Suraya M. NAJAFOVA

ON THE THEOREM ON CONTINUATION OF FUNCTIONS BEYOND THE DOMAIN OF DEFINITION

Abstract

In the paper, we construct a space of functions $f=f(x)$ with a finite set of difference-differential characteristics in the domain $$
G \subset E_{n}=E_{n_{1}} \times \ldots \times E_{n_{s}} \quad\left(n=n_{1}+\ldots+n_{s}\right) \quad(1 \leq s \leq n)
$$ satisfying the " σ - semi-horn" condition. We find the conditions by fulfilling of which the theorems on continuation of functions (from the constructed spaces) beyond the domain of definition $G \subset E_{n}$, on the E_{n}, with preservation of appropriate smoothness properties are proved.

1. Some denotation and definition.

1.1. Given a fixed "positive" vector

$$
\begin{equation*}
r=\left(r_{1} ; \ldots ; r_{s}\right) \tag{1.1}
\end{equation*}
$$

with coordinate-vectors

$$
\begin{equation*}
r_{k}=\left(r_{k, 1} ; \ldots ; r_{k, n_{k}}\right) \quad(k=1,2, \ldots, s) \tag{1.2}
\end{equation*}
$$

i.e. the coordinates

$$
\begin{equation*}
r_{r, j}>0\left(j=1,2, \ldots, n_{k}\right) \quad(k=1,2, \ldots, s) . \tag{1.3}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
[r]=\left(\left[r_{1}\right] ; \ldots ;\left[r_{s}\right]\right) \tag{1.4}
\end{equation*}
$$

be an "integral nonnegative" vector with coordinate vectors

$$
\begin{equation*}
\left[r_{k}\right]=\left(\left[r_{k, 1}\right], \ldots,\left[r_{k, n_{k}}\right]\right) \quad(k=1,2,-, s) \tag{1.5}
\end{equation*}
$$

where $\left[r_{r, j}\right]$ is an entire part of appropriate coordinate $r_{k, j}$ from (1.1)-(1.3) for $j=1,2, . ., n_{k} \quad(k=1,2, \ldots, s)$.

Obviously,

$$
\begin{equation*}
0 \leq r_{k j}-\left[r_{k i j}\right]<1 \quad\left(j=1,2 . ., n_{k}\right) \tag{1.6}
\end{equation*}
$$

for all $k=1,2, \ldots, s$.
By means of the set Q of all possible vectors $i=\left(i_{1}, . ., i_{s}\right)$ with coordinates $i_{k} \subset\left\{0,1, . ., n_{k}\right\}(k=1,2, \ldots, s)$, to each "positive" vector from (1.1)-(1.3) we assign a collection of vectors

$$
\begin{equation*}
r^{i}=\left(r_{1}^{i_{1}} ; \ldots ; r_{s}^{i_{s}}\right) \quad\left(i\left(i_{1}, \ldots, i_{s}\right) \in Q\right) \tag{1.7}
\end{equation*}
$$

with coordinate vectors

$$
r_{k}^{i_{k}}=\left\{\begin{array}{ccc}
0, . .0, r_{k, i_{k}}, 0, . ., 0 & \text { for } & i_{k} \neq 0, \tag{1.8}\\
(0, \ldots, 0) & \text { for } & i_{k}=0
\end{array}\right.
$$

for all $k=1,2, \ldots, s$.
We similarly define the collection of vectors

$$
\left[r_{k}^{i_{k}}\right]=\left\{\begin{array}{cc}
\left(0, . ., 0,\left[r_{k, i_{k}}\right], 0, . ., 0\right) & \text { for } i_{k} \neq 0, \tag{1.9}\\
(0, \ldots, 0) & \text { for } \quad i_{k}=0
\end{array}\right.
$$

for all $k=1,2, \ldots, s$.
1.2. Recall that

$$
\begin{equation*}
\|f\|_{L_{p}(G)}=\|f\|_{p, G}=\left(\int_{G}|f(x)|^{p} d x\right)^{\frac{1}{p}} \tag{1.10}
\end{equation*}
$$

for $1 \leq p<\infty$

$$
\begin{equation*}
\|f\|_{L_{\infty}(G)}=\|f\|_{\infty, G}=\underset{x \in G}{\operatorname{vrai} \sup }|f(x)| \tag{1.11}
\end{equation*}
$$

for $p=\infty$.
Let

$$
\begin{equation*}
\Delta_{k, j}^{1}\left(t_{k, j}\right) f\left(\ldots, x_{k, j, \ldots}\right)=f\left(\ldots, x_{k, j}+t_{k, j \ldots}\right)-f\left(\ldots, x_{k, j, \ldots}\right) \tag{1.12}
\end{equation*}
$$

be a finite difference of the function $f=f(x)$ of first order in the direction of the variable $x_{k, j}$ with step $t_{k, j}$ for each $j=1,2, . ., n_{k}(k=1,2, \ldots, s)$.

We denote by (for each $i=\left(i_{i}, . ., i_{s}\right) \in Q$)

$$
\begin{equation*}
e^{i}=\sup p i \tag{1.13}
\end{equation*}
$$

a set of indices of non-zero coordinates of the vector $i=\left(i_{1}, . ., i_{s}\right) \in Q$, consequently,

$$
\begin{equation*}
e^{i} \subset\{1,2, \ldots, s\} \tag{1.14}
\end{equation*}
$$

Note that (for each $i \in Q$)

$$
r_{k}^{i_{k}}-\left[r_{k}^{i_{k}}\right]=\left\{\begin{array}{cc}
\left(0, . ., 0, r_{k, i_{k}}-\left[r_{k, i_{k}}\right], 0, . ., 0\right) & \text { for } i_{k} \neq 0, \tag{1.15}\\
(0, \ldots, 0) & \text { for } i_{k}=0 \\
(k=1,2, \ldots, s) .
\end{array}\right.
$$

Consequently, (for each $i \in Q$)

$$
\begin{equation*}
0 \leq r_{k, i_{k}}-\left[r_{k, i_{k}}\right]<1\left(k \in e^{i}\right) . \tag{1.16}
\end{equation*}
$$

Let

$$
\begin{equation*}
e_{*}^{j}=\left\{k \in e^{i} r_{k, i_{k}}-\left[r_{k, i_{k}}\right]>\infty\right\} \tag{1.17}
\end{equation*}
$$

This says that

$$
\begin{equation*}
r_{k, i_{k}}>0 \text { are non integer }\left(k \in e^{i}\right) \tag{1.18}
\end{equation*}
$$

for each $i=\left(i_{1}, . ., i_{s}\right) \in Q$.

Let

$$
\begin{equation*}
\omega=(\underbrace{1, \ldots, 1}_{n_{1}} ; \ldots ; \underbrace{1, \ldots, 1}_{n_{s}})=\left(\omega_{1} ; . . ; \omega_{s}\right) . \tag{1.19}
\end{equation*}
$$

Denote by

$$
\begin{equation*}
\omega_{*}^{i}=\left(\omega_{*_{1}}^{i_{1}} ; \ldots ; \omega_{*_{s}}^{i_{s}}\right)\left(i=\left(i_{1}, . ., i_{s}\right) \in Q\right) \tag{1.20}
\end{equation*}
$$

with coordinate-vectors

$$
\omega_{*_{k}}^{i_{k}}=\left\{\begin{array}{cc}
(0, . ., 0,1,0, . ., 0) & \text { for } k \in e_{*}^{i} \tag{1.21}\\
(0, \ldots, 0) & \text { for } \quad k \in e_{s} \backslash e_{*}^{i}
\end{array}\right.
$$

Introduce the denotation

$$
\begin{equation*}
\Delta^{\omega_{*}^{i}}(t) D^{\left[r^{i_{*}}\right]} f(x)=\left\{\prod_{k \in e_{*}^{i}} \Delta_{k, i_{k}}^{1}\left(t_{k, i_{k}}\right)\right\} D^{\left[r^{i *}\right]} f(x) \tag{1.22}
\end{equation*}
$$

Let $G \subset E_{n}$, then we assume

$$
\begin{equation*}
\Delta^{\omega_{*}^{i}}(t ; G) D^{\left[r^{i}\right]} f(x)=\Delta^{\omega_{*}^{i}}(t) D^{\left[r^{i}\right]} f(x) \tag{1.23}
\end{equation*}
$$

if multiple differences of the function $f=f(x)$ are constructed on vertices of a polygonal wholly lying on domain $G \subset E_{n}$, otherwise it is assumed

$$
\begin{equation*}
\Delta^{\omega_{*}^{i}}(t ; G) D^{\left[r^{i}\right]} f(x)=0 \tag{1.24}
\end{equation*}
$$

Introduce a semi-norm by the equality

$$
\begin{equation*}
\|f\|_{L_{p}^{<r^{i}>}}(G ; s)=\left\{\int_{E}^{\left|\omega_{*}^{i}\right|} \left\lvert\, \|_{\left.\left\|_{k \in e_{*}^{i}}\left|t_{k, i_{k}}\right|^{r_{k, i_{k}}-\left[r_{k, i_{k}}\right]}\right\|_{L_{p}(G)} \frac{d t}{t}\right\}^{p}{ }^{\frac{1}{p}}, r^{\left.\omega^{i}\right]}}\right.\right. \tag{1.25}
\end{equation*}
$$

For $1 \leq p<\infty$, in the case $p=\infty$

$$
\begin{equation*}
\|f\|_{L_{p}^{<r^{i}>}(G ; s)}=\operatorname{vraisup}_{t \in E_{1 \omega_{w_{1}}^{i}}^{i}} \int_{E_{\omega_{*}^{i} i} \mid}\left\|\frac{\Delta^{\omega_{*}^{i}}(t ; G) D^{\left[r^{i}\right]} f}{\prod_{k \in e_{*}^{i}}\left|t_{k, i_{k}}\right|^{r_{k, i_{k}}-\left[r_{k, i_{k}}\right]}}\right\|_{L_{p}(G)} \tag{1.26}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{d t}{t}=\prod_{k \in e_{*}^{i}} \frac{d t_{k, i_{k}}}{t_{k, i_{k}}} \tag{1.27}
\end{equation*}
$$

Definition. The space

$$
\begin{equation*}
W_{p}^{<r>}(G ; s)=\underset{\left(i=\left(i_{1}, . ., i_{s}\right) \in Q\right)}{\cap} L_{p}^{<r^{i}>}(G ; s) \tag{1.28}
\end{equation*}
$$

[S.M.Najafova]
is the closure of the set of sufficiently smooth, finite in E_{n} function $f=f(x)$ by the norm

$$
\begin{equation*}
\|f\|_{W_{p}^{<r>}(G ; s)}=\sum_{\left(i=\left(i_{1}, . ., i_{s}\right) \in Q\right)}\|f\|_{L_{p}^{<r>}(G ; s)}<\infty \tag{1.29}
\end{equation*}
$$

where the sum is taken over all possible vectors $i=\left(i_{1}, . ., i_{s}\right) \in Q$ with coordinate vectors $i_{k} \in\left\{0,1, \ldots, n_{k}\right\}(k=1, . ., s)$ whose amount equals

$$
\begin{equation*}
|Q|=\prod_{k=1}^{s}\left(1+n_{k}\right) . \tag{1.30}
\end{equation*}
$$

The constructed space (1.28) of differentiable functions of many variables depend on the parameter $s(1 \leq s \leq)$. In the case $s=1$, these spaces is a generalization of the known $W_{p}^{\left(r_{1} \ldots, r_{n}\right)}$ S.L. Sobolev - L.N.Slobodetskiy spaces, but in the case $s=n$ it is a generalization of the known spaces $S_{p}^{r} W(G)$ of differentiable functions with dominant mixed difference - differential characteristics investigated in the papers of S.M. Nikolskii, P.I. Lizorkin, A.D. Jabrailov and others.
1.3. Let $\delta_{k}=\left(\delta_{1} ; \ldots ; \delta_{s}\right)$ be a vector with coordinate - vectors

$$
\delta_{k}=\left(\delta_{k, 1}, \ldots, \delta_{k, n_{k}}\right) \quad(k=1,2, . ., s),
$$

more exactly

$$
\delta_{k, j}=+1, \text { if } \delta_{k, j}=-1\left(j=1,2, \ldots, n_{k}\right)(k=1,2, \ldots, s)
$$

1.4. Let $\sigma=\left(\sigma_{1} ; \ldots ; \sigma_{s}\right)$ be "a positive vector" with coordinate-vector

$$
\sigma_{k}=\left(\sigma_{k, 1} ; \ldots ; \sigma_{k, n_{k}}\right)(k=1,2, . ., s)
$$

more exactly $\sigma_{k, j}>0\left(j=1,2, \ldots, n_{k}\right)$.
Denote by

$$
R_{\sigma}(\sigma ; h)=\underset{0<v \leq h}{\cup}\left\{\begin{array}{l}
y \in E_{n} ; C_{k, j}^{*} \leq \frac{y_{k, j} \delta_{k, j}}{v^{\sigma} k, j} \leq C_{k, j}^{* *} \tag{1.31}\\
j=1,2, \ldots, n_{k} \quad(k=1,2, . ., s)
\end{array}\right\}
$$

the points set $y \in E_{n}$ whose coordinates are subjected to restrictions

$$
C_{k, j}^{*} \leq \frac{y_{k, j} \delta_{k, j}}{v^{\sigma_{k, j}}} \leq C_{k, j}^{* *} j=1,2, \ldots, n_{k}(0<v \leq h)(k=1,2, . ., s)
$$

for all $k=1,2, . ., s$, where $C_{k, j}^{*} C_{k, j}^{* *}\left(j=1,2, \ldots, n_{k}\right)$ are the fixed constants.
The points set (1.31) determines some "semi-horn" with a vertex at the origin of coordinates.

Then for $x \in E_{n}$, the set

$$
\begin{equation*}
x+R_{\delta}(\sigma ; h) \tag{1.32}
\end{equation*}
$$

is said to be a " σ - semi-horn" with a vertex at the point $x \in E_{n}$. For $s=1$, this $" \sigma$-semi-horn" is a " σ - semi-horn" with a vertex at the point $x \in E_{n}$, determined first in the papers of O.V. Besov. In the case $s=n$, this semi-horn (1.32) is an n - dimensional rectangle with a vertex at the point $x \in E_{n}$, with faces parallel to coordinate axes, given in V.P. Il'in papers.
[On the theorem on continuation of functions]
For fixed $h>0$ and $\sigma=\left(\sigma_{1} ; \ldots ; \sigma_{s}\right)$, the amount of " σ - semi-horns" with a vertex at the point $x=E_{n}$ equals 2^{n}. Therewith if we fix the vector $\delta=\left(\delta_{1} ; \ldots ; \delta_{s}\right)$ as well, then there exsts a unique " σ-semi-horn" with a vertex at the point $x \in E_{n}$.

Definition. The subdomain $\Omega \in G$ is said to be a subdomain satisfying the " σ - semi-horn" condition, if there exists a " σ-semi-horn" with a vertex at the point $x \in E_{n}$ for which

$$
\begin{equation*}
x+R_{\sigma}(\sigma ; h) \subset G \tag{1.33}
\end{equation*}
$$

for all $x \in \Omega$.
Definition. The domain $G \in E_{n}$ is said to be a domain satisfying the " σ -semi-horn" condition, of there exists a finite collection of subdomains

$$
\begin{equation*}
\Omega_{1}, \Omega_{2}, \ldots, \Omega_{N} \subset G \tag{1.34}
\end{equation*}
$$

satisfying the " σ-semi-horn" condition and covering the domain G, i.e. such that

$$
\begin{equation*}
\bigcup_{\mu=1}^{N} \Omega_{\mu}=G \tag{1.35}
\end{equation*}
$$

2. Basic results.

Theorem. 1) Let

$$
\begin{equation*}
f \in W_{p}^{\langle r>}(\sigma ; s), \tag{2.1}
\end{equation*}
$$

where $1<p<\infty$, the vector $r=\left(r_{1} ; \ldots ; r_{s}\right)$ with coordinates $r_{k}=\left(r_{k, 1}, \ldots, r_{k, n_{k}}\right)$ $(k<1,2, \ldots, s)$ is "positive", i.e.

$$
r_{k, j}>0\left(j=1,2, \ldots, n_{k}\right)(k=1,2, . ., s)
$$

2) Let a domain $G \in E_{n}$ satisfy the " σ - semi-horn" condition, therewith $\sigma=$ $\left(\sigma_{1} ; \ldots ; \sigma_{s}\right)$ with coordinate vectors $\sigma_{k}=\left(\sigma_{k, 1}, \ldots, \sigma_{k, n_{k}}\right)(k=1, \ldots, s)$, and assumed that $\sigma_{k, j}>0\left(j=1,2, . ., n_{k}\right)$ for all $k=1,2, \ldots, s$.
3) Let an integer non-negative vector $\nu=\left(\nu_{1} ; \ldots ; \nu_{s}\right)$ with coordinate-vectors $\nu=\left(\nu_{k, 1}, \ldots, \nu_{k_{n_{k}}}\right)(k=1,2, \ldots, s)$ be such that

$$
\begin{align*}
\chi_{k, i_{k}}= & r_{k, i_{k}} \sigma_{k, i_{k}}-\left(\nu_{k}, \sigma_{k}\right)>0 \tag{2.2}\\
& \left(k=1,2, \ldots, i_{s}\right)
\end{align*}
$$

for each $i=\left(i_{1} ; \ldots ; i_{s}\right) \in Q$, where

$$
\left(\nu_{k}, \sigma_{k}\right)=\sum_{j=1}^{n} \nu_{k, j} \sigma_{k, j}\left(k=1,2, \ldots, i_{s}\right) .
$$

Then there exists an generalized derivative

$$
\begin{equation*}
D^{v} f \in L_{p}(G) \tag{2.3}
\end{equation*}
$$

and one can construct the function $\widetilde{f}_{v}=f_{v}(x)$ determined on the whole of E_{n} such that

$$
\begin{equation*}
\left.\tilde{f}_{v}\right|_{G}=D^{v} f(x), \tag{2.4}
\end{equation*}
$$

and it holds the integral inequality

$$
\begin{equation*}
\left\|\tilde{f}_{v}\right\|_{L_{p}\left(E_{n}\right)}\left(E_{n}\right) \leq C\|f\|_{W_{p}^{<r>}(G ; s)} \tag{2.5}
\end{equation*}
$$

where C is a constant independent of the function $f=f(x)$.
Proof. Assume that the function $f=f(x)$ belonging to the space (2.1) is sufficiently smooth, and it holds the integral representation

$$
\begin{equation*}
D^{v} f(x)=\sum_{\left(i=\left(i_{1}, . ., i_{s}\right) \in Q\right)} B_{i, \delta} f(x) \tag{2.6}
\end{equation*}
$$

where integral operators $B_{i, \delta} f(x)$ are determined by the equalities

$$
\begin{gather*}
B_{i, \delta} f(x)=C_{i}\left(\prod_{k \in e_{s}-e_{*}^{i}} h_{k}^{-\alpha_{k, 0}}\right) \times \\
\times \int_{\overrightarrow{0}} \prod_{k \in e_{*}^{i}} \frac{d v_{k}}{\vartheta_{k}^{1+\alpha_{k, i_{k}}}} \int_{E\left|\omega_{*}^{i}\right|} d z \int_{o E_{n}}\left\{\Delta^{\omega_{*}^{i}}(z) D^{\left[r^{i}\right]} f(x+y)\right\} \underline{\Phi}_{i, \delta}(\ldots) d y \tag{2.7}
\end{gather*}
$$

Here

$$
\begin{gather*}
\alpha_{k, 0}=\left|\sigma_{k}\right|+\left(v_{k}, \sigma_{k}\right) \text { for } i_{k}=0 \\
\alpha_{k, i_{k}}=\left|\sigma_{k}\right|+\left(v_{k}, \sigma_{k}\right)-\left[r_{k, i_{k}}\right] \sigma_{k, i_{k}}+\sigma_{k, i_{k}} \quad \text { for } i_{k} \neq 0 \tag{2.8}
\end{gather*}
$$

where $\left|\sigma_{k}\right|=\sigma_{k, 1}+\ldots+\sigma_{k, n_{k}}(k-1,2, \ldots, s)$ and the main denotation from (1.1)(1.20) are preserved. In integral operators (2.7), the kernels

$$
\underline{\Phi}_{i, \delta}=\underline{\Phi}_{i, \delta}(\ldots)
$$

are sufficiently smooth and finite (see[1]).
The " σ-semi-horn" $x+R_{\delta}(\sigma ; h)$ with a vertex at the point $x \in G$ is a support of integral representation (2.6) of the function $f=f(x)$ in domain $G \in E_{n}$.

Now, let

$$
\begin{equation*}
\Omega_{1}, \Omega_{2}, \ldots, \Omega_{N} \subset G \tag{2.9}
\end{equation*}
$$

be subdomains satisfying the " σ - semi-horn" condition and covering the domain G, i.e. such that

$$
\begin{equation*}
\bigcup_{\mu=1}^{N} \Omega_{\mu}=G \tag{2.10}
\end{equation*}
$$

therewith

$$
\delta^{\mu}=\left(\delta_{1}^{\mu}, \ldots, \delta_{s}^{\mu}\right)(\mu=1,2, \ldots, N)
$$

is a collection of vectors with corresponding coordinate vectors

$$
\delta_{k}^{\mu}=\left(\delta_{k, 1}^{\mu}, \ldots, \delta_{k, n_{k}}^{\mu}\right)(k=1,2, \ldots, s)
$$

for which

$$
\delta_{k, j}^{\mu}=+1 \text { or } \delta_{k, j}^{\mu}=-1\left(j=1,2, \ldots, n_{k}\right)
$$

moreover,

$$
\begin{equation*}
\Omega_{\mu}+R_{\delta^{\mu}}(\sigma ; h) \subset G \quad(\mu=1,2, \ldots, N) . \tag{2.11}
\end{equation*}
$$

A collection of auxiliary functions

$$
\begin{equation*}
\widetilde{f}_{\nu, \mu}=\widetilde{f}_{\nu, \mu}(x) \quad(\mu=1,2, \ldots, N), \tag{2.12}
\end{equation*}
$$

coinciding on appropriate

$$
\Omega_{\mu}+R_{\delta^{\mu}}(\sigma ; h)
$$

with the functions $D^{v} f(x)$ are determined by the equalities

$$
\begin{equation*}
\tilde{f}_{\nu \mu}(x)=\sum_{i=\left(i_{1}, \ldots, i_{s}\right) \in Q} B_{i, \delta^{\mu}}^{*} f(x) \tag{2.13}
\end{equation*}
$$

for all $\mu=1,2, \ldots, N$, the integral operators standing at the right side of (2.13) are given in the form:

$$
B_{i, \delta^{\mu}}^{*} f(x)=C_{i}\left(\prod_{k \in e_{s}-e_{*}^{i}} h_{k}^{-\alpha_{k, 0}}\right) \times
$$

$$
\begin{equation*}
\times \int_{\overrightarrow{0}}^{\vec{h}} \prod_{k \in e_{*}^{i}} \frac{d \vartheta_{k}}{\vartheta_{k}^{1+\alpha_{k, i_{k}}}} \int_{E\left|\omega_{*}^{i}\right|} d z \int_{o E_{n}}\left\{\Delta^{\omega_{*}^{i}}\left(z ; \Omega_{\mu}+R_{\delta^{\mu}}\right) D^{\left[r^{i}\right]} f(x+y)\right\} \Phi_{i, \delta}(\ldots) d y \tag{2.14}
\end{equation*}
$$

for all $\mu=1,2, \ldots, N$, moreover (in the case of zero vector $i \in Q$) instead of the function

$$
D^{\left[r^{i}\right]} f(x+y)=f(x+y)
$$

the function

$$
\begin{equation*}
\chi\left(\Omega_{\mu}+R_{\delta^{\mu}}\right) f(x+y) \tag{2.15}
\end{equation*}
$$

is under the integral for each $\mu=1,2, \ldots, N$.
We construct the function $\widetilde{f}_{v}=\widetilde{f}_{v}(x)$ by the equality

$$
\begin{equation*}
\widetilde{f}_{v}(x) \sum_{\mu=1}^{N} \eta_{\mu}(x) \widetilde{f}_{v \mu}(x) . \tag{2.16}
\end{equation*}
$$

In (2.16), the collection of functions

$$
\begin{equation*}
\eta_{\mu}=\eta_{\mu}(x) \quad \mu=1,2, \ldots, N \tag{2.17}
\end{equation*}
$$

determine expansion of a unit (see[2]) in domain $G \in E$ by the covering

$$
\left\{\Omega_{\mu}\right\}_{\mu=1,2, \ldots, N} .
$$

It follows from (2.16) that

$$
\begin{equation*}
\left\|\tilde{f}_{\nu}\right\|_{L_{p}\left(E_{n}\right)} \leq C \sum_{\mu-1}^{N} \xi\left\|\tilde{f}_{\nu, \mu}\right\|_{L_{p}\left(E_{n}\right)} \tag{2.18}
\end{equation*}
$$

We can see that

$$
\left\|\tilde{f}_{v, \mu}\right\|_{L_{p}\left(E_{n}\right)} \leq C \sum_{\left(i=\left(i_{1}, ., i_{s}\right) \in Q\right)} \prod_{k=1}^{s} h_{k}^{\chi_{k, i_{k}}}\|f\|_{L_{p}^{\langle r>}\left(\Omega_{\mu}+\Omega_{\mu} ; s\right)}
$$

The basic inequality

$$
\begin{align*}
\left\|\widetilde{f}_{\nu \mu}\right\|_{L_{p}\left(E_{n}\right)} \leq & C \sum_{\mu-1}^{N} \sum_{\left(i=\left(i_{1}, ., i_{s}\right) \in Q\right)}\left(\prod_{k=1}^{s} h_{k}^{\chi_{k, i_{k}}}\right)\|f\|_{L_{p}^{<r i}\left(\Omega_{\mu}+R_{\delta} \mu ; s\right)} \leq \tag{2.20}\\
& \leq C \sum_{i=\left(i_{1}, \ldots, i_{s}\right) \in Q}\left(\prod_{k=1}^{s} h_{k}^{\chi_{k, i_{k}}}\right)\|f\|_{L_{p}^{<r^{i}>}(G ; s)},
\end{align*}
$$

where $\chi_{k, i_{k}}\left(\right.$ for $\left.i_{k} \neq 0\right)$ are defined by equalities (22) and (for $i_{k}=0$)

$$
\begin{equation*}
\chi_{k, 0}=-\left(v_{k}, \sigma_{k}\right) \quad(k=1,2, \ldots, s) \tag{2.21}
\end{equation*}
$$

for each $i=\left(i_{1}, . ., i_{s}\right) \in Q$ follows from the two inequalities (2.18) and (2.19).
This proves inequalities (2.5) of the theorem.

References

[1]. F.G. Maksudov., A.J. Jabrailov. Methods of integral representations in space theory. Baku, "Elm" 2000. (Russian).
[2]. O.V. Besov., B.L. Il'in., S.M. Nikolskiy. Integral representations of functions and imbedding theorem. Moscow, "Nauka", 1975. (Russian).
[3]. A.J. Jabrailov., S.M.Najafova. Theorems on continuation of functions beyond the domain. Baku, Proc. IMM AN Azerb. XI, pp. 454-5908. (Russian).
[4]. Nikolskiy - Approximation of functions of many variables and imbedding theorems. Moscow, "Nauka" 1972. (Russian).
[5]. S.L. Sobolev. Some applications of functional analysis in mathematical physics. L. LTU, 1950. (Russian).

Suraya M. Najafova

Azerbaijan State Pedogogical University.
34, U. Hajibeyov str., AZ1000, Baku, Azerbaijan
Tel.: (99412) 4933369 (off.)
Received September 29, 2008 ; Revised December 18, 2008:

