MATHEMATICS

Akbar B. ALIEV, Famil V. MAMEDOV

GLOBAL SOLVABILITY AND BEHAVIOR OF SOLUTION THE CAUCHY PROBLEM FOR THE QUASILINEAR HYPERBOLIC EQUATION WITH ANISOTROPIC ELLIPTIC PART AND INTEGRAL NONLINEARITY

Abstract

In this paper we investigate the Cauchy problem for a quasilinear hyperbolic equation with anisotropic elliptic part and integral nonlinearity. The theorem on global solvability is proved. The decrease order of solutions and their derivatives are obtained as $t \to \infty$.

1. Statement of the problem.

We consider the Cauchy problem for the quasilinear hyperbolic equation

$$u_{tt} + u_t + \sum_{i=1}^n (-1)^{l_i} a_i(t, [u]_{l,i}) D_{x_i}^{2l_i} u = 0, t > 0, x \in R_n$$
(1)

with initial datas

$$u(0,x) = \varphi(x), \quad u_t(0,x) = \psi(x), \quad x \in R_n$$
(2)

where $l_1, l_2, ..., l_n \in \{1, 2, ...\}$, $[u]_{l,i} = \sum_{k=1}^n \beta_{ik} \int_{R_n} \left| D^{l_k} u \right|^2 dx$, $\beta_{ik} \in R$.

In the paper [1] the solvability of a mixed problem for quasilinear Kirchoff equations in Gevrey classes is investigated. But in the paper [2] a class of quasilinear Kirchoff equations, for which the corresponding mixed problem with initial data from Sobolev space have a global solution, is chosen. Further, the quasilinear hyperbolic equations with integral nonlinearity are investigated in the papers of the other autors (see [3], [4])

In this paper we investigate the global solvability of the problem (1), (2) with small initial datas in the anisotropic Sobolev spaces.

Suppose that the following conditions are satisfied:

1) $a_i(t,\xi) = 1 + a_{1i}(t,\xi)$ are defined for all $(t,\xi) \in [0,\infty) \times (-b,b)$ and continuously differentiable with respect to t,ξ . The function $a'_{1i_{\xi}}(t,\xi)$ are continuously differentiable with respect to t, where b > 0.

2) For any $t \in [0, \infty)$, $\xi \in (-b, b)$ the following inequalities are satisfied:

$$|a_{1i}(t,\xi)| \le c |\xi|^p$$
, $|a_{1i_t}(t,\xi)| \le c |\xi|^p$, $|a'_{1i_\xi}(t,\xi)| \le c |\xi|^{p-1}$

4 [A.B.Aliev, F.V.Mamedov]

where p > 1 and $c \ge 0$ some constants.

By $W_2^{rl}(R_n)$ r = 1, 2, ... we denote the anisotropic Sobolev spaces:

$$||u||_{W_2^{rl}(R_n)} = \sqrt{\langle u, u \rangle_{W_2^{rl}(R_n)}},$$

where

$$\langle u, v \rangle_{W_2^{rl}(R_n)} = \int_{R_n} u(x)v(x)dx + \sum_{i=1}^n \int_{R_n} D_{x_i}^{rl_i}u(x)D^{rl_i}v(x)dx$$

 $l = (l_1, ..., l_n), \quad rl = (rl_1, ..., rl_n), \text{ at } r = 0 \ W^{0,l}(R_n) = L_2(R_n).$

By $H_r = W_2^{(r+1)l}(R_n) \times W_2^{rl}(R_n)$ denote the Hilbert space with the scalar product:

$$\langle w^1, w^2 \rangle_{H_r} = \langle u^1, u^2 \rangle_{W_2^{(r+1)l}(R_n)} + \langle v^1, v^2 \rangle_{W_2^{rl}(R_n)}$$

and the corresponding norm $\|\cdot\|_{H_r} = \langle \cdot, \cdot \rangle_{H_r}^{\frac{1}{2}}$, where $w^1 = \begin{pmatrix} u^1 \\ v^1 \end{pmatrix}$, $w^2 \begin{pmatrix} u^2 \\ v^2 \end{pmatrix}$, r = 0, 1.

By U_{δ}^{r} we denote the ball of radius $\delta > 0$ in the space H_{r} , i.e.

$$U_{\delta}^{r} = \left\{ (v_{1}, v_{2}) \in H_{r} \ \|v_{1}\|_{W_{2}^{(r+1)l}(R_{n})} + \|v_{2}\|_{W_{2}^{rl}(R_{n})} < \delta \right\}, r = 0, 1.$$

The main results of this paper is the following theorem on global solvability and asymptotic behavior of solutions at $t \to +\infty$.

Theorem. Suppose that the condition 1), 2) are satisfied. Then there exists a real number $\delta_0 > 0$, such that, for any $(\varphi, \psi) \in U^1_{\delta_0}$ the problem (1), (2) has a unique solution $u \in C([0,\infty): W_2^{2l}(R_n)) \cap C^1([0,\infty); W_2^{l}(R_n)) \cap C^2([0,\infty); L_2(R_n))$ which satisfies the estimates

$$||D^{\alpha}u(t,\cdot)||_{L_2(R_n)} \le c_{\delta_0}(1+t)^{-\left|\frac{\alpha}{l}\right|}$$

where $\alpha = (\alpha_1, ..., \alpha_n), \ \alpha_1, ..., \alpha_n \in \mathbb{N} \cup \{0\}, \ \left|\frac{\alpha}{l}\right| = \frac{\alpha_1}{l_1} + ... + \frac{\alpha_n}{l_n}, c_{\delta_0} > 0$ is some constant independent of t > 0.

Proof of the theorem. By substitution $v_1 = u$, $v_2 = u_t$ we can reduce problem (1), (2) to the Cauchy problem

$$w' = A(t, w)w \tag{3}$$

$$w(0) = w_0 \tag{4}$$

in Hilbert space H_0 , where

$$w = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \ w_0 = \begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \ D(A(t, w)) = H_1,$$
$$A(t, w) = \begin{pmatrix} 0 & I \\ -\sum_{i=1}^n (-1)^{l_i} a_i(t, [v_1]_{l,i}) D_{x_i}^{2l_i} & -I \end{pmatrix}.$$

Transactions of NAS of Azerbaijan $\frac{}{[Global \ solvability \ and \ behavior \ of \ solution...]}$

In the space H_0 we introduce the system of bilinear form

$$\left\langle h^{1}, h^{2} \right\rangle_{H(t,w)} = \sum_{i=1}^{n} a_{i}(t, [v_{1}]_{l,i}) \int_{R_{n}} D_{x_{i}}^{l_{i}} h_{1}^{1} \cdot D_{x_{i}}^{l_{i}} h_{2}^{1} dx + \int_{R_{n}} h_{1}^{1} \cdot h_{2}^{1} dx + \int_{R_{n}} h_{2}^{1} \cdot h_{2}^{2} dx,$$

where $t \in [0,\infty)$, $w = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in U^0_{\delta}$, $h^i = \begin{pmatrix} h^i_1 \\ h^i_2 \end{pmatrix} \in H_0$, i = 1, 2By 2) it follows that the following inequalities is valid

$$\begin{split} \left[1 - c \left(\sum_{i,k=1}^{n} |\beta_{ik}| \cdot \|w\|_{H_0}\right)^p\right] \|h\|_{H_0} &\leq \|h\|_{H(t,w)} \leq \\ &\leq \left[1 + c \left(\sum_{i,k=1}^{n} |\beta_{ik}| \cdot \|w\|_{H_0}\right)^p\right] \|h\|_{H_0} \,, \\ &w \in \cup_{\delta}^0, \ t \in [0,\infty), \ h \in H_0, \ \|h\|_{H(t,w)} = \sqrt{\langle h,h \rangle_{H(t,w)}} \end{split}$$

Further by embedding theorem (see [9 pp. 137-158]) it follows that for the sufficiently small $\delta' \in (0, \delta)$ the following inequalities is having

$$c_1(\delta') \|h\|_{H_0} \le \|h\|_{H(t,w)} \le c_2(\delta') \|h\|_{H_0},$$

where $w \in U^0_{\delta'}$, $0 < c_1(\delta') < c_2(\delta')$ independent from w, h and t > 0.

Taking into account the conditions 1), 2) we have that the bilinear form $\langle \cdot, \cdot \rangle_{H(t,w)}$ define the system of equivalent scalar products in the space H_0 (see [6]). Denote by H(t, w) the space H_0 with the scalar product $\langle \cdot, \cdot \rangle_{H(t,w)}$.

The following lemma obtained with use conditions 1, 2).

Lemma 1. For any $h \in H_0$ the mapping $(t,w) \to ||h||_{H(t,w)}$: $[0,\infty) \times U^0_{\delta} \to$ $[0,\infty)$ satisfies the local Lipshitz condition, i.e. for any $t_1, t_2 \in [0,\infty), w^1, w^2 \in U_{\delta}$ the following inequality is fulfilled

$$\left| \|h\|_{H(t_1,w^1)} - \|h\|_{H(t_2,w^2)} \right| \le c_3(\delta) \cdot \left[|t_1 - t_2| + \|w^1 - w^2\|_{H_0} \right] \|h\|_{H_1},$$

where $c_3(\delta) > 0$ is independent of t_1, t_2, w^1, w^2 and h.

From definition of A(t, w) and the scalar product in H(t, w), and also from condition 1), 2) follows that the next lemma 1 is hold.

Lemma 2. There exists $\delta'' \in (0, \delta')$ and $\omega > 0$ so that for any $w \in U_{\delta'}$ the operator $A(t, w) + \omega I$ generates the strong conditions contraction semigroup in the space H(t, w) where I-is a unique operator in H(t, w).

Lemma 3. The mapping $(t,w) \to A(t,w)$: $[0,\infty) \times U^0_{\delta} \to L(H_0;H_1)$ satisfies the local Lipchitz condition, i.e. for any (t_1, w^1) , $(t_2, w^2) \in [0, \infty) \times U_{\delta}$ and $h \in H_1$ the following inequality is fulfilled

$$\left\| \left[A(t_1, w^1 - A(t_2, w^2) h \right] \right\|_{H_0} \le c_4(\delta) \left[|t_1 - t_2| + \left\| w^1 - w^2 \right\|_{H_0} \right] \|h\|_{H_1},$$

5

6 [A.B.Aliev, F.V.Mamedov]

where $L(H_0, H_1)$ is the set all bounded operator from H_0 to H_1 , $c_4(\delta) \in C(R_+; R_+)$. Thus from Lemmas 1-3 and results of paper [6], there exists $\delta_1 \in (0, \delta'']$ such that

for any $w_0 \in U^1_{\delta_1}$ the problem (3), (4) has a unique solution $w(t) \in C([0, T_0]; H_1) \cap C([0, T_0]; H_0)$ where $T_0 = T_0(w_0)$ some positive number depend on w_0 and δ_1 .

Now we prove following statement:

There exists such $\delta_0 \in (0, \delta_1)$ that for any $w_0 \in U^1_{\delta_0}$ the problem (3), (4) has a global solution

$$w(t) \in C([0,\infty); H_1) \cap C^1([0,\infty); H_0)$$

The solution of the problem (1), (2) can be represented as the following form:

$$u(t,x) = u_1(t,x) * \varphi(x) + u_2(t,x) * \psi(x) + \int_0^t u_2(t-\tau,x) \times \left[\sum_{i=1}^n a_i(\tau, [u]_{l,i}) D_{x_i}^{2l_i} u(\tau,x)\right] d\tau,$$
(5)

where $u_i = F^{-1}[\hat{u}_i]$, i = 1, 2. Here F^{-1} is a inverse Fourier transformation, * is convolution to x, $\hat{u}_1(t, x)$ and $\hat{u}_2(t, x)$ are solutions of the following Cauchy problem

$$L_{\xi}\widehat{u}_{1}(t,\xi) = 0, \quad \widehat{u}_{1}(0,\xi) = 1, \quad \widehat{u}_{1_{t}}(0,\xi) = 0, \tag{6}$$

$$L_{\xi}\widehat{u}_{2}(t,\xi) = 0, \quad \widehat{u}_{2}(0,\xi) = 0, \quad \widehat{u}_{2_{t}}(0,\xi) = 1,$$

$$L_{\xi}\widehat{u}(t,\xi) = \widehat{u}_{tt}(t,\xi) + \widehat{u}_{t}(t,\xi) + \sum_{i=1}^{n} \xi_{i}^{2l_{i}}\widehat{u}(t,\xi).$$
(7)

Using the Fourier transformation, Plancherel theorem and Hausdorf-Young inequality we have

$$\|D_{t}(u_{1}(t,x) * \varphi(x)\| + \sum_{i=1}^{n} \|D_{x_{i}}^{l}(u_{1}(t,x) * \varphi(x))\|_{L_{2}(R_{n})} \leq c(1+t)^{-1} \left[\sum_{i=1}^{n} \|D_{x_{i}}^{l_{i}}\varphi(x))\|_{L_{2}(R_{n})} + \|\varphi(x)\|_{L_{2}(R_{n})}\right],$$

$$\|D_{t}u_{2}(t,x) * \psi(x)\| + \sum_{i=1}^{n} \|D_{x_{i}}^{l_{i}}(u_{2}(t,x) * \psi(x))\|_{L_{2}(R_{n})} \leq c(1+t)^{-1} \|\psi(x)\|_{L_{2}(R_{n})}$$
(9)

Let [0, T') be a maximal interval of existence of solutions $w(t) \in C([0, T'); H_1) \cap C^1([0, T'); H_0)$, for the problem (3), (4).

Taking into account (8), (9) from (5) we obtain that

$$\|u_t(t,x)\|_{L_2(R_n)}^2 + \sum_{i=1}^n \left\|D_{x_i}^{l_i}u(t,x)\right\|_{L_2(R_n)} \le c(1+t)^{-1} \times$$

_

 $\label{eq:rescaled} Transactions of NAS of Azerbaijan \frac{7}{[Global solvability and behavior of solution...]} 7$

$$\times \left[\sum_{i=1}^{n} \left\| D_{x_{i}}^{l_{i}} \varphi(x) \right\|_{L_{2}(R_{n})} + \left\| \varphi(x) \right\|_{L_{2}(R_{n})} + \left\| \psi(x) \right\|_{L_{2}(R_{n})} \right] + (10)$$
$$+ c \int_{0}^{t} (1+t-\tau)^{-1} \sum_{i=1}^{n} a_{i}(\tau, [u]_{l,i} \left\| D_{x_{i}}^{2l_{i}} u(\tau, \cdot) \right\|_{L_{2}(R_{n})} d\tau, t \in [0, T'].$$

Further taking into account condition 2) from (10) we have

$$\sum_{i=1}^{n} \left\| D_{x_{i}}^{l_{i}} u(t, \cdot) \right\|_{L_{2}(R_{n})} \leq c(1+t)^{-1} \times \\ \times \left[\left\| \varphi \right\|_{W_{2}^{l}(R_{n})} + \left\| \psi \right\|_{W_{2}^{l}(R_{n})} \right] + c_{1} \sum_{i=1}^{n} \int_{0}^{t} (1+t-\tau)^{-1} \times \\ \times \left(\sum_{k=1}^{n} \beta_{ik} \int_{R_{n}} \left| D_{x_{k}}^{l_{k}} u(\tau, x) \right|^{2} dx \right)^{p} \left\| D_{x_{i}}^{2l_{i}} u(\tau, \cdot) \right\|_{L_{2}(R_{n})} d\tau, t \in [0, T'].$$

$$(11)$$

Denoting by

$$E_{l}(t) = (1+t) \left[\sum_{i=1}^{n} \left\| D_{x_{i}}^{l_{i}} u(t, \cdot) \right\|_{L_{2}(R_{n})} + \left\| u_{t}(t, \cdot) \right\|_{L_{2}(R_{n})} \right]$$
$$E_{2_{l}}(t) = \sum_{i=1}^{n} \left[\left\| D_{x_{i}}^{2l_{i}} u(t, \cdot) \right\|_{L_{2}(R_{n})} + \left\| D_{x_{i}}^{l_{i}} u_{t}(t, \cdot) \right\|_{L_{2}(R_{n})} \right], t \in [0, T'),$$

we can rewrite the inequality in following form

$$E_{l}(t) \leq c_{1} \|w_{0}\|_{H_{0}} + c_{2}(1+t) \int_{0}^{t} (1+t-\tau)^{-1} (1+\tau)^{-2p} \times E_{l}^{2p}(\tau) E_{2l}(\tau) d\tau, t \in [0,T').$$
(12)

$$\times E_l^{-}(\tau)E_{2l}(\tau)a\tau, l \in$$

Since 2p > 1 then

$$(1+t)\int_{0}^{t} (1+t-\tau)^{-1}(1+\tau)^{2p}d\tau \le c_3, t>0.$$

Taking into account the last inequality from (12) we have

$$\xi_l(t) \le c_1 \|w_0\|_H + c_2 c_3 \xi_l^{2p}(t) \xi_{2l}(t), t \in [0, T')$$
(13)

where

$$\xi_l(t) = \sup_{0 \le \tau \le t} E_l(\tau), \quad \xi_{2l}(t) = \sup_{0 \le \tau \le t} E_{2l}(\tau), t \in [0, T')$$

8

Multiplying the both hand sides of (1) by $\sum_{k=1}^{n} (-1)^{l_k} D_{x_k}^{2l_k} u_t$ and integrating the both hand sides respect domain $[0,T] \times \mathbb{R}^n$, where $t \in (0,T')$. After simple transformation we obtain identity

$$\sum_{i=1}^{n} \int_{R_{n}} \left| D^{l_{i}} u_{t} \right|^{2} dx + 2 \sum_{i=1}^{n} \int_{0}^{t} \int_{R_{n}} \left| D^{l_{i}}_{x_{i}} u_{\tau} \right|^{2} dx d\tau + \sum_{i,k=1}^{n} a_{i}(t, [u]_{l,i}) \int_{R_{n}} \left| D^{l_{i}}_{x_{i}} D^{l_{k}}_{x_{k}} u \right|^{2} dx = \sum_{i=1}^{n} \int_{R_{n}} \left| D^{l_{i}}_{x_{i}} \psi(x) \right|^{2} dx + \sum_{i,k=1}^{n} a_{i}(0, [\varphi]_{l,i}) \int_{R_{n}} \left| D^{l_{i}}_{x_{i}} D^{l_{k}}_{x_{k}} \varphi(x) \right|^{2} dx + \int_{0}^{t} \int_{R_{n}} \sum_{i,k=1}^{n} \left(\frac{d}{d\tau} a_{i}(\tau, [u]_{l,i}) \right) \int_{R_{n}} \left| D^{l_{i}}_{x_{i}} D^{l_{k}}_{x_{k}} u \right|^{2} dx d\tau.$$

$$(14)$$

Taking into account the condition 2) we can easly note that

$$\sum_{i=1}^{n} \left| \frac{d}{d\tau} a_{i}(\tau, [u]_{l,i}) \right| \leq c \left| \sum_{k=1}^{n} \beta_{ik} \int_{R_{n}} \left| D_{x_{k}}^{l_{k}} u(\tau, x) \right|^{2} dx \right|^{p} + c \sum_{i=1}^{n} \left| 2\beta_{ik} \int_{R_{n}} D_{x_{k}}^{l_{k}} u(\tau, x) \cdot D_{x_{k}}^{l_{k}} u_{\tau}(\tau, x) dx \right| \times$$

$$\times \left(c \sum_{k=1}^{n} \left| \beta_{ik} \int_{R_{n}} D_{x_{k}}^{l_{k}} u(\tau, x)^{2} dx \right| \right)^{p-1} \times$$

$$\times \leq c (1+\tau)^{-2p} \times \left[\xi_{l}^{2p}(\tau) + \xi_{l}^{2p-1}(\tau) \xi_{2l}(\tau) \right].$$

$$(15)$$

Analogously

$$\sum_{k=1}^{n} a_{i}(\tau, [u]_{l,i}) \ge 1 - c \sum_{i,k=1}^{n} |\beta_{ik}| \left(\int_{R_{n}} \left| D_{x_{k}}^{l_{k}} u(\tau, x) dx \right|^{2} \right)^{p} \ge 1 - c_{1} \xi_{l}^{2p}(\tau).$$
(16)

holds.

From (14)-(16) it follows that

$$\xi_{2l}^2(t) \le c_0 \xi_{2l}^2(0) + c_1 \xi_l^{2p}(t) \xi_{2l}^2(t) + c_2 \int_0^t (1+\tau)^{-2p} \times \frac{1}{2p} \left(\frac{1}{2p} \right)^{-2p} \left(\frac{1}{2p} \right)^{-$$

Transactions of NAS of Azerbaijan $\frac{}{[Global \ solvability \ and \ behavior \ of \ solution...]}$

$$\times \left[\xi_l^{2p}(\tau) + \xi_l^{2p-1}(\tau)\xi_{2l}(\tau)\right]\xi_{2l}^2(\tau)d\tau \le c_0\xi_{2l}(0) + c_3\xi_l^{2p}(t)\xi_{2l}^2(t) + c_3\left[\xi_l^{2p}(t)\xi_{2l}^2(t) + \xi_l^{2p-1}(t)\xi_{2l}^3(t)\right]\int_0^t (1+\tau)^{-2p}d\tau$$

that is

$$\xi_{2l}^{2}(t) \leq c_{0}\xi_{2l}^{2}(0) + c_{4}\left(\xi_{l}^{2p}(t)\xi_{2l}^{2}(t) + \xi_{l}^{2p-1}(t)\cdot\xi_{2l}^{2}(t)\right)$$
(17)

We denote by $Y(t) = \xi_l(t) + \xi_{2l}^2(t)$. From (13) and (17) it follow that

$$Y(t) \le c_5 Y(0) + c_6 Y^{2p + \frac{1}{2}}(t) + c_7 Y^{2p + 1}(t).$$

On the other hand $Y^{2p+\frac{1}{2}}(t) \le \varepsilon + c_{\varepsilon}Y^{2p+1}(t), \ c_{\varepsilon} = \frac{4p+1}{4p+2} \cdot [\varepsilon(4p+2)]^{-\frac{1}{4p+1}},$ hence

$$Y(t) \le (c_5 Y(0) + c_6 \varepsilon + (c_5 Y(0) + c_6 \varepsilon + c_7) Y^{2p+1}(t).$$

From its follows that for the sufficiently small $c_5Y(0) + c_6\varepsilon$

$$Y(t) \le M, \ t \in [0, T')$$

holds, where M > 0 independent of $t \in [0, T')$.

Consequently

$$E_{2l}(t) \le M, \ t \in [0, T'),$$
 (18)

$$E_l(t) \le M, \ t \in [0, T').$$
 (19)

It follows from (18) that $T' = +\infty$.

Indeed, let $T' < +\infty$ and $w(t) \in C([0,T'); H_1) \cap C^1([0,T'); H_0$ be a solution of problem (3), (4). Then it is obvious that $w(t) = \begin{pmatrix} u(t,x) \\ u_t(t,x) \end{pmatrix}$, where u(t,x) is a solution of problem (1), (2).

From (18) it follows that

$$u(t,x) \in L_{\infty}(0,T';W_2^{2l}(R_n), u_t(t,x) \in L_{\infty}(0,T';W_2^{l}(R_n)),$$
$$u_{tt} \in L_{\infty}(0,T';L_2(R_n)).$$
(20)

Using conditions 1), 2) and traces theorem (se [5, ch.I]) from (20) we have that the function $\widetilde{a}_k(t) = a_k(t, [u]_{p,k})$ k = 1, 2, ..., n are defined on [0, T'] and satisfy the Lipchitz condition. Then by virtue of theory solvability of Cauchy problems for the linear hyperbolic equations we have

$$u(t,x) \in C\left([0,T']; W_2^l(R_n)\right) \cap C^1([0,T']; L_2(R_n)),$$
(21)

(see [5, ch. 3, 8, ch. 9].

It follows from (20) and (21) that $w(T') \in U_{\delta_1}$.

9

On the basis of above mentions, the Cauchy problem

$$z'(t) = A(t, z_{(t)})z(t), \quad z(T') = w(T')$$
(22)

has the solution

$$z(t) \in C([T', T''); H_1) \cap C^1([T', T''); H_0),$$
(23)

where $T'' \in (T', +\infty)$ depends on w(T').

Thus in view of (21) and (22) the function

$$\widetilde{w}(t) = \begin{cases} w(t), & 0 \le t < T \\ z(t), & T' \le t < T'' \end{cases}$$

belongs to the class

$$C([0, T''); H_1) \cap C^1([0, T'); H_0)$$

The function $\widetilde{w}(t)$ is a solution the definition of T'.

Thus there exists such $\delta_0 > 0$ that at any $\delta_0 > 0$ the problem (1), (2) has a unique solution

$$u(t,x) \in C([0,+\infty); W_2^{2l}(R_n)) \cap C^1(R_n; W_2^l(R_n)) \cap C^2([0,\infty); L_2(R_n)),$$

and in view of (19) for the function u(t, x) the following estimates are valid

$$\sum_{i=1}^{n} \left\| D^{2l_i} u(t, \cdot) \right\|_{L_2(R_n)} \le M, \quad t \in [0, \infty),$$
(24)

$$\|u_t(t,\cdot)\|_{L_2(R_n)} + \sum_{i=1}^n \|D^{l_i}u(t,\cdot)\|_{L_2(R_n)} \le M(1+t)^{-1}, \ t \in [0,\infty),$$
(25)

where *M* depends only on $r_0 = \|\varphi\|_{W_2^l(R_n)} + \|\psi\|_{L_2(R_n)}$.

Taking into account conditions 2) from (1), (10), (24) and (25) we obtain that

$$\|u(t,\cdot)\|_{L_{2}(R_{n})} \leq c_{\delta} \left[\|\varphi\|_{L_{2}(R_{n})} + \|\psi\|_{L_{2}(R_{n})} \right] + \|u_{t}(t,\cdot)\|_{L_{2}(R_{n})} + \\ + \sum_{i,k=1}^{n} \int_{0}^{t} 2c \left|\beta_{ik}\right| \left(\int_{R_{n}} \left| D^{l_{k}} u(\tau,x) \right|^{2} dx \right)^{p} \left\| D^{2l_{i}} u(\tau,\cdot) \right\|_{L_{2}(R_{n})} d\tau \leq \\ \leq c_{9} \left[\sum_{i=1}^{n} \left\| D^{l_{i}} \varphi \right\|_{L_{2}(R_{n})} + \|\varphi\|_{L_{2}(R_{n})} + \|\psi\|_{L_{2}(R_{n})} \right] + \\ + c_{10} M \int_{0}^{t} (1+\tau)^{-2p} d\tau \leq c_{r_{0}},$$

$$(26)$$

where c_{r_0} depends only $c_0 = \|\varphi\|_{W_2^p(R_n)} + \|\psi\|_{L_2(R_n)}$.

Transactions of NAS of Azerbaijan $_$ [Global solvability and behavior of solution...]

Further using the multiplicative inequality for anisotropic Sobolev spaces (se [9, s. 245-246) we obtain

$$\|D^{\alpha}u(t,\cdot)\|_{L_2(R_n)} \le M_{1,r_0}(1+t)^{-\left|\frac{\alpha}{t}\right|},$$

where $\alpha = (\alpha_1, ..., \alpha_n), \alpha_i \in N \cup \{0\}, i = 1, 2, ..., n, |\frac{\alpha}{l}| = \sum_{k=1}^n \frac{\alpha_k}{\beta_k} \le 1, M_{1,r_0}$

depends only on r_0 .

Remark. Analogously we can prove that

$$\varphi_0 \in W_2^{(s+1)l}, \ \psi_1 \in W_2^{sl}(R_n)$$

then

$$u(t,x) \in C([0,\infty); W^{(s+1)l}(R_n) \cap C^1([0,\infty); W_2^{sl}(R_n)) \cap C^2([0,\infty); L_2(R_n))$$

and

$$\|D^{\alpha}u(t,\cdot)\|_{L_2(R_n)} \le c_{r_s}(1+t)^{-|\frac{\alpha}{l}|},$$

where $\left|\frac{\alpha}{l}\right| \leq s$, c_{r_s} depends on $r_s = \|u_0\|_{W_2^{(s+1)l}(R_n)} + \|u_1\|_{W_2^{s_l}(R_n)}$.

References

[1]. Pohozayev S.I. On one class of quasi-linear hyperbolic equations. Math. USSR, Sb. 25, pp. 145-158 (1975)

[2]. Pohozayev S.I. On one class of quasi-linear hyperbolic Kirchof equation. Differential equation vol. 21, No1, (1985), pp. 101-108. (Russian)

[3]. Yamada Y. On some quasi-linear wav equations with dissipative terms. Nagoya Math. J., vol. 87, (1982), pp. 17-39.

[4]. Nishihara K., Yamada Y. On global solutions of some degenerate quasi-linear hyperbolic equations with dissipative terms. Func. Equacity, vol. 33, No1, (1990), pp. 151-159.

[5]. Lions J.L. Madjenes E. Problems aux limits non homogenes of applications. Paris, 1968.

[6]. Hughes R., Kato T. Marsden E. Well-posed quasi-linear second order hyperbolic systems with applications to nonlinear elastodinamics and general relavity, Arch. Ration. Mech. And Anal., 63, No7 (1977), pp. 273-294.

[7]. Sequent L.E. Dispersion for non-linear relative equations II Ann Sci Ecole, Nonm, Sup. (4) 1(1968) pp. 459-497.

[8]. Hormander L. Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.

[9]. Besos O.V., Ilin V.P., Nikolsky S.M. Integral representation of functions and embedding theorem. V.H. Wilson and sons, Washington, DC, 1978.

12_____[A.B.Aliev,F.V.Mamedov]

Akbar B. Aliev, Famil V. Mamedov

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F.Agayev str., AZ1141, Baku, Azerbaijan. Tel.: (99412) 432 91 71 (apt.).

Received September 03, 2008; Revised December 17, 2008: