Rafiq A. RASULOV

ON BEHAVIOR OF SOLUTIONS OF DEGENERATED NONLINEAR PARABOLIC EQUATIONS

Abstract

The aim of this work is studding the behavior of solutions of initial boundary problem for degenerated nonlinear parabolic equation of the second order, conditions of existence and non-existence in whole by time solutions, is establish.

1. The exists and nonexists of solutions. Let's consider the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\sum_{i, j=1}^{u} \frac{\partial}{\partial x_{j}}\left(\omega(x)\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right)+f(x, t, u) \tag{1}
\end{equation*}
$$

In bounded domain $\Omega \subset R^{n}, n \geq 2$ with nonsmooth boundary, namely the boundary $\partial \Omega$ contains the conic points with mortar of the corner $\omega \in(0, \pi)$. Denote by $\Pi_{a, b}=\{(x, t): x \in \Omega, a<t<b\}, \Gamma_{a, b}=\{(x, t): x \in \partial \Omega, a<t<b\}, \Pi_{a}=\Pi_{a, \infty}$, $\Gamma_{a}=\Gamma_{a, \infty}$. The functions $f(x, t, u), \frac{\partial f(x, t, u)}{\partial u}$ are continuous by u uniformly in $\bar{\Pi}_{0} \times\{u:|u| \leq M\}$ at any $M<\infty, f(x, t, 0) \equiv 0,\left.\frac{\partial f}{\partial u}\right|_{u=0} \equiv 0$. Besides the function f is measurable on whole arguments and not decrease by u. Let's consider the Dirichlet boundary condition

$$
\begin{equation*}
u=0, x \in \partial \Omega \tag{2}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=\varphi(x) \tag{3}
\end{equation*}
$$

in some domain $\Pi_{0, a}$, where $\varphi(x)$ is a smooth function. Further we'll weak this condition.

Solution of problem (1) - (3) either exist in Π_{0} or

$$
\begin{equation*}
\lim _{t \rightarrow T-0} \max _{\Omega}|u(x, t)|=+\infty \tag{4}
\end{equation*}
$$

at some $T=$ const.
Assuming that $\omega(x)$ is measurable non-negative function satisfying the conditions: $\omega \in L_{1, l o c}(\Omega)$ and for any $r>0$ and some fixed $\theta>1$

$$
\begin{equation*}
\int_{B_{r}} \omega^{-1 /(\theta-1)} d x<\infty, \underset{x \in B_{r}}{e s s \sup } \omega \leq c_{1} r^{n(\theta-1)}\left(\int_{B_{r}} \omega^{-1 /(\theta-1)} d x\right)^{1-\theta} \tag{5}
\end{equation*}
$$

here $B_{r}=\{x \in \Omega:|x|<r\}$.

From condition (5) it follows that

$$
\begin{equation*}
\underset{x \in \Omega_{r}}{\operatorname{ess} \sup } \omega(x) \leq c_{1} r^{-n} \int_{B_{r}} \omega d x \tag{6}
\end{equation*}
$$

and $\omega \in A_{\theta}$ i.e.

$$
\begin{equation*}
\int_{B_{r}} \omega d x\left[\int_{B_{r}} \omega^{-1 /(\theta-1)} d x\right]^{1-\theta} \leq c r^{n \theta} \tag{7}
\end{equation*}
$$

Condition (6) - θ is Makenkhoupt's condition (see [3]).
Besides, analogously to [1] we'll assume that $\omega \in D_{\mu}, \mu<1+p / n$, i.e.

$$
\begin{equation*}
\frac{\omega\left(B_{s}\right)}{\omega\left(B_{h}\right)} \leq c_{1}\left(\frac{s}{h}\right)^{n \mu} \tag{8}
\end{equation*}
$$

for any $S \geq h>0$, where $\omega\left(B_{s}\right)=\int_{B_{s}} \omega(x) d x$.
Introduce the Sobole's weight space $W_{p}^{1}, W_{p, \omega}^{1}(\Omega)$ with finite norm

$$
\|u\|_{W_{p, \omega}^{1}(\Omega)}=\left(\int_{\Omega} \omega(x)\left(|u|^{p}+|\nabla u|^{p}\right) d x\right)^{1 / p} .
$$

The generalized solution of problem (1) - (3) in $\Pi_{0, a^{\prime}}$ we'll call the function $u(x, t) \in$ $W_{p, \omega}^{1}\left(\Pi_{a, b}\right)$, such that

$$
\begin{align*}
\int_{\Pi_{a, b}} \psi \frac{\partial u}{\partial t} d x d t & +\sum_{i, j=1}^{n} \int_{\Pi_{a, b}} \omega(x)\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}} \frac{\partial \psi}{\partial x_{j}} d x d t= \\
& =\int_{\Pi_{a, b}} f(x, t, u) \psi(x, t) d x d t \tag{9}
\end{align*}
$$

where $\psi(x, t)$ is an arbitarary function from $W_{p, \omega}^{1}\left(\Pi_{a, b}\right),\left.\psi\right|_{\Gamma_{a, b}}=0,0<a<b$ are any numbers.

Let's formulate some auxillary result's from [3],[4]. For this we'll determine p-harmonic operator $L_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p>1$.

Lemma 1. ([1]). There exists positive eigenvalue of spectral problem for operator L_{p} that corresponds the positive in Ω eigenfunction.

Lemma 2. ([2]). Let $u, v \in W_{p}^{1}(\Omega), u \leq v$ on $\partial \Omega$ and

$$
\int_{\Omega} L_{p}(u) \eta_{x i} d x \leq \int_{\Omega} L_{p}(\vartheta) \eta_{x_{i}} d x
$$

for any $\eta \in \stackrel{\circ}{W}_{p}^{1}(\Omega)$ with $\eta \geq 0$. Then $u \leq \vartheta$ on all domain Ω.
[On behavior of solutions of degenerated...]
Let $u_{0}(x)>0$ be an eigenfunction of spectral problem for the operator L_{p} corresponding $\lambda=\lambda_{1}>0, \int_{\Omega} u_{0}(x) d x=1$.

Let's assume that the condition:

$$
\begin{equation*}
I=\int_{\Omega} \omega(x)\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}-\left|\frac{\partial u_{0}}{\partial x_{i}}\right|^{p-2} \frac{\partial u_{0}}{\partial x_{i}}\right) \frac{\partial\left(u_{0} \omega\right)}{\partial x_{i}} d x \geq 0 \tag{*}
\end{equation*}
$$

be fulfilled.
Theorem 1. Let $f(x, t, u) \geq \alpha_{0}|u|^{\sigma-1} u$ at $(x, t) \in \Pi_{0}, u \geq 0$, where $\sigma=$ const $>1, \alpha_{0}=$ const >0. There exists $k=$ const >0 such that if $u(x, 0) \geq 0$, $\int_{\Omega} u(x, 0) u_{0}(x) d x \geq k$, and condition (*) be fulfilled, then

$$
\lim _{t \rightarrow T-0} \max _{\Omega}\left(\omega(x) u_{0}(x) u(x, t)\right)=\infty,
$$

where $T=$ const >0.
Proof. Let's assume the opposite. Then $u(x, t)$ is a solution of equation (1) in Π_{0} and condition (2) on Γ_{0} be fulfilled. By means of lemma $2 u(x, t)>0$ in Π_{0}. Substituts in (8) $\Psi=\varepsilon^{-1} u_{0}(x) \omega(x), b=a+\varepsilon, a>0, \varepsilon>0$, where $u_{0}(x)>0$ in Ω is eigenfunction of spectral problem for the operator L_{p} corresponding to eigenvalue $\lambda_{1}>0$. Such eigenvalue exists by virtue of lemma 1 .

As a result we'll obtain

$$
\begin{array}{r}
\varepsilon^{-1}\left[\int_{\Omega} \omega(x) u_{0}(x) u(x, a+\varepsilon) d x-\int_{\Omega} \omega(x) u_{0}(x) u(x, a) d x\right]+ \\
+\varepsilon^{-1} \int_{\Pi_{a, a+\varepsilon}} \omega(x)\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}} \frac{\partial \psi}{\partial x_{j}} d x d t=\varepsilon^{-1} \int_{\Pi_{a, a+\varepsilon}} u_{0} \omega f(x, t, u) d x d t . \tag{10}
\end{array}
$$

Let's make same transformations. Let's add and substract to left hand (10)

$$
\varepsilon^{-1} \int_{\Pi_{a, a+\varepsilon}} \omega(x)\left|\frac{\partial u_{0}}{\partial x_{i}}\right|^{p-2} \frac{\partial u_{0}}{\partial x_{i}} \frac{\partial \psi}{\partial x_{j}} d x d t
$$

and taking into account that $u_{0}(x)$ the egenfunction of the operator L_{p} corresponds to $\lambda_{1}>0$ and ε vanich we'll obtain that at all $t>0$

$$
\begin{gathered}
\frac{\partial}{\partial t} \int_{\Omega} u_{0}(x) \omega(x) u(x, t) d x= \\
=-\lambda_{1} \int_{\Omega} u_{0}(x) \omega(x) u(x, t) d x+\int_{\Omega} u_{0} \omega(x) f(x, t, u) d x+I .
\end{gathered}
$$

From here denoting

$$
g(t)=\int_{\Omega} u_{0}(x) \omega(x) u(x, t) d x
$$

We have

$$
g^{\prime}(t)=\lambda_{1} \int_{\Omega} u_{0}(x) \omega(x) u(x, t) d x+I+\int_{\Omega} u_{0} \omega f(x, t, u)
$$

Further, taking into account condition (A) and condition on $f(x, t, u)$ we have

$$
\begin{equation*}
g^{\prime}(t) \geq-\lambda_{1} \int_{\Omega} u_{0} \omega(x) u(x, t) d x+a_{0} \int_{\Omega} u_{0} \omega|u|^{\sigma} d x \tag{11}
\end{equation*}
$$

So, from (10) we'll obtain

$$
\begin{equation*}
g^{\prime}(t) \geq-\lambda_{1} \int_{\Omega} \omega u u_{0} d x+a_{0} \int_{\Omega} u_{0} \omega u^{\sigma} d x \tag{12}
\end{equation*}
$$

By virtue inequality Holder we have

$$
\left(\int_{\Omega} u u_{0} \omega d x\right)^{\sigma} \leq\left[\left(\int_{\Omega} u^{\sigma} u_{0} \omega d x\right)^{1 / \sigma}\left(\int_{\Omega} \omega u_{0} d x\right)^{\sigma-1 / \sigma}\right]^{\sigma} \leq C_{1} \int_{\Omega} u^{\sigma} u_{0} \omega d x
$$

In results

$$
\begin{equation*}
g^{\prime}(t) \geq-\lambda_{1} g(t)+C g^{\sigma}(t), \quad C=\text { const }>0 \tag{13}
\end{equation*}
$$

If

$$
g(0)>c_{2}=\left(\frac{\lambda_{1}}{c}\right)^{1 / \sigma}
$$

then from (13) we'll obtain $\lim _{t \rightarrow T-0} g(t)=+\infty$. This means that

$$
\lim _{t \rightarrow T-0} \max _{\Omega}\left(\omega(x) u_{0}(x) u(x, t)\right)=\infty
$$

Theorem is proved.
So equation (1) hasn't solutions in satisfying the boundary condition (2) if $u(x, 0) \geq 0$ isn't much small. Now we'll show that at small $|u(x, 0)|$ solution of problem (1),(2) exists on whole domain Π_{0}.

Theorem 2. We'll assume that $|f(x, t, u)| \leq\left(C_{3}+C_{4} t^{m}\right)|u|^{\sigma}, \quad \sigma>1, m>1$. There exists $\delta>0$ such that if $|\varphi(x)| \leq \delta$ then solution of problem (1),(3) exists in Π_{0} and $|u(x, t)| \leq C_{5} e^{-\alpha, t}, \alpha=$ const >0 not depend at n.

Proof. Let $\bar{\Omega} \subset B_{R}$, where $B_{R}=\{x:|x| \leq R\}$. Let $\vartheta>0$ in B_{R} be eigenfunction corresponding to positive eigenvalue λ_{1} of the boundary problem

$$
\begin{equation*}
L_{p} u+\lambda u=0, x \in \Omega, u=0, x \in \partial \Omega \tag{14}
\end{equation*}
$$

Let's consider the function $V(x, t)=\varepsilon \cdot e^{-\lambda_{1} t / 2} \cdot \vartheta(x)$. We have

$$
\begin{gather*}
V_{t}-L_{p} V-f(x, t, V)=\frac{1}{2} \varepsilon \lambda_{1} e^{-\lambda_{1} t / 2} \cdot \vartheta(x)- \\
-\left(c_{3}+c_{4} t^{m}\right) \varepsilon^{\sigma} e^{-\lambda_{1} t / 2} \cdot \vartheta \geq 0,(x, t) \in \Pi_{0} \tag{15}\\
\text { and } V>0,(x, t) \in \Gamma_{0}
\end{gather*}
$$

if $\varepsilon>0$ is sufficiently small. Inequality (15) is understood in weak sense (see [4]).
From (15) and lemma 2 follows that $|u| \leq V \leq C_{s} e^{-\lambda_{1} t},|\varphi(x)| \leq \delta=\varepsilon \min _{\Omega} \vartheta(x)$. Let's determine the class of functions K consisting from $g(x, t)$ continuous in $\bar{\Omega}_{-\infty,+\infty}$ equaling to zero at $t \leq T$ and such that $|g(x, t)| \leq C e^{-h t}$. K is a set of Banach space continuous in $\bar{\Pi}_{-\infty,+\infty}$ functions with norm

$$
\|g\|=\sup _{\bar{\Pi}_{-\infty,+\infty}}\left|g e^{h t}\right|
$$

Let $\theta(t) \in C^{\infty}\left(R^{1}\right), \theta(t) \equiv 0, t \leq T, \theta(t)=1, t>T+1$. Let's determine the operator H on K puthing $H g=\theta(t) z, g \in K$, where z is a solution of lineazing problem.

By virtue of above obtained estimation H transforms K in K if T is sufficiently big. The operator H is a fully continuous. This follows from the obtained estimation and theorem on Holderness of solutions of parabolic equations in $\Pi_{-a, a}$ at any a ([4]). From Lere-Shauder theorem, consequence that the operator H has fixed point z. This shows the existence of solution.

The theorem is proved.
From theorem 2 it follows that if $u(x, 0) \geq 0,|u(x, 0)| \leq \delta$, then the solution of problem (1)-(3) exists in Π_{0} and possitive in Π_{0} by virtue of lemma 2.

Let's indicate the sufficient condition, at which all nonnegative solutions of problem (1)-(3) have "blow-up", i.e.

$$
\begin{equation*}
\lim _{t \rightarrow T-0} \max _{\Omega}\left(\omega(x) u_{0}(x) u(x, t)\right)=+\infty \tag{16}
\end{equation*}
$$

where $T=$ const >0.
Theorem 3. Let $f(x, t, u) \geq C_{6} e^{\lambda_{1} \sigma t} u^{\sigma}$ at $(x, t) \in \Pi_{0}, u \geq 0, \sigma=$ const >1, λ_{1} be positive eigenvalue of problem (14) in Ω that corresponds to the positive in Ω eigenfunction. If $u(x, 0) \geq 0, u(x, 0) \not \equiv 0$, where $u(x, t)$ is solution of problem (1)-(3), then it holds (16).

Proof. Similarly how it has been established by inequality (13) we'll obtain

$$
\begin{equation*}
g^{\prime}(t) \geq-\lambda_{1} g+C_{7} e^{\lambda_{1} \sigma t} g^{\sigma}(t) \tag{17}
\end{equation*}
$$

where

$$
g(t)=\int_{\Omega} \omega(x) u_{0}(x) u(x, t) d x
$$

Let $g(t)=\psi(t) e^{\lambda_{1} t}$. From (17) if follows that $\psi^{\prime} \geq C_{8} \psi^{\sigma}$. Hence $\psi(t) \rightarrow+\infty$ at $t \rightarrow$ $T-0$. Thus $g(t)$ tends so $+\infty$ at $t \rightarrow T-0$. Consequently $\max _{\Omega}\left(\omega(x) u_{0}(x) u(x, t)\right)$ is also tends to infinity

Theorem is proved.
From theorem 3 we can obtain the following property of solutions of equation (1)

Corollary: Let $f(x, t, u) \geq C_{8} e^{\lambda_{1} \sigma t} u^{\sigma}$ and at $(x, t) \in \Pi_{0}, u \geq 0$ where $\sigma>1$. Then there isn't positive in Π_{0} solutions of equation (1).
2. The estimation of solutions. We'll obtain the estimations for solutions of problem (1)-(3) in case $f(x, t, u)=0$ in ternus to characterising on infinity of initial and weight functions, without a lower's condition on initial function.

Assume, that $\varphi(x) \in L_{1}(\Omega)$. Denote by $k=n(p-1-\mu)+p, r>0$ fixed number. Let's consider the following initial characteristics for $u(x, t)$ and $\varphi(x)$

$$
\begin{gathered}
\varphi_{r}(t)=\sup _{\tau \in(0, t)} \sup _{\rho \geq r}\left(\frac{\omega\left(B_{\rho}\right)}{\rho^{n+p}}\right)^{1 /(p-2)} \cdot\|u(x, \tau)\|_{L_{\infty}\left(B_{\rho}\right)} \\
\mid\|u(x, \tau)\| \|_{r}=\sup _{\rho \geq r} \rho^{-k /(p-2)}\left[\frac{\omega\left(B_{\rho}\right)}{\rho^{n \cdot \mu}}\right]^{1 /(p-2)} \int_{B_{\rho}} u(x, \tau) d x \\
|\|u(x, 0)\||_{r}=\|\varphi\|_{r} .
\end{gathered}
$$

Let's rewrite the definition of generalized solution (9) in the following form:

$$
\begin{gather*}
\int_{\Omega} u(x, t) \psi(x, t) d x+\int_{0}^{t} \int_{\Omega}\left(-u \psi_{t}+\omega\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}} \frac{\partial \psi}{\partial x_{j}} d x d t\right)= \\
=\int_{\Omega} \varphi(x) \psi(x, 0) d x, \quad \forall o<t<T \tag{18}
\end{gather*}
$$

Lemma 3: Assume that $u(x, t) \in W_{p, \omega}^{1}\left(\Pi_{a, b}\right)$ is a generalized solution of problem (1)-(3) is initial function $\varphi(x) \in C_{0}^{\infty}(\Omega)$. Then the following estimation is true

$$
\begin{equation*}
|u(x, t)| \leq C_{9}[\beta(t)]^{(n+p-n(\mu-1)) / \lambda}\left[\frac{\rho^{n \mu}}{\omega\left(B_{\rho}\right)}\right]^{n / \lambda}\left[\int_{t / \varphi}^{t} \int_{B_{2 \rho}} u^{p} d x d t\right]^{(p-n(\mu-1))} \tag{19}
\end{equation*}
$$

for $\forall o<t<T$, where $\beta(t)=t^{-n(p-2) / k} \cdot \varphi_{r}^{p-2}(t)+t^{-1}$,

$$
\lambda=n(2 p-2-p \mu)+p^{2}
$$

Proof: Let $f(x, t) \in L_{\infty}\left(0, T: L_{s}\left(B_{\rho}\right)\right) \cap L_{p}\left(0, T: \stackrel{\circ}{W}_{p, \omega}^{1}\left(B_{\rho}\right)\right), s, p>1$. Using the weigh multiplicate inequality from [3], we obtain the inequality

$$
\int_{0}^{T} \int_{B_{\rho}}|f(x, t)|^{q} d x d t \leq
$$

$$
\begin{equation*}
\leq C_{10} \frac{\rho^{n \cdot \mu}}{\omega\left(B_{\rho}\right)}\left(\underset{0<t<T}{\operatorname{ess} \sup } \int_{B_{\rho}}|f|^{s} d x\right)^{(p-n(\mu-1)) / n} \int_{0}^{T} \int_{B_{\rho}} \omega|\nabla f|^{p} d x d t \tag{20}
\end{equation*}
$$

$q=p+\frac{s}{n}(p-n(\mu-1))$. Let $\rho>0, T>0$ are fixed. Let's consider the sequence $T_{k}=T / 2-T / 2^{k+1}, \rho_{k}=\rho+\rho / 2^{k+1}, \bar{\rho}_{k}=\frac{1}{2}\left(\rho_{k}+\rho_{k+1}\right), k=0,1, \ldots$ Denote by $B_{k}=B_{\rho_{k}}, \bar{B}_{k}=B_{\rho_{k}}, \Pi_{k} \equiv B_{k} \times\left(T_{k}, T\right), \bar{\Pi}_{k} \equiv \bar{B}_{k} \times\left(T_{k+1}, T\right)$.

Let $\xi_{k}(x, t)$ be cutting function in Π_{k} satisfying the conditions $\xi_{k}=1,(x, t) \in$ $\bar{\Pi}_{k},\left|\nabla \xi_{k}\right| \leq 2^{k+2} / \rho, 0 \leq \frac{\partial \xi_{\kappa}}{\partial t} \leq 2^{k+2} \cdot T$.

Besides, let $\alpha>0, \alpha_{k}=\alpha-\alpha / 2^{k+2}, k=0,1,2, \ldots$
Let's substitute $\psi(x, t)=\left(u-\alpha_{k}\right)_{t}^{p-1} \xi_{k}^{p}$ in integral identity (18). Doing transformation, analogously [5] we'll obtain

$$
\begin{equation*}
\sup _{T_{k+1} \leq t \leq T} \int_{\bar{B}_{k}} v_{k}^{s} d x+\iint_{\bar{\Pi}_{k}} \omega\left|\nabla \vartheta_{k}\right|^{p} d x d t \leq C_{11} 2^{k p} \beta(t) \iint_{\bar{\Pi}_{k}} \vartheta_{k}^{s} d x d t \tag{21}
\end{equation*}
$$

where $\vartheta_{k}=\left(u-\alpha_{k}\right)^{2(p-1) / p}, s=p^{2} / 2(p-1)$.
Estimating the right part (21) using (20) and doing some calculations we'll obtain

$$
\begin{gather*}
-\iint_{\bar{\Pi}_{k}} \vartheta_{k+1}^{q} d x d t \leq \iint_{\bar{\Pi}_{k}}\left|\vartheta_{k+1} \xi_{k}\right|^{q} d x d t \leq C_{12} \frac{\rho^{n \cdot \mu}}{\omega\left(B_{\rho}\right)} \times \\
\times\left\{\iint_{\bar{\Pi}_{k}} \omega\left|\nabla \vartheta_{k}\right|^{p} d x d \tau+\frac{2^{k p}}{\rho^{p}} \iint_{\bar{\Pi}_{k}} \omega \vartheta_{k}^{p} d x d \tau\right\}\left(\sup _{T_{k+1} \leq t \leq T} \int_{B_{k}} \vartheta_{k}^{s} d x\right)^{(p-n(\mu-1)) / n} \leq \\
\leq C_{12} \frac{\rho^{n \cdot \mu}}{\omega\left(B_{\rho}\right)}[\beta(t)]^{1+(p-n(\mu-1)) / n}\left[\iint_{\bar{\Pi}_{k}} \vartheta_{k+1}^{s} d x d \tau\right]^{1+(p-n(\mu-1)) / n} \tag{22}
\end{gather*}
$$

Further, we'll use the following estimation

$$
\begin{equation*}
\operatorname{mes} A_{k+1}=\operatorname{mes}\left\{(x, t) \in \Pi_{k+1} / u(x, t)>\alpha_{n+1}\right\} \leq k^{-p} 2^{-(k+1) p} \iint_{\bar{\Pi}_{k}} \vartheta_{k}^{s} d x d \tau \tag{23}
\end{equation*}
$$

From (20) the Holder inequality and using estimation (23) we have

$$
\begin{aligned}
& \iint_{\Pi_{k+1}} \vartheta_{k+1}^{q} d x d \tau \leq\left(\iint_{I_{k+1}} \vartheta_{k+1}^{q} d x d \tau\right)^{s / q}\left(\operatorname{mes} A_{k+1}\right)^{1-s / q} \leq \\
& \leq C_{13} \alpha^{-p(1-s / q)}\left[\frac{\rho^{n \cdot \mu}}{\omega\left(B_{\rho}\right)}\right]^{s / q}(B(t))^{((n+p-n(\mu-1) / n) \cdot(s / q))} \times
\end{aligned}
$$

$$
\begin{equation*}
\times\left(\iint_{\Pi_{k}} \vartheta_{s}^{k} d x d \tau\right)^{(1+(p-n(\mu-1) / n) \cdot(s / q))} \tag{24}
\end{equation*}
$$

Hence, using [4] denoting

$$
M=C_{13}\left[\frac{\rho^{n \cdot \mu}}{\omega\left(B_{\rho}\right)}\right]^{n / \lambda} \cdot(\beta(t))^{(n+p-n(\mu-1)) / n}\left(\iint_{\Pi_{k}} u^{p} d x d \tau\right)^{(p-n(\mu-1)) / \lambda}
$$

we'll obtain that $\sup u(x, t) \leq M$.

$$
\begin{gathered}
\Pi_{a, b} \\
\text { proved. }
\end{gathered}
$$

Lemma 3 is proved.
Denote $\eta(t)=\sup _{\tau \in(0, t)} \eta_{r}(\tau)=\sup _{\tau \in(0, t)}|\|u(x, \tau)\||_{r}$
Lemma 4. Let's assume that $u(x, t) \in W_{p, \omega}^{1}\left(\Pi_{a, b}\right)$ be generalized solution of problem of (1)-(3), the initial function $\varphi(x) \in C_{0}^{\infty}(\Omega)$. Then the estimations

$$
\begin{gather*}
\varphi_{r}(t) \leq C_{14} \int_{0}^{t} \tau^{-n(p-2) / k} \varphi_{r}^{p-1}(\tau) d \tau+C_{15}[\eta(t)]^{(p-n(\mu-1)) / k} \tag{25}\\
\eta(t) \leq C_{16} \mid\|\varphi\|_{r}+C_{17}\left(\int_{0}^{t} \tau^{(p-n(\mu-1) / p \alpha)-1}\left(\varphi_{r}(\tau)\right)^{(p-2 / p)} \eta(\tau) d \tau+\right. \\
 \tag{26}\\
\left.+\int_{0}^{t} \tau^{(p-n(\mu-1) / p \alpha)-1}\left(\varphi_{r}(\tau)\right)^{(p-2) / p} \eta(\tau) d \tau\right)
\end{gather*}
$$

are true.
Proof. Let's estimate the following integrals

$$
\begin{align*}
& {\left[\frac{\rho^{n \cdot \mu}}{\omega\left(B_{\rho}\right)}\right] \tau^{n / \alpha}\left[\frac{\omega\left(B_{\rho}\right)}{\rho^{n+p}}\right]^{1 /(p-2)} \tau^{(-n(p-2) / \alpha)(n+p-n(\mu-1)) / \lambda} \cdot \varphi_{r}^{(p-2)((n+p-n(\mu-1)) / \lambda)} \times} \\
& \quad \times\left(\int_{t / 4}^{t} \int_{B_{2 \rho}}^{t} u^{p} d x d \tau\right)^{(p-n(\mu-1)) / \lambda} \leq\left[\varphi_{r}(t)\right]^{(p-2)((n+p-n(\mu-1)) / \lambda)} \times \\
& \times\left(\int_{0}^{t} \tau^{-n(p-2) / \alpha} \varphi_{r}^{p}(\tau) d \tau\right)^{(p-n(\mu-1)) / \lambda} \leq C_{18} \varphi_{r}(t)+(\eta(t))^{(p-n(\bar{\omega})) / \alpha}, \tag{27}\\
& {\left[\frac{\rho^{n \cdot \mu}}{\omega\left(B_{\rho}\right)}\right]^{n / \lambda} \tau^{n / \alpha}\left[\frac{\omega\left(B_{\rho}\right)}{\rho^{n+p}}\right]^{1 /(p-2)} \tau^{-(n+p-n(\mu-1)) / \lambda}\left(\int_{t / 4}^{t} \int_{B_{2 s}}^{t} u^{p} d x d \tau\right) \leq} \\
& \quad \leq C_{19}\left(\varphi_{r}(t)\right)^{(p-1)(p-n(\mu-1)) / \lambda}+(\eta(t))^{(p-n(\mu-1)) / \lambda} \leq
\end{align*}
$$

$$
\begin{equation*}
\leq C_{20} \varphi_{r}(t)+(\eta(t))^{(p-n(\mu-1)) / \alpha} . \tag{28}
\end{equation*}
$$

Now multiplying the both parts (19) on $\left[\frac{\omega\left(B_{\rho}\right)}{\rho^{n+p}}\right]^{1 /(p-2)} \tau^{n / \alpha}, \tau \in(t / 4, t), \forall t>0$ and allowing for estimations (27), (28) we'll obtain estimation (25).

For getting estimation (26) we'll substitute in integral identity (18) $\psi(x, t)=$ $\tau^{1 / p} u^{1-2 / p} \xi^{p}$. We'll obtain

$$
\begin{gather*}
\int_{0}^{t} \int_{B_{2 \rho}} \omega \tau^{1 / p} \cdot|\nabla u|^{p} u^{-2 / p} \xi^{p} d x d \tau \leq \\
\leq C_{21} \rho^{-p} \int_{0}^{t} \int_{B_{2 \rho}} \omega \tau^{1 / p} u^{p-2 / p} d x d \tau+C_{22} \int_{0}^{t} \int_{B_{2 \rho}} \tau^{1 / p-1} u^{2(p-1) / p} d x d \tau \tag{29}
\end{gather*}
$$

Let's estimate integral of the right in (29). We have

$$
\begin{gather*}
\rho^{p} \int_{0}^{t} \int_{B_{2 \rho}} \omega \tau^{1 / p} u^{p-2 / p} d x d \tau \leq \omega\left(B_{2 \rho}\right) \rho^{-(n+p)} \int_{0}^{t} \int_{B_{2 \rho}} \tau^{1 / p} u^{p-2 / p} d x d \tau \leq \\
\leq C_{23}\left(\frac{\omega\left(B_{\rho}\right)}{\rho^{n}}\right)^{-1 / p}\left(\frac{\omega\left(B_{\rho}\right)}{\rho^{n \cdot \mu}}\right)^{-1 /(p-2)} \rho^{1+\alpha /(p-2)} \times \\
\quad \times \int_{0}^{t} \tau^{((p+1) / p \alpha)(p-n(\mu-1))-1}\left(\varphi_{r}(t)\right)^{(p-2)(p+1) / p} \eta(\tau) d \tau \tag{30}
\end{gather*}
$$

The second integral on the right in (29) we'll estimate by the following way

$$
\begin{gather*}
\int_{0}^{t} \int_{B_{2 \rho}} \tau^{\frac{1}{p}-1} u^{2(p-1) / p} d x d \tau \leq \\
\leq\left(\frac{\omega\left(B_{\rho}\right)}{\rho^{n}}\right)^{-1 / p}\left(\frac{\omega\left(B_{\rho}\right)}{\rho^{n \cdot \mu}}\right)^{-1 /(p-2)} \rho^{1+\alpha /(p-2)} \times \\
\times \int_{0}^{t} \tau^{(p-n(\mu-1)) / p \alpha-1}\left(\varphi_{r}(\tau)\right)^{(p-2) / p} \eta(\tau) d \tau \tag{31}
\end{gather*}
$$

Now, let's substitute in integral identity (18) $\psi(x, t)=\xi^{p}(x)$. Then we'll obtain

$$
\begin{equation*}
\int_{B_{2 \rho}} u(x, t) d x \leq \int_{B_{2 \rho}} \varphi(x) d x+C_{24} \rho^{-1} \int_{0}^{t} \int_{B_{2 \rho}} \omega|\nabla u|^{p-1} \xi^{p-1} d x d \tau \tag{32}
\end{equation*}
$$

Let's estimate the secong integral on the right in (32). We have

$$
\int_{0}^{t} \int_{B_{\rho}} \omega|\nabla u|^{(p-1)} \xi^{p-1} d x d \tau \leq\left(\int_{0}^{1} \int_{B_{2 \rho}} \omega \tau^{1 / p} \cdot|\nabla u|^{p} u^{-2 / p} \xi^{p} d x d \tau\right)^{(p-1) / p} \times
$$

$$
\begin{equation*}
\times\left(\int_{0}^{t} \int_{B_{2 \rho}} \omega \tau^{-(p-1) / p} u^{2(p-1) / p} d x d \tau\right)^{1 / p} \tag{33}
\end{equation*}
$$

Taking into account the second multiplies in (33)

$$
\begin{equation*}
\int_{0}^{t} \int_{B_{2 \rho}} \omega \tau^{-(p-1) / p} u^{2(p-1) / p} d x d \tau \leq C_{25} \frac{\omega\left(B_{\rho}\right)}{\rho^{n}} \int_{0}^{t} \int_{B_{2 \rho}} \tau^{1 / p-1} u^{2(p-1) / p} d x d \tau \tag{34}
\end{equation*}
$$

Now allowing for estimations (30), (31), (32) in (33) we'll obtain

$$
\begin{align*}
& \int_{0}^{t} \int_{B_{2 \rho}} \omega|\nabla u|^{p-1} \xi^{p-1} d x d \tau \leq C_{25}\left(\frac{\omega\left(B_{\rho}\right)}{\rho^{n \cdot \mu}}\right)^{-1 /(p-2)} \rho^{1+\alpha /(p-2)} \times \\
& \quad \times\left(\int_{0}^{t} \tau^{((p+1) / p \alpha)(p-n(\mu-1))-1}\left(\varphi_{r}(\tau)\right)^{(p-2)(p+1) / p} \eta(\tau) d \tau+\right. \\
& \left.\quad+\int_{0}^{t} \tau^{(p-n(\mu-1)) / p \alpha-1} \varphi_{r}^{(p-2) / 2}(\tau) \eta(\tau) d \tau^{(p-1) / p}\right) \times \\
& \quad \times \int_{0}^{t} \tau^{(p-n(\mu-1)) / p \alpha-1}\left(\varphi_{r}(\tau)^{(p-1) / p} \eta(\tau) d \tau\right)^{1 / p} \tag{35}
\end{align*}
$$

Multiplying inequality (32) $\rho^{-\alpha /(p-2)} \rho^{-n \cdot \mu /(p-2)}\left(\omega\left(B_{\rho}\right)\right)^{1 /(p-2)}$, using inequality (35), then we'll obtain

$$
\begin{gathered}
\eta(t) \leq C_{27} \mid\|\varphi\| \|_{r}+ \\
+C_{28}\left(\int_{0}^{t} \tau^{((p+1) / p \cdot \alpha)(p-n(\mu-1))}\left(\varphi_{r}(\tau)^{(p-2)(p+1) / p} \eta(\tau) d \tau\right)\right)+ \\
+\int_{0}^{t} \tau^{(p-n(\mu-1)) / p \alpha-1}\left(\varphi_{r}(\tau)^{(p-2) / 2} \eta(\tau) d \tau\right) .
\end{gathered}
$$

Lemma 4 is proved.
Theorem 4. Let $u(x, t) \in W_{p, \omega}^{1}\left(\Pi_{a, b}\right)$ be generalized solution of problem (1)-(3) and $\mid\|\varphi\|_{r}<\infty, r>0$ be fixed. Then if relative $\omega(x)$ to conditions (4), (7) and $\mu<1+p / n$ fulfilled, then

$$
\begin{gather*}
\|\mid\|\left\|\|_{r}<C_{29} t^{1 /(p-2)}\right. \tag{36}\\
\mid\|u(x, t)\| \|_{r}<C_{30} t^{1 /(p-2)} \tag{37}\\
\sup _{B_{\rho}}|u(x, t)| \leq C_{31} t^{p(n+1)-n(\mu+1) / k(p-2)} \rho^{n+p} \cdot \omega^{-1}\left(B_{\rho}\right) . \tag{38}
\end{gather*}
$$

[On behavior of solutions of degenerated...]
Proof: The proof of theorem follows from lemma 4 using the method of paper [5]. Thus for obtaining estimations (37), (38) the estimations are at first obtained

$$
\begin{gather*}
|\|u(x, t)\||_{r}<C_{32} \mid\|\varphi\| \|_{r} \\
\sup _{B_{s}}|u(x, t)| \leq C_{33} \mid\|\varphi\| \|_{r}^{(\rho-n(\mu-1)) / k} \rho^{n+p} \cdot \omega^{-1}\left(B_{\rho}\right) t^{-n / k} \tag{39}
\end{gather*}
$$

Further, using these estimations we obtain estimations (37), (38)
Corollary: Let in theorem $4 \omega(x)=|x|^{\theta}, 0<\theta<p$. Then conditions (4), (7) $\mu=1+\theta / n$, are fulfilled and we have the following estimation

$$
\begin{equation*}
\sup _{B_{\rho}}|u(x, t)| \leq C_{34}\left(\sup _{\rho \geq r} \rho^{-\beta /(p-2)} \int_{B_{\rho}} \varphi(x) d x\right)^{(p-\theta) / \beta} \cdot \rho^{(p-\theta) /(p-2)} \cdot t^{-n / \beta} \tag{40}
\end{equation*}
$$

where $\beta=n(p-2)+p-\theta$.
Note that estimation (39) is a exactly that proves to be true following class of exact solutions

$$
u_{\theta}(x, t)=\left(1-\left(\frac{p-2}{p-\theta}\right)\left(\frac{n}{\beta}\right)^{1 /(p-1)}\left(\frac{|x|}{t^{1 / \beta}}\right)^{(p-\theta) /(p-1)}\right)^{(p-1) /(p-2)}
$$

In case $\alpha=0$ and considering Cauchy problem estimation (40) is consider with the result of paper [5].

Remark: Estimations of type (38) we can a;so obtain for $\sup _{B_{\rho}}|\nabla u(x, t)|$

References

[1]. Tolksdorf P. On quasilinear boundary value problems in domains with corners // Nonlinear. Anal. 1981. V.5, No 7, pp.721-735
[2]. Gilbarg D.,Trudinger N. Eliptic partial differential eqnatins of secon order. Apringer. Verleg. 1977
[3]. Chanillo S., Wheeden R. Weighted Poincare and Sobolev inequalities and estimates for weighted Peano maximal funations. // Amer.J. Math. 1985, v.707. No 5, pp.1191-1226
[4]. Ladyzhenskaya O.A., Uraltceva N.N., Solonnikov V.A. Linear and quasilinear equations of parabolic type. M. Nauka, 1967
[5]. Di Benedetto E., Herreco M. On the Cauchy problem and initial traces for degenerate parabolic equation //Trans.Amer.Math.Sos. 1989, v.314, No 1, pp.187224
[R.A.Rasulov]

Rafiq A. Rasulov

Azerbaijan Teachers University,
9, Azerbaijan av. Baku, Azerbaijan.
E-mail: rafiq-rasulov@mail.ru
Received October 01, 2008; Revised December 22, 2008.

