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BEARING CAPACITY OF A COMPOSITE

ANNULAR PLATE WITH DIFFERENT FIXING

CONDITIONS, SITUATED UNDER THE ACTION

OF UNIFORMLY DISTRIBUTED LOAD

Abstract

In the paper we solve a problem an definition of an ultimate load (bearing

capacity) for perfect rigidly plastic annular composite plates simply supported at

intermal and builtin at external edges and situated under the action of uniformly

distributed lateral load. It is shown that the plate’s surface is divided into five

annular zones, at each of these different plastic states are relaized. Static fields

of moments and kinematic fields of velocities of flexions are determined, the

equations for the unknown radii separating different plastic zones, and also the

equations for determining support reaction and ultimate load, are found.

Introduction 1. A system of loads at which for the first time plastic flow

arises in a body made of perfectly plastic material is called ultimate. Finding ul-

timate loads is the subject of the theory of ultimate equilibrium. Materials with

plastic properties are widely used in different fields of up to date engineering. At

present, composites occupy a special place among these materials. Thin-shelled

constructions made of such materials found wide application in cosmic and aviation

engineering, shipbuilding, machinebuilding, construction and etc. The problems on

determination of bearing capacity of such constructions are very urgent.

Ultimate state of flexural plates has been studied in numerous papers [1-6, 8].

Plastic behavior of composite materials and structural elements of these has been

studied not enough; here we note the papers [8-6, 10, 11], where bearing capacity of

round and annular plates made of fibrous composite material under different fixing

conditions, situated under the action of lateral uniform and non-uniform loads, are

researched.

Problem Statement. Let’s consider a plastic (tensionless) flexion of an annu-

lar composite plate occupiging the domain A ≤ R ≤ B, −H
2
≤ z ≤ H

2
, 0 ≤ ϕ ≤ 2π

for axisymmetric load of intensity q = q (R) (fig.1), cylindric system of coordinates

R,ϕ, z, where z is a downwards directed axis, the plane Rϕ coincides with median

surface of the plate, and origin of coordinates coincides with the centers of concentric

contour circles. Assume that the load q is downwards directed and the thickness H

of the plate is constant. We’ll procced from the scheme of rigidly-plastic material.

Then the plate remains non-deformable till it achieves the ultimate load (character-

izing the bearing capacity). The composite consists of perfectly plastic matrix with

different yield points for compression σ0 and tension kσ0 where 0 ≤ k ≤ 1 made of

more strength perfectly plastic reinforcing thin fibers. Let S+
0i and S−0i = µiS

+
0i be

ultimate forces for fibers at tension and compressin, respectively; S+
0i = F+

i σ
+
0i,
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S−0i = F−i σ
−
0i : F−i , F

+
i be cross-section areas of fibers; σ+0i, σ

−
0i be yield points

for fibers at tension and compression; i = 1, 2 be orthogonal directions coinciding

with axes of principal bending moments. The matrix is reinforced by fibers in two

orthogonal directions coinciding with the axes of principal bending moments. The

fibers are presented in each direction in two layers, not symmetric with respect to

median plane. Their amount is different in each direction. Approximate yield con-

dition in the plane of principal bending moments has the form of different irregular

hexagons depending on mechanical properties of the matrix and fibers and typi-

cal geometrial parameters. We’ll investigate the problems of ultimate equilibrium

for annular plates obtained in such a way, from macroscopic isotropic homogeneous

composite materials Remaining with the engineering theory of flexion of plates we

assume that Kirchhoffs conjecture is fulfilled. By M1 and M2 we denote principal

bending moments in redial and peripheral directions referred to unit lenght. Then

the equilibrium equation will be of the form

(rM1)
′ −M2 = −

R∫
A

q (R)RdR+ TA, (1)

where the prime means the derivative with respect to R, T - is an unknown support

reaction on an internal contour (that is determined in the course of solution) referred

to the unit lenght, q (R) is an axisymmetric lateral load. The first term in the right

hand side of the equality expresses the intersecting force per unit length of a cylindric

section of radius R.

We accept the following dimensionless quantities

r =
R

H
, a =

A

H
, b =

B

H
, P =

q

4σ0
, mi =

4Mi

σ0H2
. (2)

Then (1) is transformed into the form

(rm1)
′ −m2 = −T ar + Ta

T ar =

r∫
a

P (η) ηdη

 . (3)

The velocities of alternation of curvature in radial and peripheral directions χ1

and χ2 are expressed by the derivatives of the flexion w:

χ1 = −w′′, χ2 = −
(
w′/r

)
. (4)

The term ”velocity” here is understood in conditionol sense: it is a derivative

from w with respect to any monotonically increasing parameter.

The equation (3) is an ordinary differential equation with two unknows m1 and

m2. The missing equation between these quantities is given by the plastic flow

condition. The solution of the obtained equation is related with known difficulties.

However, the problems are essentially simplified if we accept a pieccewise constant

hexagon of plastic flow in the plane of moments m1,m2. Then the plate is divided

into annular zones, at each of these the yield condition is linear and integration is

easily realized.
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We’ll assume that the plate is subjected to the yield condition, that in the plane

m1 m2 is an irregular hexagon ABCDEF (fig. 2). On the circle separating the

annular domains of different solutions, by the equilibirium conditions the bending

moment m1 and intersecting force should be continuous, but the bending moment

m2 should be discontinuous.

For the sides AB and AF of the hexagon we have [10]

mi = m+
0i = c0 + c+1is

+
0i + c2i

(
s+0i
)2
, (5)

for he sides CD and DE

mi = −m−0i = −
[
c0 + c−1is

+
0i + c2i

(
s+0i
)2]

. (6)
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Here m+
0i and m−0i are the limiting values of positive and negative bending mo-

ments. For the sides EF and BC we have

m2 = αm1 + b1, m2 = αm1 + b2, (7)

Here we accept the following denotation for the coefficients that are positive quan-

tities:

c0 =
2k

k + 1
, c+1i = 4

[
d′i − µid′′i +

(1− k) (1− µi)
2 (1 + k)

]
, c2i = −2 (1− µi)

2

1 + k
,

c−1i = 4

[
d′i − µid′′i −

(1− k) (1− µi)
2 (1 + k)

]
, α =

(1− k) (1− µ1) s+01 + k

(1− k) (1− µ2) s+02 + k
, i = 1, 2;

b1 = a2 − αa1, b2 = a4 − αa3, s+0i =
S+
0i

σ0H2
,

a1 =
1

1− k2
{
k (1− k) +

(
1 + k2

)
(1− µ1) s+01 − 2k (1− µ2) s+02

}
+ 4

(
d′′1 − µ2d′′2

)
s+01,

a2 =
1

1− k2
{
k (k − 1)−

(
1 + k2

)
(1− µ2) s+02 + 2k (1− µ1) s+01

}
+ 4

(
d′2 − µ2d′′2

)
s+02,

a3 = −a1 + 4 (1− µ1)
(
d′1 + d′′1

)
s+01, a4 = −a2 + 4 (1− µ2)

(
d′2 + d′′2

)
s+02,

d′i and d′′i are dimensionaless distances (referred to the thickness H) from the median

plane up to upper and lower fibre-reinforced layers.

3. Definition of static moments field. Let a plate be simply supported at

internal and builtin at external contours and situated under the action of axisym-

metric lateral load applied on the surface. It is seen from the form of the curve of

the plate (fig. 3) that the velocity of the curvature χ2 changes its sign.

For the mentioned form of the load and boundary conditions a radial bending

moment will have a positive value (tension of lower compression of upper layers)

up to the domain adjoining to the builtin external contour, where radial bending

moment has a negative value. In this case a plastic state of the plate is determined

by the side E1E of the yield hexagon near the internal edge, on which m2 = −m−20.
Considering that the load q of the plate is donwards directed, for boundary conditions

m1 = 0 for r = a and m1 = −m−01, for r = b we can look for the solution of the

problem for the states E1E −EF −FA−AB −BC, since in this case it is possible

to determine the static field satisfying the appropriate continuity conditions.

Let p = const. We’ll need the following integrals

T ar =
p

2

(
r2 − a2

)
,

r∫
a

1

ξ
T aξdξ =

p

4

(
r2 − a2 − 2a2In

r

a

)
,

r∫
a

T aξdξ =
p

6

(
r3 − 3a2r + 2a3

)
, (8)

Then, from (3) we’ll get

(rm1)
′ −m2 = Ta− 2p

(
r2 − a2

)
, a ≤ r ≤ b. (9)
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The equation (9) will be solved under the following boundary conditions at the

supported edge m1 = 0, w = 0; along the fixed edge w = 0, dw/dr = 0 or m1 =

−m−10.
The equation (9) is an ordinary differential equation with two unknowns m1 and

m2. A missing eqution between these quantities is given by the plastic flow condition.

The solution of the obtained equation is related with known difficulties. However,

the problem is essentially simplified if we accept a piecewise constant hexagon of

plastic flow in the plane of moments m1 and m2. Then, the plane is divided into

annular zones, in each of these the yield condition is linear and integration is easily

relaized. On the area a ≤ r ≤ ρ1 the acceptable will be the condition E1E by which

m2 = −m−20. Substituting this into the equation (9) and integrating it we get

rm1 = −m−20r + Tar − p

6

(
r3 − 3a2r

)
+ C

Fig 4. —k = 1, µ = 1;−−−− k = 0, 8, µ = 1− .− .− .k = 1, µ = 0, 8;

Defining the integration constant C from the condition m1 (a) = 0, we find

rm1 =
(
m+

10 −m
+
20 −m

−
20

)
(r − a) +

P

6

(
3ρ23r − 3ρ23a− r3 + a3

)
,

m2 = −m−20, a ≤ r ≤ ρ1. (10)

Defining m1 (ρ1) from (10) and substituting into the formula m2 = αm1 + b1, as

a result we get −m−20 that will give

m−20

(
α− 1− α a

ρ1

)
= b1 + Taα

ρ1 − a
ρ1

− αp

6ρ1

(
ρ31 − 3a2ρ1 + 2a3

)
. (11)
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For ρ1 ≤ r ≤ ρ2 we have the state EF for which m2 = αm1 + b1; an appropriate

equilibrium equation has the form

rm′1 + (1− α)m1 = (Ta+ b1)−
p

6

(
r2 − a2

)
.

Solving this equation and defining arbitrary integration constant from the con-

tinuity condition m1 (ρ2) = m+
10, we find

m1 = m+
10

(
r

ρ2

)α−1
+
[p

2

(
ρ23 − a2

)
+m+

10 −m
+
20 + b1

] 1

α− 1

[
1−

(
r

ρ2

)α−1]
+

+
p

r

[
1

3− α
(
ρ3−α2 rα−1 − r2

)
− α2

1− α

((
r

ρ2

)α−1
− 1

)]
, (12)

m2 = αm1 + b1, ρ1 ≤ r ≤ ρ2.

When the stressed state of the plate corresponds to the side FA (ρ2 ≤ r ≤ ρ3)
for the strain velocities we have

χ1 = −w′′ ≥ 0, χ21 = −1

r
w′ = 0.

Natural solution of these equations will be w = w0 = const t, i.e. an annular

part of the plate ρ2 ≤ r ≤ ρ3 remains rigid and commutes in this domain as an

absolute rigid body.

The circles r = ρ2 and r = ρ3 are hiinge circles on which the first derivative

of flexion velocity undergoes break, the flexure’s velocity is continuous and radical

bending moment has a maximal value. In the domain ρ2 ≤ r ≤ ρ3 the static

moments field will be

m1 = m+
10,

m2 = m+
20 −

p

2

(
ρ23 − r2

)
, ρ2 ≤ r ≤ ρ3.

Since

m2 (ρ3) = m+
20, m2 (ρ2) = m+

20 −
p

2

(
ρ23 − ρ22

)
< m+

20,

the plastic condition in the rigid domain doesn’t increase, vise versa, along the

condition FA a moment state of the plate is inside of the yield hexagon.

For ρ3 ≤ r ≤ ρ4 we have the state AB for which m2 = m+
20 and from the

equilibrium equation (9) we get

rm1 =
(
m+

20 + Ta
)
r − p

6

(
r3 − 3a2r + 2a3

)
+ C.

Here, we define the arbitrary constant C from the condition m1 (ρ3) = m+
10 then

rm1 = m+
10r +

p

6

(
3ρ23r − 2ρ33 − r3

)
,

m2 = m+
20, ρ3 ≤ r ≤ ρ4. (13)



Transactions of IMM of NAS of Azerbaijan
[Bearing capacity of a composite...]

193

For ρ4 ≤ r ≤ b we have the state BC for which m2 = αm1 + b2. There with,

from the equation (9) and condition m1 (b) = −m−10 we get

m+
20 = αm1 (ρ4) + b2, m2 (b) = −αm−10 + b2,

m1 (r) = −m−10
(r
b

)α−1
+
(
m+

10 −m
+
20 + b2

) 1

1− α

[
1−

(r
b

)α−1]
+

+
p

2

(
ρ23 − a2

) 1

1− α

[
1−

(r
b

)α−1]
+

+
p

2

{
b3−αrα−1

3− α
− r2

3− α
+

a2

1− α

[
1−

(r
b

)α−1]}
,

m2 = αm1 + b2, ρ4 ≤ r ≤ b.

Now, let’s investigate possibility of continuation of the static field on the domain

ρ2 ≤ r ≤ ρ3. Accepting that the tangential moment m2 and intersecting force

are continuous functions, from the equilibrium equations we get that the derivative

dm1/dr may not have jumps in the domain of the plate, i.e.

dm1

dr
= 0 for r = ρ2 and r = ρ3, (14)

since m1 = m+
10 on these radii. But when we assume that the moment m2 step-wisely

changes, then from the equilibrium condition (9) we can get:

r

[
dm1

dr

]
= [m2] , (15)

where [
dm1

dr

]
=
dm+

1

dr
− dm−1

dr
, [m2] = m+

2 −m
−
2

mean the jumps of appropriate quantities at the considered point.

Since [m2] for r = ρ2 and r = ρ3 has a positive value, and [dm1/dr] on these

radii may be only negative, then condition (15) may not be fulfilled. From this we

conclude that the field of moments m2 should be continuous in the plate’s domain,

i.e. [m2] = [dm1/dr] = 0.

Fulfilling the condition (14) with using the derivative of formula (12) for r = ρ2
and derivative of formula (14) for r = ρ3, we get

Ta =
p

2

(
ρ23 − a2

)
+m+

10 −m
−
20, (16)

m+
20 −

(
αm+

10 + b1
)

=
p

2

(
ρ23 − ρ22

)
. (17)

The formula (16) determines the unknown reaction Ta, (17) defines the ultimate

load.

In the paper [9] the formula

ϕ =
pb2

m0
=

2

x23 − x22
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where xi =
ρi
b
, i = 2, 3.. is obtained for the ultimate load.

As is seen, at the expense of reinforcement the ultimate load of the plate increases

by

1− αm+
10 + b1

m+
20

times, since αm+
10 + b1 < 0.

The graphs of dependence of ultimate load pb2 on s0 for concrete values of k, µ

and γ, where the upper three straight lines refer to the case γ = 0, 5, and the three

lower straight lines to γ = 0, 25 are represented in the figure 4. Graph of dependence

of dimensionaless radii xi =
ρi
b
, i = 1, 4 on the relation k =

a

b
is in figure 5. Figure

6 represents dependence of ultimate load on k =
a

b
for composite (curve 2) and

ordinary (curve 1) plates.

Fig 5. Dependence of radii xi =
ρi
b
, i = 1, 4 on the relation k = a/b.

Fig 6. Dependences of ultimate load on the relation k = a/b for composite (2) and

ordinary plates.
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4. Determination of kinematically possible field of flexure velocities.

Here we’ll determine kinematically possible field of velocities of flexure at the mo-

ment when the yield has just occurred, displacements are yet small and alternation

of plate’s geometry is unessential. Each element of the plate going over into yield

condition, is connected with rigid elements. Therefore, the relations between the

velocities of deformation of separate elements are connected with each other and

this leads to the fact that the velocities are found to within undeterminate factor.

Using the associated low of plastic flow in principal directions

dξi = λp
∂fp
∂mi

(i = 1, 2; p = 1, 2, ..., 6) ,

where in the present case the yield surface equation fp = const (p = 1, 2, .., 6)

is a plastic flow hexagon considered above, and expression (4) for the velocities of

curvature change, we get ordinary linear differential equations for flexure velocity

for plastic states corresponding to different sides of a hexagon.

For the plastic state E1F the velocity of the curvature χ1 = −w′′ = 0 should

vanish, i.e. w′′ = 0. Associated low of plastic flow shows that the vector of curvature

change velocity is parallel to the normal to the plastic flow surface. The solution of

this equation satisfying the boundary condition w (a) = 0 is

w = C (r − a) , a ≤ r ≤ ρ1, (18)

where C is an arbitrary constant.

For the plastic state EF we have m2 = αm1 + b1, the vector of the normal of

this straightline {α,−1} should be parallel to the vector of plastic flow velocities

{χ1, χ2} , i.e. χ1 : α = χ2 : (−1), or

w′′ +
α

r
w′ = 0. (19)

For the plastic state FA the curvature velocity χ2 = −1
rw
′ = 0, i.e. w = w0 =

const for ρ2 ≤ r ≤ ρ3.
The solution of equation (19) satisfying the continuity condition for r = ρ1 and

r = ρ2 is

w (r) = C (ρ1 − a) + [w0 − C (ρ1 − a)]
r1−α − ρ1−α1

ρ1−α − ρ1−α1

,

ρ1 ≤ r ≤ ρ2. (20)

Here C and w0 are the unknown constants. From the continuity condition of the

first derivative w′ at the point r = ρ1, we determine the constant C:

C = w0
(1− α) ρ−α1

ρ1−α2 − ρ1−α1 + ρ−α1 (ρ1 − a) (1− α)
.

The constant C is positive, both for α > 1, and α < 1, but for α = 1 it has the

expression

C = w0
1

ρ1 − a+ ρ1In
ρ2
ρ1

.
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For the plastic state AB the curvature velocity χ1 = −w′′ = 0 and we have the

solution

w (r) = w0 + C1 (r − ρ3) , ρ3 ≤ r ≤ ρ4, (21)

satisfying the continuity condition for r = ρ3.

Finally, for the plastic state BC we use the equation m2 = αm1 + b2 and again

get the equation (19). The solution satisfying the condition w (b) = 0 is

wr = [w0 + c1 (ρ4 − ρ3)]
(

1− r1−α − ρ1−α4

b1−α − ρ1−α4

)
, ρ4 ≤ r ≤ b. (22)

As the point r = ρ4 the derivative function w′, i.e. [w′ (ρ4)] = 0, from which we

determine the constant C1:

C1 =
w0 (1− α) ρ1−α4

b1−α − ρ1−α4 + ρ−α4 (ρ4 − ρ3) (1− α)

should be also continuous.

Then the formula (21) and (22) take the form:

w = w0 −
w0 (1− α) ρ−α4 (r − ρ3)

b1−α − ρ1−α4 + ρ−α4 (ρ4 − ρ3) (1− α)
, ρ3 ≤ r ≤ ρ4,

w = w0
b1−α − r1−α

b1−α − ρ1−α4 + ρ−α4 (ρ4 − ρ3) (1− α)
, ρ4 ≤ r ≤ b.

5. Example. For certainty of the found solutions in a very special case we

compare our solutions with the ones known in references. For an isotropic plate we

have:

m+
10 = m+

20 = m0, α = 1, b1 = −m0, b2 = m0, m1 (ρ1) = 0,

m1 (ρ2) = m0, m1 (ρ3) = m2 (ρ3) = m0, m1 (ρ4) = 0, (23)

m1 (b) = −m0, m2 (b) = 0, m2 (ρ2) = 0, m2 (ρ4) = m0.

Using these values from formula (10) we get ρ1 = a, i.e. the domain [a, ρ1]

disappears at all. In the formula (12) we calculate undeterminacy as α → 1 by de

L’Hospital law and get

m1 =
(p

2
ρ23 −m0

)
ln

r

ρ2
− p

4

(
r2 − ρ22

)
+m0.

Since m1 = (ρ1) = 0, then subtracting the equality

0 =
(p

2
ρ23 −m0

)
ln
ρ1
ρ2
− p

4

(
ρ21 − ρ22

)
,

from the previous one, we get

m1 =
(p

2
ρ23 −m0

)
ln

r

ρ1
− p

4

(
r2 − ρ21

)
, m2 = m1 −m0, ρ1 ≤ r ≤ ρ2. (24)
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There will be no changes in the domain ρ2 ≤ r ≤ ρ3

rm1 = m0r −
p

6

(
r3 − 3ρ23r + 2ρ33

)
, m2 = m0, ρ3 ≤ r ≤ ρ4, (25)

in the domain ρ4 ≤ r ≤ b we’ll have

m1 = m0 ln
r

b
−m0 +

p

4

(
b2 − r2 + 2ρ23 ln

r

b

)
.

Since m1 (ρ4) = 0, then

0 = m0 ln
ρ4
b
−m0 +

b

4

(
b2 − ρ24 + 2ρ23 ln

ρ4
b

)
.

Subtracting this equality from the previous one, we get.

m1 = m0 ln
ρ4
b
− p

4

(
r2 − ρ24 − 2ρ23 ln

r

b

)
, m2 = m1 +m0, ρ4 ≤ r ≤ b.

If we redenote ρ1 → a, ρ2 → ρ1, ρ3 → ρ2, ρ4 → ρ3, then the obtained formulae

will coincide with the formulae (3.1) of the paper [9].

Bearing capacity is determined by the formula

ϕ =
pb2

m0
=

2

x22 − x21

(
xi =

ρi
b
, i = 1, 2

)
.

The inequality ρ2 > ρ1, follows from the last formula, since p/m0 > 0.

As m1 (ρ4) = 0, then

m0ρ4 =
p

6
(ρ3 − ρ4)

(
ρ24 + ρ4ρ3 − 2ρ23

)
.

Hence, it is seen that ρ4 > ρ3.
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