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Mahir M. SABZALIEV

ON A BOUNDARY VALUE PROBLEM FOR A

SINGULARLY PERTURBED QUASILINEAR

EQUATION OF NON-CLASSIC TYPE

Abstract

In a rectangular domain we consider a boundary value problem for a non-
classic type quasilinear equation of arbitrary odd order, containing a small pa-
rameter at the higher derivatives. Complete asymptotic of the solution of the
considered problem by small parameter with boundary layer functions near the
three sides of a rectangle is constructed and residual term is estimated.

In some applied problems it is necessary to construct asymptotics of the solution
of boundary value problems for singularly perturbed differential equations. Such
non-classic equations have been studied enough. In the papers [1] [2] the asymptotics
of the solution of boundary value problems for non-classic type linear equations is
constructed in a rectangular domain with four viscous boundaries.

It should be noted that the construction of the solution of boundary value prob-
lems for non-linear equations reduces to some analytic calculations.

The papers devoted to nonlinear singularly perturbed differential equations are
few. Here we note the papers [3]-[8].In these papers nonlinear classic equations are
investigated.

In the present paper, in a rectangular domain

D = {(t, x) |0 ≤ t ≤ 1, 0 ≤ x ≤ 1}

we consider the following boundary value problem

LεU = (1)mε2m∂
2m+1U

∂t2m+1
− ε

∂

∂x

(
∂U

∂x

)p

−

−ε∂
2U

∂x2
+
∂U

∂t
+
∂U

∂x
+ aU − f(t, x) = 0,

(1)

U |t=0 =
∂U

∂t
|t=0 = ... =

∂mU

∂tm
|t=0 = 0,

∂m+1U

∂tm+1
|t=1 =

∂m+2U

∂tm+2
|t=1 = ... =

∂2mU

∂t2m
|t=1 = 0,

(2)

U |x=0 = U |x=1 = 0, (3)

where ε > 0 is a small parameter p = 2k+1, k and m are arbitrary natural numbers,
a > 0 is a constant, f(t, x) is a given function.

Our goal is to construct asymptotic expansion of the solution of boundary value
problem (1)-(3) by a small parameter ε > 0.
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In the first iteration process we’ll look for the approximate solution of equation
(1) in the form

W = W0 + εW1 + ...+ εnWn, (4)

and the functions Wi(t, x); i = 0, 1, ..., n will be chosen so that

LεW = 0(εn+1). (5)

Substituting expression (4) for W into (5), for defining Wi; i = 0, 1, ..., n we’ll
get the following recurrently connected equations:

L0W0 ≡
∂W0

∂t
+
∂W0

∂x
+ aW0 = f(t, x), (6)

L0Wj = fj(t, x); j = 1, 2, ..., n, (7)

where the functions fj(t, x) depend on the derivatives W0,W1, ...,Wj−1.
For the equations (6), (7) with respect x the first condition from (3), i.e.

Wj |x=0 = 0; j = 0, 1, ..., n (8)

should be used.
Below we’ll write boundary conditions with respect to t for the equations (6),

(7). Now we note that with respect to t we’ll use the first condition from (2) for
t = 0. For such choice of boundary conditions for equations (6), (7) on the boundary
S1 = {(t, x) |t = 0, 0 ≤ x ≤ 1} in conditions from m+1 boundary conditions (2) for
t = 0, on the boundary S2 = {(t, x) |t = 1, 0 ≤ x ≤ 1} all the m conditions from (2)
for t = 1 and on the boundary S3 = {(t, x) |0 ≤ t ≤ 1, x = 1} the second condition
from (3) will be lost. For compensating the lost boundary conditions, boundary
layer functions near the boundaries S1, S2, S3 should be constructed. Therefore, it
is necessary to write new decompositions of the operator Lε near these boundaries.

For writing new decompositions of the operator Lε near the boundary S1 we
make change of variables: t = εξ, x = x. The decomposition of the operator Lε in
the coordinates (ξ, x) has the form:

Lε,1U ≡ ε−1

{
(−1)m∂

2m+1U

∂ξ2m+1 +
∂U

∂ξ
+ ε

(
∂U

∂x
+ aU

)
−

−ε2∂
2U

∂x2
− εp+1 ∂

∂x

(
∂U

∂x

)p}
. (9)

A boundary layer function η near the boundary S1 is found in the form

η = ε
(
η0 + εη1 + ...+ εn+m−1ηn+m−1

)
, (10)

as a solution of the equation

Lε,1(W + η)− Lε,1W = 0(εn+m). (11)
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It follows from (9) that the left hand side of (11) is of the form

Lε,1(W + η)− Lε,1W = ε−1

{
(−1)m∂

2m+1η

∂ξ2m+1 +
∂η

∂ξ
+ ε

(
∂η

∂x
+ aη

)
−

−ε2 ∂
2η

∂x2
− εp+1 ∂

∂x

[(
∂(W + η)

∂x

)p

−
(
∂W

∂x

)p]}
.

(12)

Expanding each function Wi(εξ, x); i = 0, 1, ..., n by Taylor’s formula at the point
(0, x) we get a new expansion of W in powers of ε in the form

W =
n+m∑
j=0

εjω
(0)
j (ξ, x) + 0(εn+m+1), (13)

where ω(0)
0 = W0(0, x) is independent of ξ, and the other functions ω(0)

k are deter-
mined by the formula

ω
(0)
k =

∑
i+j=k

1
i!
∂iWj(0, x)

∂ti
ξi; k = 1, 2, ..., n+m. (14)

Following (10)-(13) we get the following equations for determining ηj ; j =
= 0, 1, ..., n+m− 1:

Aη0 ≡ (−1)m∂
2m+1η0

∂ξ2m+1 +
∂η0

∂ξ
= 0, (15)

Aη1 = −∂η0

∂x
− aη0, (16)

Aηs = −
∂ηs−1

∂x
− aηs−1 +

∂2ηs−2

∂x2
; s = 2, 3, ..., p+ 1, (17)

Aηk = −
∂ηk−1

∂x
− aηk−1 +

∂2ηk−2

∂x2
+ hk;

k = p+ 2, p+ 3, ..., n+m− 1,

(18)

where hk are the known functions that polynomially depend on the first and sec-
ond derivatives of the functions ω(0)

0 , ω
(0)
1 , ..., ω

(0)
k−p−2; η0, η1, ..., ηk−p−2. We can write

obvious forms of hk but their expressions are of bulky form. Here we indicate the
expressions for hp+2, hp+3:

hp+2 =
∂

∂x

p(∂ω(0
0

∂x

)p−1
∂η0

∂x

 ,

hp+3 =
∂

∂x

p(∂ω(0
0

∂x

)p−1
∂η1

∂x
+ p(p− 1)

(
∂ω

(0
0

∂x

)p−2

×
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×∂ω
(0)
1

∂x

∂η0

∂x
+
p(p− 1)

2!

(
∂ω

(0
0

∂x

)p−2(
∂η0

∂x

)2
 .

The boundary conditions for equations (14)-(17) are obtained from the require-
ment of satisfaction of the sum W + η the conditions (2) for t = 0 except the first
condition, i.e.

∂

∂t
(W + η) |t=0 =

∂2

∂t2
(W + η) |t=0 = ... =

∂mU

∂tm
(W + η) |t=0 = 0. (19)

Substituting the expressions for W,η from (4), (10) into (19) and comparing the
terms at the same degrees with respect to ε, we get (n + m − 1) m boundary
conditions, that may be given by a general formula

∂kηj

∂ξk
|ξ=0 = −

∂kWj+1−k

∂tk
|t=0 ; k = 1, 2, ...,m; j = 0, 1, ..., n+m− 1. (20)

In the equalities (20) the function Wr with negative indices and for r > n should be
considered identity zeros.

Now, we find boundary conditions for the equations (6), (7) with respect to t.
For that we substitute the expansions (4) and (10) into the equality

(W + η) |t=0 = 0

and equate to zero the coefficients for ε, whose degrees are small than n+ 1. Then
we have

W0 |t=0 = 0,Wj |t=0 = −ηj−1 |ξ=0 ; j = 1, 2, ..., n. (21)

It should be noted that if the functions Wi; i = 0, 1, ..., n will satisfy the con-
ditions (21), the sum W + η will satisfy the first boundary condition from (2) to
within εn+1, i.e.

(W + η) |t=0 = εn+1ϕε(x), (22)

and the function ϕε(x) is determined by the formula

ϕε(x) = (ηn + εηn+1 + ...+ εm−1ηn+m−1) |ξ=0 . (23)

Now, let’s construct the functions Wi, i = 0, 1, ..., n and ηj ; j = 0, 1, ..., n+m−1.
From (8) and (21) we have that the function W0 is a solution of the equation (6),
satisfying the boundary conditions

W0 |t=0 = 0,W0 |x=0 = 0. (24)

The following lemma is valid.
Lemma 1. Let the function f(t, x) ∈ Cs(D) and satisfy the condition

∂if(t, x)
∂ti1∂xi2

|t=x = 0; i = i1 + i2; i = 0, 1, ..., s, (0 ≤ t ≤ 1). (25)

Then the problem (6), (24) has a unique solution, moreover W0(t, x) ∈
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∈ Cs(D) and satisfies the conditions

∂iW0(t, x)
∂ti1∂xi2

|t=x = 0; i = i1 + i2; i = 0, 1, ..., s, (0 ≤ t ≤ 1) (26)

where s is an arbitrary natural number.
Proof. The solution of the problem (6), (24) is represented by the formula

W0(t, x) =



x∫
0

f(t− x+ τ , τ) exp [a(τ − x)] dτ for 0 ≤ x < t ≤ 1,

t∫
0

f(τ , τ + x− t) exp [a(τ − t)] dτ for 0 ≤ t < x ≤ 1.

(27)

Obviously, if f(t, x) is a smooth function in D, the function W0(t, x) determined
by the formula (27) will also be a smooth function in D for t 6= x. Assume that
the function f(t, x) satisfies the condition (25). Then, we can easily prove that the
solution of the problem (6), (24) will be a smooth function in D and satisfy the
condition (26). Lemma 1 is proved.

The natural number s contained in the conditions of lemma 1 should be chosen
so that the smoothness of the function W0(t, x) and condition (26) allow to construct
the remaining functions W1,W2, ...,Wn. For that it suffices to assume s = 2m+2n+
2.

From (21) for j = 1 we get that before to construct the function W1 the function
η0 should be determined. Notice that in sequel, the functions W1, η1,W2, η2, ...,

Wn, ηn, ηn+1, ..., ηn+m−1 will be determined in turn.
Let’s write boundary conditions for η0, for that we put in (20) j = 0:

∂η0

∂ξ
|ξ=0 = −∂W0

∂t
|t=0 ,

∂2η0

∂ξ2
|ξ=0 = 0, ...,

∂mη0

∂ξm |ξ=0 = 0. (28)

Thus, η0 is a boundary layer type solution of the equation (14), satisfying the
boundary conditions (28). A characteristic equation that corresponds to the ordinary
differential equation (14) has m roots with negative real parts, that are denoted by
λ1, λ2, ..., λm. Obviously, the boundary layer solution of the problem (14), (28)is of
the form

η0 = −∂W0(0, x)
∂t

(C01e
λ1ξ + C02e

λ2ξ + ...+ C0me
λmξ), (29)

where C0i are the known numbers.
Since the functionsW0, η0 are known, we can determine the functionW1 from the

problem (7), (8) and (21) for j = 1. We can look for the solution of this problem in
the form: W1 = W

(1)
1 +W

(2)
1 where W (1)

1 and W (2)
1 are the solutions of the following

problems:

∂W
(1)
1

∂t
+
∂W

(1)
1

∂x
+ aW

(1)
1 =

∂2W0

∂x2
,W

(1)
1 |t=0 = 0,W (1)

1 |x=0 = 0, (30)
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∂W
(2)
1

∂t
+
∂W

(2)
1

∂x
+ aW

(2)
1 = 0,W (2)

1 |t=0 = ϕ1(x),W
(2)
1 |x=0 = 0, (31)

moreover, instead of the right hand side of the equation (7) for j = 1 its obvious

form f1 =
∂2W0

∂x2
is substituted, and from (21) for j = 1 and (29) it follows that

ϕ1(x) is determined by the equality:

ϕ1(x) =

(
m∑

i=1

C0i

)
∂W0(0, x)

∂t
. (32)

The right hand side of the equation for W (1)
1 satisfies the condition of lemma 1

for s = 2m+ 2n. Therefore, by this lemma the problem (30) has a unique solution,
moreover W (1)

1 ∈ C2m+2n(D) and satisfies the condition

∂kW
(1)
1 (t, x)

∂tk1∂xk2
|t=0 = 0; k = k1 + k2; k = 0, 1, ..., 2m+ 2n. (33)

The solution of the problem (31) is of the form

W
(2)
1 (t, x) =


0 for 0 ≤ x < t ≤ 1,

ϕ1(x− t) exp(−at) for 0 ≤ t < x ≤ 1.
(34)

By lemma 1 and from (32) it follows that ϕ1(x) ∈ C2m+2n+1[0; 1]. Therefore,
the function W

(2)
1 (t, x) for t 6= x will be smooth in D. It follows from the formula

(26) and (32) that
ϕ

(k)
1 (0) = 0; k = 0, 1, ..., 2m+ 2n+ 1. (35)

Considering (35), the smoothness of the function W
(2)
1 (t, x) for t = x is obtained

directly from (34).
The function W1 being the sum of W (1)

1 ,W
(2)
1 belongs to the space C2m+2n(D)

and following (33)-(35) satisfies the condition

∂kW1(t, x)
∂tk1∂xk2

|t=x = 0; k = k1 + k2; k = 0, 1, ..., 2m+ 2n.

The remaining functions W2,W3, ...,Wn entering into the right hand side of (4)
are constructed by the similar reasonings carried out for W1, by lemma 1.

While constructing the functions η1, η2, ..., ηp+1 we use the following statement.
Lemma 2. The functions ηs being the of boundary layer type solutions of equa-

tions (16), (17) are determined by the formula

ηs =
m∑

i=1

[
C

(i)
s0 (x) + C

(i)
s1 (x)ξ + ...+ C(i)

ss (x)ξs
]
eλiξ; s = 1, 2, ..., p+ 1, (36)

and the coefficients C(i)
sj (x) are expressed uniformly by the function

∂kWr(0, x)
∂t1+k1∂xk2

; k = k1 + k2 + 1; r = 0, 1, ..., S;

k1 = 0, 1, ...,m− 1; k1 + k2 + r = S.

(37)
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Proof. At first we determine the function η1. It follows from (16) and (29) that η1

is a solution of the following equation:

(−1)m∂
2m+1η1

∂ξ2m+1 +
∂η1

∂ξ
=
[
∂2W0(0, x)
∂t∂x

+ a
∂W0(0, x)

∂t

]( m∑
i=1

C0ie
λiξ

)
. (38)

From (20) for j = 1 we find the boundary conditions for η1

∂η1

∂ξ
|ξ=0 = −∂W1

∂t
|t=0 ,

∂2η1

∂ξ2
|ξ=0 = −

−∂
2W0

∂t2
|t=0 ,

∂3η1

∂ξ3
|ξ=0 = 0, ...,

∂mη1

∂ξm |ξ=0 = 0.

(39)

So, η1 is a boundary layer type solution of the equation (38) satisfying the
boundary conditions (39). We can easily show that the function

η
(1)
1 =

[
∂2W0(0, x)
∂t∂x

+ a
∂W0(0, x)

∂t

]
ξ

(
m∑

i=1

d0ie
λiξ

)
. (40)

is a boundary layer type special solution of the equation (38). Here d0i are the
known numbers that are determined by the formula:

d0i =
C0i

(−1)m(2m+ 1)λm+1
i

li = 1, 2, ...,m.

Represent η1 in the form η1 = η
(1)
1 + η

(2)
1 . Then η

(2)
1 will be a boundary layer

type solution of the problem

(−1)m∂
2m+1η

(2)
1

∂ξ2m+1 +
∂η

(2)
1

∂ξ
= 0, (41)

∂η
(2)
1

∂ξ
|ξ=0 = ϕ1(x),

∂2η
(2)
1

∂ξ2
|ξ=0 =

= ϕ2(x), ...,
∂mη

(2)
1

∂ξm |ξ=0 = ϕm(x).

(42)

where

ϕ1(x) = −∂W1(0, x)
∂t

+ ϕ(x) · d1, ϕ2(x) = −∂
2W0(0, x)
∂t2

+

+d2ϕ(x), ϕj(x) = dj · ϕ(x); j = 3, 4, ...,m;

ds = −s
m∑

i=1

d0iλ
m−1
i ; s = 1, 2, ...,m;ϕ(x) =

∂2W0(0, x)
∂t∂x

+ a
∂W0(0, x)

∂t
.

Obviously, a boundary layer type solution of the problem (41), (42) is of the
form

η
(2)
1 = C1(x)eλ1ξ + C2(x)eλ2ξ + ...+ Cm(x)eλmξ, (43)
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and the functions Ci(x) are expressed by the functions W0,W1 in the following way:

Ci(x) = C
(1)
i

∂W1(0, x)
∂t

+ C
(2)
i

∂2W0(0, x)
∂t2

+

+C(3)
i

[
∂2W0(0, x)
∂t∂x

+ a
∂W0(0, x)

∂t

]
,

(44)

where C(1)
i , C

(2)
i , C

(3)
i , i = 1, 2, ...,m are the known numbers.

We get from (40) and (43) that the function η1 is a sum of η(1)
i , η

(2)
i and is

determined by the formula

η1 =
m∑

i=1

[Ci(x) + d0iϕ(x)ξ] eλiξ. (45)

Introducing the denotation

C
(i)
10 (x) = Ci(x), C

(i)
11 (x) =

d0i

[
∂2W0(0, x)
∂t∂x

+ a
∂W0(0, x)

∂t

]
; i = 1, 2, ...,m

(46)

we can write formula (45) in the following way:

η1 =
m∑

i=1

[
Ci

10(x) + C
(i)
11 (x)ξ

]
eλiξ. (47)

It follows from (44), (46) and (47) that the statement of lemma 2 is true for
s = 1. Now, let’s assume that the statement of lemma 2 is true for s ≤ r − 1 and
prove that it is true for s = r ≤ p+ 1. From (17) for s = r and from (20) for j = r

we have

(−1)m∂
2m+1ηr

∂ξ2m+1 +
∂ηr

∂ξ
= −

∂ηr−1

∂x
− ηr−1 +

∂2ηr−2

∂x2
,

∂kηr

∂ξk
|ξ=0 =

∂kWr+1−k

∂tk
|t=0 ; k = 1, 2, ...,m.

The right hand side of the equation for ηr contains the functions ηr−1, ηr−2 that
by assumption are determined by the formula (36). Repeating the similar reasonings
carried out for determining the function η1 we can affirm that ηr is also determined
by the formula (36).

Lemma 2 is proved.
By lemma 2 we can assume that the functions η0, η1, ..., ηp+1 are already con-

structed. The right hand side of the equation (18) for ηj ; j = p+2, p+3, ..., n+m−1
contains some of previous functions η0, η1, ..., ηj−1 in a nonlinear way. In this connec-
tion we should clarify if these equations have boundary layer solutions. For example,
it is seen from the obvious form of the function hp+3 that in the right hand side of
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the equation (18) for k = p+ 3 there is a member
∂

∂x

(∂ω(0)
0

∂x

)p−2(
∂η0

∂x

)2
. At

the expense of this number the formula for ηp+3, in addition to the members in (36)
will contain one more complementary member of the form

∂

∂x

(
∂ω

(0)
0

∂x

)p−2 [
C1e

2λ1ξ + C2e
2λ2ξ + ...+ Cme

2λmξ+

+Cm+1e
(λ1+λ2)ξ + Cm+2e

(λ1+λ3)ξ + ...+ Cm(m+1)
2

e(λm−1+λm)ξ
]
,

where Ci are constants. In a general form we can express it so that the formula
determining the functions ηj ; j = p + 3, p + 4, ..., n + m − 1, in addition to the
members in (36) will contain the members of the form

P
(0)
j (ω(0)

0 , ω
(0)
1 , ..., ω

(0)
j−1)e

(krλr+ksλs)ξ, (48)

where r, s = 1, 2, ...,m; kr, ks are natural numbers, P (0)
j (ω(0)

0 , ω
(0)
1 , ..., ω

(0)
j−1) are the

known functions dependent on ω
(0)
0 , ω

(0)
1 , ..., ω

(0)
j−1 and their first and second deriva-

tives, and this dependence is polynomial and uniform. Hence and from (14) it follows
that the function P

(0)
j is a polynomial with respect to ξ. Since the real parts of all

the members λ1, λ2, ..., λm are negative, the members of the form (48) exponentially
decrease as ξ → +∞.

Thus, the equations (18) also have boundary layer solutions. Multiply all ηj by
the smoothing functions and redenote the obtained new functions, again by ηj ; j =
0, 1, ..., n+m− 1.

By lemma 1 the functions Wi; j = 0, 1, ..., n together with all their derivatives
vanish for t = x, and in particular for t = x = 0. Therefore, it follows from (14)
that the functions ω(0)

k (ξ, x); k = 1, 2, ..., n + m vanish for x = 0. So, we get from
(29), (36), (37), (48) that all the functions ηs; s = 0, 1, ..., n+m−1 vanish for x = 0.
Therefore from, (4), (8), (10) we get that the sum W + η aside from (22), (19)
satisfies the boundary condition

(W + η) |x=0 = 0. (49)

The constructed sum W + η, generally speaking, doesn’t satisfy homogeneous
boundary conditions on S2. In this connection, a boundary layer type function
should be constructed near the boundary S2. The boundary layer functions near
the boundary S2 are constructed as boundary layer functions near the boundary S1.
Therefore, for boundary layer functions near the boundary S2 we note the followings.

At first we write a new decomposition of the operator Lε,2 of the operator Lε

near the boundary S2, for that we make change of variables 1 − t = εy, x = x. A
boundary layer function ψ near the boundary S2 is found in the form

ψ = εm+1(ψ0 + εψ1 + ...+ εn+m−1ψn+m−1), (50)
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as a solution of the equation

Lε,2(W + η + ψ)− Lε,2(W + η) = 0(εn+2m+1). (51)

The equations for ψ0, ψ1, ..., ψn+m−1 that are obtained from (51) by substitution
into it a new expansion of W + η in powers of ε in the coordinates (y, x) have the
same forms with the equations obtained for η0, η1, ..., ηn+m−1.

Boundary conditions for the equations whose solutions will be the functions
ψ0, ψ1, ..., ψn+m−1 are found from the requirement that the sum W + η + ψ should
satisfy the following boundary conditions:

∂m+k

∂tm+k
(W + η + ψ) |t=1 = 0; k = 1, 2, ...,m. (52)

We can represent the boundary conditions found form (52) by the following
formula:

∂m+kψs

∂ym+k
|y=0 = (−1)m+k−1∂

m+kWs+1−k

∂tm+k
|t=1 ;

k = 1, 2, ...,m; s = 0, 1, ..., n+m− 1,

(53)

where the functions Wr for r < 0 or r > n should be considered identity zeros.
The following statement is proved similar to the proof of lemma 2.
Lemma 3. The boundary layer type functions near the boundary S2 are deter-

mined by the formula

ψs =
m∑

i=1

[
b
(i)
s0 (x) + b

(i)
s1 (x)y + ...+ b(i)ss (x)ys

]
eλiy; s = 0, 1,..,p+ 2, (54)

where the coefficients b(i)sj (x) are expressed by the function

∂m+1+kWr(1, x)
∂tm+1+k1∂xk2

; k = k1 + k2; k1 = 0, 1, ..,

m− 1; r = 0, 1, .., n; k1 + k2 + r = s.

(55)

It should be noted that in the formula for ψj ;j = p + 3, p + 4, ..., n + m − 1 in
addition to the terms in (54) there will be additional terms of the form

P
(1)
j (ω(1)

0 , ω
(1)
1 , ..., ω

(1)
j−1)e

(krλr+ksλs)y, (56)

where ω(1)
0 = W0(1, x) is independent of y, and the remaining functions ω(1)

k are
determined by the formula

ω
(1)
k =

∑
i+j=k

(−1)i

i!
∂iWj(1, x)

∂ti
yi; k = 1, 2, .., n+ 2m. (57)

Multiplying all the functions ψs by the smoothing function, for the obtained
functions we leave previous denotation ψs; s = 0, 1, .., n+m− 1..
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Since the function ψ vanishes for t = 0 at the expense of smoothing function,
it follows from (19), (22) that the sum W + η + ψ alongside with conditions (52)
satisfies the following boundary conditions as well:

(W + η + ψ) |t=0 = εn+1ϕε(x),

∂k

∂tk
(W + η + ψ) |t=0 = 0; k = 1, 2, ..,m.

(58)

Following (49) and (50) we have that if the function ψj will vanish for x = 0, i.e.

ψj |x=0 = 0; j = 0, 1, ..., n+m− 1, (59)

the sum W + η + ψ aside from (52), (58) will satisfy the boundary condition

(W + η + ψ) |x=0 = 0. (60)

It follows from (54)-(57) that in order to fulfill the conditions (59) it suffices that
the functions Wr satisfy the following conditions:

∂m+1+kWr(1, 0)
∂tm+1+k1∂xk2

= 0; k = k1 + k2; r = 0, 1, .., n;

k1 + k2 + r = n+m− 1.

(61)

Assume that the function f(t, x) satisfies the following condition at the corner
point t = 1, x = 0:

∂kf(1, 0)
∂tk1∂xk2

= 0; k = k1 + k2; k = 0, 1, .., n+ 2m− 1. (62)

Then, using the formula (27) we can show that the conditions (61) for the func-
tion W0 will be fulfilled. Hence it follows that the right hand side of the equation
for W1 (of equation (7) for j = 1) vanishes at the corner point
t = 1, x = 0 together with its own derivatives. Therefore, the conditions (61) for the
function W1 are fulfilled. Continuing the process, we have that if (62) is valid, then
conditions (61) are fulfilled for all Wr.

Thus, the constructed sum W + η + ψ satisfies the boundary conditions (58),
(52), (60). But this sum may not satisfy the second boundary condition from (1)
for x = 1. Therefore a boundary layer type function V should be constructed near
S3 so that the function V provide fulfilment of the boundary condition

(W + η + ψ + V ) |x=1 = 0. (63)

We can somehow simplify the left hand side of (63). Considering the fact that
the function Wi; i = 0, 1, .., n together with its derivatives vanishes for t = x = 1, it
follows form (54)-(57) that

ψs |x=1 = 0; s = 0, 1, ..., n+m− 1. (64)
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Further following (29), (36), (37), (48), (14) we can affirm that if the function
f(t, x) satisfies the following conditions at the corner point t = 0, x = 1:

∂kf(0, 1)
∂tk1∂xk2

= 0; k = k1 + k2; k = 0, 1, .., n+m, (65)

the function ηs will vanish for x = 1, i.e.

ηs |x=1 = 0; s = 0, 1, .., n+m− 1. (66)

So, considering (66), (10) and (64), (50) we can represent the equality (63) in
the form

(W + V ) |x=1 = 0. (67)

While constructing the function V it should be taken into account that it must
satisfy the equality

Lε,3(W + η + ψ + V )− Lε,3(W + η + ψ) = 0(εn+1), (68)

and also the function V while adding to the sum W+η+ψ wouldn’t violate provided
boundary conditions (58), (52), (60). In (68) Lε,3 denotes a new decomposition of
the operator Lε near S3 that should be determined.

Local coordinates near the boundary S3 are introduced in the following way:
t = t, 1− x = ετ . A decomposition of the operator Lε in the coordinates (t, τ) is of
the form:

Lε,3 ≡ ε−1

{
−
[
∂

∂τ

(
∂U

∂τ

)p

+
∂2U

∂τ2
+
∂U

∂τ

]
+

+ε
[
∂U

∂t
+ aU − f(t, x)

]
+ (−1)mε2m+1∂

2m+1U

∂t2m+1

}
.

(69)

We look for a boundary layer function V in the form

V = V0(t, τ) + εV1(t, τ) + ...+ εn+1Vn+1(t, τ). (70)

A new expansion of the sum W + η + ψ in powers of ε in the coordinates (t, τ)
is of the form

W̃ = W + η + ψ =
n+1∑
j=0

εjΩj + 0(εn+2), (71)

where Ω0 = W0(t, 1) is independent of τ , Ωk = σk + h
(0)
k−1 for k = 1, 2, ..,m; Ωl =

= σl + h
(0)
l−1 + h

(1)
l−m−1 for l = m + 1,m + 2, ..n + 1. The functions σk, h

(0)
k , h

(1)
k

are determined by the formula:

σk(t, τ) =
∑

i+j=k

(−1)i

i!
∂iWj(t, 1)

∂xi
τ i; k = 1, 2, .., n+ 1;

h
(0)
k (ξ, τ) =

∑
i+j=k

(−1)i

i!
∂iηj(ξ, 1)
∂xi

τ i;
(
ξ =

t

ε

)
; k = 0, 1, .., n,
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h
(1)
k (y, τ) =

∑
i+j=k

(−1)i

i!
∂iψj(y, 1)

∂xi
τ i;
(
y =

1− t

ε

)
; k = 0, 1, .., n−m.

Obviously, we can represent the equation (68) in the form

ε−1

{
− ∂

∂τ

[(
∂W̃

∂τ
+
∂V

∂τ

)p

−
(
∂V

∂τ

)p
]
− ∂2V

∂τ2
− ∂V

∂τ
+

+
(
∂V

∂t
+ aV

)
+ (−1)mε2m+1∂

2m+1V

∂t2m+1
= 0(εn+1).

(72)

Substituting the expressions for V, W̃ from (70), (71) into (72) and expanding
the nonlinear terms in the left hand side of (72) in powers of small parameter we
get the following equations whose solutions are the functions V0, V1, ..., Vn+1:

∂

∂τ

(
∂V0

∂τ

)p

+
∂2V0

∂τ2
+
∂V0

∂τ
= 0, (73)

p
∂

∂τ

[(
∂V0

∂τ

)p−1 ∂Vj

∂τ

]
+
∂2Vj

∂τ2
+
∂Vj

∂τ
= Φj ; j = 1, 2, .., n+ 1, (74)

where Φj are the known functions that polynomially depend on the first and second
derivatives of the function V0, V1, ..., Vj−1; Ω1,Ω2, ...,Ωj−1, and this dependence is
such that when the functions V0, V1, ..., Vj−1 and their derivatives vanish, the func-
tions Φj also vanish. We can give to the equation (74) the following form

∂

∂τ

{[
p

(
∂V0

∂τ

)p−1

+ 1

]
∂Vj

∂τ

}
+
∂Vj

∂τ
= Φj ; j = 1, 2, .., n+ 1 . (75)

From (67) and from the fact that Vj ; j = 0, 1, .., n+ 1 should be boundary layer
type functions we get the following conditions for the equations (73), (75):

Vj |τ=0 = ϕj(t), lim
τ→+∞

Vj = 0, (76)

where ϕj(t) = −Wj(t, 1) for j = 0, 1, .., n+ 1 and ϕn+1 ≡ 0.
In the paper [8] the following statement is proved.
Lemma 4. Let ϕ0(t) ∈ Ck[0, 1]. Then for each fixed t ∈ [0, 1] the problem (73),

(76) (for j = 0) has a unique solution and V (t, τ) with respect to τ is infinitely
differentiable, and with respect to t has continuous derivatives up to k-th order,
inclusively. Therefore the following estimations of the form∣∣∣∣∂iV0(t, τ)

∂ti1∂τ i2

∣∣∣∣ ≤ C exp(−τ); i = i1 + i2; i1 = 0, 1, .., k

are valid uniformly with respect to t ∈ [0, T ].
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The construction of remaining functions V1, V2, ..., Vn+1 as solutions of linear
problems (75), (76) (for j = 1, 2, .., n + 1) is based on the theorem whose proof is
given in [8]. We notice only the formula for the functions Vj ; j = 1, 2, .., n+ 1

Vj(t, τ) =

ϕj(t)−
τ∫

0

g−1(t, z)

 +∞∫
z

Φj(t, ξ)dξ

×
× exp

 ξ∫
0

g−1(t, ξ)dξ

 dz
 exp

− τ∫
z

g−1(t, ξ)dξ

 ,
(77)

where g(t, τ) = p

(
∂V0

∂τ

)p−1

+ 1, and the estimation

∣∣∣∣ ∂iVj

∂ti1∂τ i2

∣∣∣∣ ≤ C(a0 + a1τ + ..+ ajτ
j) exp(−τ);

i = i1 + i2; i = 0, 1, .., 2m+ 2n+ 2− 2j.

is true.
Multiply all the functions Vj ; j = 1, 2, .., n+ 1 by a smoothing multiplier and for

the new obtained functions leave previous denotation.
So, we constructed the sum Ũ = W +η+ψ+V that satisfies the condition (63).

Since the function V vanishes for x = 0 at the expense of smoothing multiplier, then
it follows from (60) that in addition to (63) this sum satisfies the following boundary
condition as well

(W + η + ψ + V ) |x=0 = 0. (78)

Following (58), (52) we have that if the functions Vj will vanish together with
their derivatives with respect t for t = 0 and t = 1

∂kVj

∂tk
|t=0 = 0; k = 0, 1, 2,..,m;

∂m+kVj

∂tm+k
|t=1 = 0; k = 1, 2,..,m, (79)

the function Ũ will satisfy the following boundary conditions as well:

Ũ |t=0 = εn+1ϕε(x),
∂kŨ

∂tk
|t=0 = 0;

∂m+kŨ

∂tm+k
|t=1 = 0; k = 0, 1, 2,..,m. (80)

Using the obvious form of the function V0(t, τ) we can see that in order to satisfy
the conditions (79) for j = 0, it suffices the following conditions

ϕ
(r)
0 (0) = 0; r = 1, 2,..,m;ϕ(s)

0 (1) = 0; s = 1, 2,..,2m. (81)

be fulfilled.
Since ϕ0(t) = −W0(0, 1), the validity of the first condition from (81) follows from

(27) and (62). The validity of the second condition from (81) is obtained from the
fact that by lemma 1 the function W0(t, x) vanishes together with all its derivatives
for t = x and particularly, for t = x = 1.
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Thus, the conditions (79) are fulfilled for the function V0(t, τ). It follows from
(77) that if the conditions

ϕ
(k)
j (0) = 0,

∂kΦj(t, τ)
∂tk

|t=0 = 0; k = 0, 1, ..,m; (82)

ϕ
(m+k)
j (1) = 0,

∂m+kΦj(t, τ)
∂tm+k

|t=1 = 0; k = 1, 2, ..,m; (83)

will be fulfilled, then (79) will be valid for the functions Vj ; j = 1, 2, .., n+1, as well.
Validity of the conditions (82), (83) for the functions ϕj(t) = −Wj(0, 1); j =

1, 2, .., n are obtained by similar reasonings that were carried out above for ϕ0(t).
Further, it was noted that the functions Φj ; j = 1, 2, .., n+1 depend on V0, V1, .., Vj−1

and their derivatives, so that when all these functions together with derivatives
vanish, the functions Φj also vanish. For example, the function Φ1(t, τ) being the
right hand side of the equation for V1 has the form

Φ1 =
∂V0

∂t
+ aV0 − p

∂

∂τ

[(
∂V0

∂τ

)p−1 ∂Ω1

∂τ

]
.

It follows from the fulfilment of the condition (79) for V0 that the function Φ1

satisfies the conditions (82), (83). Continuing similar reasonings and considering the
property of the functions Φj(t, τ) we get that the conditions (79) are fulfilled for all
the functions Vj ; j = 1, 2, .., n+ 1.

Thus, the constructed function Ũ satisfies the boundary conditions (63), (78),
(80). We introduce the denotation

U − Ũ = z (84)

and call the function z a remainder term. From (84), (4), (10), (50), (70) we get the
following asymptotic expansion in small parameter of the solution of the problem
(1)-(3):

U =
n∑

i=0

εiWi +
n+m−1∑

s=0

ε1+sηs +
n+m−1∑

s=0

ε1+m+sψs +
n+1∑
j=0

εjVj + z. (85)

Now, the remainder term should be estimated. The following lemme is valid.
Lemma 5. For the remainder term z in (85) the estimation

ε2m

1∫
0

(
∂mz

∂tm
|t=1

)2

dx+ εp
∫∫
D

(
∂z

∂x

)p+1

dtdx+

+ε
∫∫
D

(
∂z

∂x

)2

dtdx+ C1

∫∫
D

z2dtdx ≤ C2ε
2(n+1),

(86)

is valid, where C1 > 0, C2 > 0 are constants independent of ε.
Proof. Summing up (5), (11), (51), (68) we have that Ũ satisfies the equation

LεŨ = 0(εn+1). (87)
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Subtracting (87) from (1) we get

(−1)mε2m∂
2m+1z

∂t2m+1
− εp

∂

∂x

[(
∂U

∂x

)p

−

(
∂Ũ

∂x

)p]
−

−ε∂
2z

∂x2
+
∂z

∂t
+
∂z

∂x
+ az = 0(εn+1).

(88)

It follows from (2), (3), (63), (78), (80), (84) that z satisfies the following bound-
ary conditions:

z |t=0 = −εn+1ϕε(x),
∂kz

∂tk
|t=0 = 0;

∂m+kz

∂tm+k
|t=1 = 0; k = 1, 2, ..,m,

(89)

z |x=0 = z |x=1 = 0, (90)

and the function ϕε(x) is determined by the formula (23) and

ϕε(0) = ϕε(1) = 0. (91)

When obtaining a uniform estimation for z, inhomogeneity of the first boundary
condition in (89) creates some difficulty. In this connection we consider the auxiliary
function

ψε(t, x) = εn+1
[
tm+1(1− t)2m+1x(1− x)− ϕε(x)

]
, (92)

that also satisfies the boundary conditions (89), (90).

Representing the remainder term z in the form

z = ψε + z1, (93)

at first we get a uniform estimation for z1, and then for z. Obviously the function
z1 will satisfy the homogeneous boundary conditions:

∂kz1
∂tk

|t=0 = 0; k = 0, 1, ..,m;
∂m+kz1
∂tm+k

|t=1 = 0; k = 1, 2, ..,m, (94)

z1 |x=0 = z1 |x=1 = 0. (95)

Substituting the expression of z from (93) into (88), considering (92), after some
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transformations we get the equation

(−1)mε2m∂
2m+kz1
∂t2m+1

− εp
∂

∂x
×

×

(∂z1 + Ũ + ψε

∂x

)p

−

∂
(
Ũ + ψε

)
∂x

p−

−ε ∂
∂x

∂
(
Ũ + ψε

)
∂x

p

−

(
∂Ũ

∂x

)p
−

−ε∂
2z1
∂x2

+
∂z1
∂x

+
∂z1
∂t

+ az1 = 0(εn+1).

(96)

Multiplying the both hand sides of (96) by z1 and integrating by parts the both
parts of the obtained equality allowing for boundary conditions (94), (95), after
certain transformations we get validity of estimations (86) for z1. The validity of
the estimations (86) for z follows from (92), (93) and from the estimation for z1.
The lemma 5 is proved.

Combining the results obtained above we arrive at the following statement.
Theorem. Assume f(t, x) ∈ C2m+2n+2(D) and the conditions (25) (for s =

2m+2n+2), (62), (65) are fulfilled. Then for the solution of the problem (1)-(3) it
is valid asymptotic representation (85), where the functions Wi are determined by
the first iteration process, ηs, ψs, Vj are the boundary layer type functions near the
boundaries S1, S2, S3, that are determined by corresponding iteration processes, z is
a remainder term and the estimation (86) is valid for it.
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