a_{2}^{m 2}, \ldots, a_{r}^{m_{r}}\right)
$$

a linear operator acting on $\varphi(z)$ by the formula

$$
\begin{gathered}
A\left(e_{l_{1}}, e_{l_{2}}, \ldots, e_{l_{q}}, a_{1}^{m_{1}}, a_{2}^{m 2}, \ldots, a_{r}^{m_{r}}\right) \varphi(z)= \\
=\prod_{s=1}^{q}\left(\frac{1}{i} \frac{d}{d z} ; e_{l_{s}}\right)\left[\sum_{n, a_{i_{1}}, \ldots, a_{r_{1}}}^{m_{r_{1}}}\left(\frac{1}{i} \frac{d}{d z}\right) \prod_{v=1}^{\left.r_{1}\right)}\left(\frac{1}{i} \frac{d}{d z} ; B^{-1} a_{j_{v}}^{m_{j_{v}}}\right) \times\right. \\
\left.\times \prod_{\mu=1}^{r_{3}}\left(B^{-1} a_{k_{\mu-1}}^{m_{k_{\mu-1}}}, a_{k_{\mu}}^{m_{k_{\mu}}}\right)\right] \varphi(z) .
\end{gathered}
$$

Then

$$
l_{\varphi}\left(P_{n}\right)=\left.A\left(e_{l_{1}}, e_{l_{2}}, \ldots, e_{l_{q}}, a_{1}^{m_{1}}, a_{2}^{m 2}, \ldots, a_{r}^{m_{r}}\right) \varphi(z)\right|_{z=0}
$$

is a linear bounded functional on a system of all polynomials $\left\{P_{n}(x)\right\}_{n \geq 1}$. It has a unique continuation on $L_{2}(X, \mu)$ with the same constant $c_{m_{1} m_{2} \ldots m_{r} l_{1} l_{2} \ldots l_{q}}>0$. By the theorem on representation of a linear bounded functional $l_{\varphi}\left(P_{n}\right)$ there exists

$$
\rho_{m_{1} m_{2} \ldots m_{r} l_{1} \ldots l_{q}}(x) \in L_{2}(X, \mu)
$$

that

$$
l_{\varphi}\left(P_{n}\right)=\int \rho_{m_{1} m_{2} \ldots m_{r} l_{1} \ldots l_{q}}(x) P_{n}(x) \mu(d x) .
$$

On the other hand, it is known [2] that

$$
\begin{gathered}
A\left(e_{l_{1}}, e_{l_{2}}, \ldots, e_{l_{q}}, a_{1}^{m_{1}}, a_{2}^{m 2}, \ldots, a_{r}^{m_{r}}\right) \varphi(z)= \\
=\int e^{i(z, x)} f^{(r)}\left(x ; a_{1}^{m_{1}}, a_{2}^{m_{2}}, \ldots, a_{r}^{m_{r}}\right) \cdot\left(x, e_{l_{1}}\right)\left(x, e_{l_{2}}\right) \ldots\left(x, e_{l_{q}}\right) \mu(d x) .
\end{gathered}
$$

Then by the theorem on uniqueness of the representation

$$
\rho(x)_{m_{1} m_{2} \ldots m_{r} l_{1} \ldots l_{q}}=f^{r}\left(x ; a_{1}^{m_{1}}, a_{2}^{m_{2}}, \ldots, a_{r}^{m_{r}}\right) \cdot\left(x, e_{l_{1}}\right)\left(x, e_{l_{2}}\right) \ldots\left(x, e_{l_{q}}\right)(\bmod \mu) .
$$

Consequently

$$
\int\left[f^{r}\left(x ; a_{1}^{m_{1}}, a_{2}^{m_{2}}, \ldots, a_{r}^{m_{r}}\right)\right]^{2} \cdot\left(x, e_{l_{1}}\right)^{2}\left(x, e_{l_{2}}\right)^{2} \ldots\left(x, e_{l_{q}}\right)^{2} \mu(d x) \leq c_{m_{1} m_{2} \ldots m_{r} l_{1} \ldots l_{q}} .
$$

Having summed with respect to $m_{1}, m_{2}, \ldots, m_{r}, l_{1}, l_{2}, \ldots, l_{q}=1,2, \ldots$ we get

$$
\begin{gathered}
\int \sum\left[f^{(r)}\left(x ; a_{1}^{m_{1}}, a_{2}^{m_{2}}, \ldots, a_{r}^{m_{r}}\right)\right]^{2} \sum_{l_{1}=1}^{\infty}\left(x, e_{l_{1}}\right)^{2} \ldots \sum_{l_{q}=1}^{\infty}\left(x, e_{l_{q}}\right)^{2} \mu(d x) \leq \\
\leq \sum_{\substack{m_{1}, m_{2}, \ldots, m_{r}=1 \\
l_{1}, l_{2}, \ldots, l_{r}=1}}^{\infty} c_{m_{1} m_{2} \ldots m_{r} l_{1} l_{2} \ldots l_{q}} .
\end{gathered}
$$

Consequently

$$
\int S p\left[f^{(r)}(x ; \cdot)\right]^{2}\|x\|^{2 q} \mu(d x)<\infty .
$$

The necessity is proved in [1].

References

[1]. Hajiyev V.H. On Fourier transformation of some classes of functions of finite number of variables. Random processes in problems of mathematical physics. Kiev, 1979, pp. 57-72. (Russian)
[2]. Valeh H.Hajiyev. On generalized n-th order derivative functions square summable on Hilbert space with gauss measure.

Transactions of Nas of Azerbaijan, series of physical-technical and mathematical sciences. No 1, 2007, vol. XXVII pp. 55-62.

Valeh H. Hajiyev
Baku, States University
23, Z. I. Khalilov str., Az 1148, Baku, Azerbaijan.
Tel.: (99412) 4391169 (off)
Received October 03, 2008; Revised December 25, 2008;

