Ziyatkhan S. ALIYEV

SOME SPECTRAL PROPERTIES OF A FOURTH ORDER STURM-LIOUVILLE OPERATOR WITH SPECTRAL PARAMETERS IN THE BOUNDARY CONDITION IN THE DISFOCAL CASE

Abstract

In the paper the fourth order Sturm-Liouville problem with spectral parameter in the boundary condition in the disfosal case is considered. The oscillation properties of eigenfunctions are studied, the basicity in the $L_{p}(0, l), 1<p<\infty$, of the system of eigenfunctions of this problem with a single chosen eigenfunction is proved.

Consider the following fourth order Sturm-Liouville problem

$$
\begin{gather*}
y^{(4)}(x)-\left(q(x) y^{\prime}(x)\right)^{\prime}=\lambda y(x), 0<x<l, \quad,:=\frac{d}{d x}, \tag{1}\\
y^{\prime}(0)=0, \tag{2.a}\\
y(0) \cos \beta+T y(0) \sin \beta=0, \tag{2.b}\\
y^{\prime}(l) \cos \gamma+y^{\prime \prime}(l) \sin \gamma=0, \tag{2.c}\\
(a \lambda+b) y(l)-(c \lambda+d) T y(l)=0, \tag{2.d}
\end{gather*}
$$

where

$$
T y=y^{\prime \prime \prime}-q y^{\prime},
$$

and λ is a spectral parameter, q is a absolutely continuous function on $[0, l], \beta, \gamma$, a, b, c, d are real constants, moreover $0 \leq \beta, \gamma \leq \pi / 2, \sigma=b c-a d>0$ and the equation

$$
\begin{equation*}
y^{\prime \prime}-q y=0 \tag{3}
\end{equation*}
$$

is difocal in $[0, l]$, i.e., there is no nontrivial solution of equation (3) such that $y(a)=$ $0=y^{\prime}(b)$ for any disting pair of points a and b in $[0, l]$.

The oscillation properties of eigenfunctions and the basis properties in the space $L_{p}(0, l), 1<p<\infty$, of the eigenfunction system of the problem (1), (2) with $q \geq 0$ is considered in [1].

The subject of the present paper in the study of the oscillation properties of eigenfunctions and the basis property in the spaces $L_{p}(0, l), 1<p<\infty$, of the system of eigenfunctions of the boundary value problem (1), (2).

As in [2-4], for the analysis of the oscillation properties of the spectral problem (1), (2) we shall use a Prüfer transformation of the following form:

$$
\left\{\begin{array}{c}
y(x)=r(x) \sin \psi(x) \cos \theta(x), \tag{4}\\
y^{\prime}(x)=r(x) \cos \psi(x) \sin \varphi(x), \\
y^{\prime \prime}(x)=r(x) \cos \psi(x) \cos \varphi(x), \\
T y(x)=r(x) \sin \psi(x) \sin \theta(x) .
\end{array}\right.
$$

[Z.S.Aliyev]
Equation (1) has an equivalent formulation in the matrix form:

$$
v^{\prime}=M v
$$

where

$$
v=\left(\begin{array}{c}
y \\
y^{\prime} \\
y^{\prime \prime} \\
T y
\end{array}\right), \quad M=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & q & 0 & 0 \\
\lambda & 0 & 0 & 0
\end{array}\right)
$$

Consider the boundary condition

$$
\begin{equation*}
y(l) \cos \delta-T y(l) \sin \delta=0 \tag{*}
\end{equation*}
$$

where $\delta \in[0, \pi)$.
Also we need the following results which is basic in the sequel.
Lemma 1. All the eigenvalues of problem (1), (2.a, b, c, $\left.d^{*}\right)$ for $\delta \in\left[0, \frac{\pi}{2}\right)$ or $\delta=\frac{\pi}{2}, \beta \in\left[0, \frac{\pi}{2}\right)$ are positive.

Proof. Let u be a solution of (3) which satisfies the initial conditions $u(0)=$ $0, u^{\prime}(0)=1$. The disfocal condition of equation (3) implies that $u^{\prime}(x)>0$ in $[0, l]$. Therefore, if h denotes the solution of (3) satisfying the initial conditions $u(0)=c, u^{\prime}(0)=1$, where c is a sufficiently small constant, then we have also $h^{\prime}(x)>0$ on $[0, l]$. Thus $h(x)>0$ in $[0, l]$.

The following substitution [7, theorem 12.1]

$$
\begin{equation*}
t=t(x)=l \omega^{-1} \int_{0}^{x} h(s) d s, \quad \omega=\int_{0}^{l} h(s) d s \tag{5}
\end{equation*}
$$

transform $[0, l]$ into the interval $[0, l]$, and equation (1) into

$$
\begin{equation*}
(\widehat{p} \ddot{y})^{\cdot}=\lambda \widehat{r} y \tag{6}
\end{equation*}
$$

where $\hat{p}=\left(l \omega^{-1} h\right)^{3}, \widehat{r}=l^{-1} \omega h^{-1} ; h(x), y(x)$ are taken as functions of t and $\cdot:=\frac{d}{d t}$. Furtheremore, the following relations are useful in the sequel:

$$
\begin{equation*}
\dot{y}=l^{-1} \omega h^{-1} y^{\prime}, \quad l^{2} \omega^{-2} h^{3} \ddot{y}=h y^{\prime \prime}-h^{\prime} y^{\prime}, \quad \widehat{T} y=\left(\left(l \omega^{-1} h\right)^{3} \ddot{y}\right)=T y \tag{7}
\end{equation*}
$$

It is clear from the second relation (7), that the sign of $y^{\prime \prime}$ is not necessarily preserved after the transformation (7).

In this case the transformed problem is determined by equation (6) and the boundary condition

$$
\begin{gather*}
\dot{y}(0)=0 \\
y(0) \cos \beta+\widehat{T} y(0) \sin \beta=0 \\
\dot{y}(l) \cos \gamma^{*}+\widehat{p}(l) \ddot{y}(l) \sin \gamma^{*}=0 \\
y(l) \cos \delta-\widehat{T} y(l) \sin \delta=0
\end{gather*}
$$

where $\gamma^{*}=\operatorname{arctg} l^{-2} \omega^{2} h^{-1}(l)\left(h(l) \cos \gamma+h^{\prime}(l) \sin \gamma\right)^{-1} \in[0, \pi / 2)$.

It is know that the eigenvalues of (6), $\left(2 . a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ are given by the max-min principle [3, p.220-221] using the Rayleigh quotient

$$
R[y]=\frac{\int_{0}^{l} \widehat{p} \ddot{y}^{2} d t+N[y]}{\int_{0}^{l} \widehat{r} y^{2} d t}
$$

where

$$
N[y]=(y(0))^{2} \operatorname{ctg} \beta+(\dot{y}(l))^{2} \operatorname{ctg} \gamma^{*}+(y(l))^{2} \operatorname{ctg} \delta .
$$

It follows by inspection of the numerator R that zero is an eigenvalue only in the case: $\beta=\delta=\frac{\pi}{2}$. Hence, all the eigenvalues of problem (6), (2. $\left.a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ for $\delta \in\left[0, \frac{\pi}{2}\right)$ or $\delta=\frac{\pi}{2}, \beta \in\left[0, \frac{\pi}{2}\right)$ are positive.

Lemma 1 is proved.
Lemma 2. Let E be the space of solutions of the problem (1), (2.a,b,c). Then $\operatorname{dim} E=1$.

The proof is similar to that of [2, lemma 2] using lemma 1 (see also [6, lemma 2.2]).

Lemma 3 [3, lemma 2.2]. Let $\lambda>0$ and u be a solution of the differential equation (1) for $q \equiv 0$ which satisfies the boundary conditions (2.a, c). If a is a zero of u and $u^{\prime \prime}$ in the open interval $(0, l)$, then $u^{\prime}(x) T u(x)<0$ in a neighbourhood of a. If a is a zero of u^{\prime} or $T u$ in $(0, l)$ then $u(x) u^{\prime \prime}(x)<0$ in a neighborhood of a.

Theorem 1. Let u be a nontrivial solution of the problem (1), (2.a, c) for $\lambda>0$. Then the Jacobian $J[u]=r^{3} \cos \psi \sin \psi$ of the transformation (4) does not vanish in ($0, l$).

Proof. Let u be a nontrivial solution of (1) which satisfies the boundary conditions (2.a,c). Assume first that the corresponding angle ψ satisfies $\psi\left(x_{0}\right)=n \pi$ for some integer n and for some $x_{0} \in(0, l)$. Then the transformation (4) implies that $u\left(x_{0}\right)=T u\left(x_{0}\right)=0$. Using the transformation (7), the solution u of (6) also satisfies $u\left(t_{0}\right)=\widehat{T} y\left(t_{0}\right)=0$, where $t_{0}=l^{-1} \omega \int_{0}^{x_{0}} h(s) d s \in(0, l)$. However, this is incompartible with the conclusion of lemma 3.

Now assume for the solution u, the corresponding angle ψ satisfies $\psi\left(x_{0}\right)=m \pi / 2$ for some integer m and for some $x_{0} \in(0, l)$. Then the transformation (4) implies that $u^{\prime}\left(x_{0}\right)=u^{\prime \prime}\left(x_{0}\right)=0$. Using the transformation (7), the solution u of (6) also satisfies $\dot{u}\left(t_{0}\right)=\ddot{u}\left(t_{0}\right)=0$, where $t_{0}=l^{-1} \omega \int_{0}^{x_{0}} h(s) d s \in(0, l)$. Lemma 3 with these conditions yields a contradiction.

Theorem 1 is proved.
Let $y(x, \lambda)$ be a nontrivial solution of the problem (1), (2.a,b,c) for $\lambda>0$ and $\theta(x, \lambda), \varphi(x, \lambda)$ the corresponding functions in (4). Without loss of generality we can define the initial values of these functions as follows (see [4, theorem 3.3]):

$$
\theta(0, \lambda)=\beta-\frac{\pi}{2}, \varphi(0, \lambda)=0
$$

With obvious modifications, the results stated in [4] are true for solution of the system (1), (2.a, b, c, $\left.d^{\prime}\right)$. In particular we have the following results.

Theorem 2. $\theta(l, \lambda)$ is a strictly increasing continuous function of λ.
Theorem 3. The eigenvalues of the boundary value problem (1), (2.a, b, c, $\left.d^{*}\right)$ for $\delta \in\left[0, \frac{\pi}{2}\right]$ (except the case $\beta=\delta=\pi / 2$) form an infinite increasing sequence $\left\{\lambda_{n}(\delta)\right\}_{n=1}^{\infty}$ such that $0<\lambda_{1}(\delta)<\lambda_{2}(\delta)<\ldots<\lambda_{n}(\delta)<\ldots$, and in addition

$$
\theta\left(l, \lambda_{n}(\delta)\right)=(2 n-1) \pi / 2-\delta, n \in \mathbb{N} .
$$

Moreover, the eigenfunction $v_{n}^{(\delta)}(x)$ corresponding to the eigenvalue $\lambda_{n}(\delta)$ has $n-1$ simple zeros in the interval $(0, l)$.

Remark 1. In the case $\beta=\delta=\frac{\pi}{2}$ the first eigenvalue of boundary value problem (1), $\left(2 . a, b, c, d^{*}\right)$ is equal to zero and the corresponding eigenfunction is constant; the statement of theorem 3 is true at $n \geq 2$.

Obviously, the eigenvalues $\lambda_{n}(\delta)$ problem (1), $\left(2 . a, b, c, d^{*}\right), \delta \in\left[0, \frac{\pi}{2}\right]$ are zeros of the entire function $y(l, \lambda) \cos \delta-T y(l, \lambda) \sin \delta$. We set $\mu_{n}=\mu_{n}(0)$ and $\nu_{n}=$ $\mu_{n}\left(\frac{\pi}{2}\right), n \in \mathbb{N}$. Note that the function $F(\lambda)=T y(l, \lambda) / y(l, \lambda)$ is defined for $\lambda \in D=(\mathbb{C} \backslash \mathbb{R}) \cup\left(\bigcup_{n=1}^{\infty}\left(\mu_{n-1}, \mu_{n}\right)\right)$, where $\mu_{0}=-\infty$.

Lemma 4. (see [2, lemma 5]). Let $\lambda \in D$. Then following relation holds:

$$
\frac{d F(\lambda)}{d \lambda}=\frac{1}{y^{2}(l, \lambda)} \int_{0}^{l} y^{2}(x, \lambda) d x>0
$$

In equation (1) we set $\lambda=\rho^{4}$. As is known (see [8], ch II, $\S 4.5$, theorem 1), in each subdomain T of the complex ρ-plane equation (1) has four linearly independent solutions $z_{k}(x, \rho), k=\overline{1,4}$, regular in ρ (for sufficiently ρ) and satisfying the relations

$$
\begin{equation*}
z_{k}^{(s)}(x, \rho)=\left(\rho \omega_{k}\right)^{s} e^{\rho \omega_{k} x}\left[1+O\left(\frac{1}{\rho}\right)\right], k=\overline{1,4}, s=\overline{0,3} \tag{8}
\end{equation*}
$$

where $\omega_{k}, k=\overline{1,4}$, are the distinct 4th roots of unity.
By brevity, we introduce the notation $s\left(\delta_{1}, \delta_{2}\right) \equiv \operatorname{sgn} \delta_{1}+\operatorname{sgn} \delta_{2}$.
Using relations (8) and taking account of boundary conditions (2.a,b,c) we obtain

$$
\begin{align*}
& y(x, \lambda)=\left\{\begin{array}{l}
{\left[\sin \left(\rho x+\frac{\pi}{2} \operatorname{sgn} \beta\right)-\cos \left(\rho x+\frac{\pi}{2} s(\beta, \gamma)\right) e^{\rho(x-l)}\right] \times} \\
\times\left(1+O\left(\frac{1}{\rho}\right)\right), \text { if } \beta \in\left(0, \frac{\pi}{2}\right], \\
{\left[\sin \left(\rho x-\frac{\pi}{4}\right)-e^{-\rho x}+(-1)^{1-s g n \gamma} \times\right.} \\
\left.\times \sqrt{2} \sin \left(\rho l+\frac{\pi}{4}(-1)^{\operatorname{sgn\gamma }}\right) e^{\rho(x-l)}\right]\left(1+O\left(\frac{1}{\rho}\right)\right), \text { if } \beta=0,
\end{array}\right. \tag{9}\\
& T y(x, \lambda)=\left\{\begin{array}{l}
-\rho^{3}\left[\cos \left(\rho x+\frac{\pi}{2} \operatorname{sgn} \beta\right)+\cos \left(\rho l+\frac{\pi}{2} s(\beta, \gamma)\right) e^{\rho(x-l)}\right] \\
\left(1+O\left(\frac{1}{\rho}\right)\right), \text { if } \beta \in\left(0, \frac{\pi}{2}\right], \\
-\rho^{3}\left[\sin \left(\rho x+\frac{\pi}{4}\right)-e^{-\rho x}-(-1)^{1-s g n \gamma} \times\right. \\
\left.\times \sqrt{2} \sin \left(\rho l+\frac{\pi}{4}(-1)^{\operatorname{sgn\gamma } \gamma}\right) e^{\rho(x-l)}\right]\left(1+O\left(\frac{1}{\rho}\right)\right), \\
\text { if } \beta=0 .
\end{array}\right. \tag{10}
\end{align*}
$$

Remark 2. As an immediate consequence of (9), we obtain the number of zeros in the interval $(0, l)$ of the function $y(x, \lambda)$ tends to ∞ as $\lambda \rightarrow \pm \infty$.

By taking into account relation (9) and (10), we obtain the asymptotic formulas

$$
F(\lambda)=\left\{\begin{array}{l}
(\sqrt{2})^{1-2 \operatorname{sgn} \gamma} \rho^{3} \frac{\cos \left(\rho l+\frac{\pi}{2} \operatorname{sgn} \beta+\frac{\pi}{4} \operatorname{sgn} \gamma\right)}{\cos \left(\rho l+\frac{\pi}{2} \operatorname{sgn} \beta+\frac{\pi}{4}(1+\operatorname{sgn} \gamma)\right)} \times \tag{11}\\
\left(1+O\left(\frac{1}{\rho}\right)\right), \text { if } \beta \in\left(0, \frac{\pi}{2}\right] \\
(\sqrt{2})^{1-2 \operatorname{sgn\gamma }} \rho^{3} \frac{\cos \left(\rho l+\frac{\pi}{4}(\operatorname{sgn} \gamma-1)\right)}{\cos \left(\rho l+\frac{\pi}{4} \operatorname{sgn} \gamma\right)} \times \\
\left(1+O\left(\frac{1}{\rho}\right)\right), \text { if } \beta=0 .
\end{array}\right.
$$

Furthermore, we have

$$
\begin{equation*}
F(\lambda)=-(\sqrt{2})^{1-2 \operatorname{sgn} \gamma} \sqrt[4]{|\lambda|^{3}}\left(1+O\left(\frac{1}{\sqrt[4]{|\lambda|}}\right)\right), \text { as } \lambda \rightarrow-\infty . \tag{12}
\end{equation*}
$$

We define numbers τ, ν, α_{n} and $\beta_{n}, n \in \mathbf{N}$, and a function $\varphi(x, t), x \in$ $[0, l], t \in \mathbf{R}$, as follows:

$$
\left.\begin{array}{c}
\tau=\left\{\begin{array}{l}
3(1+s(\beta, \delta)) / 4-1, \text { if } \gamma \in\left(0, \frac{\pi}{2}\right], \\
5 / 4-3 / 8\left((-1)^{\operatorname{snn} \beta}+(-1)^{\operatorname{sgn} \delta}\right)-1, \text { if } \gamma=0,
\end{array}\right. \\
\nu=\left\{\begin{array}{l}
3(1+s(\beta,|c|)) / 4, \quad \text { if } \gamma \in\left(0, \frac{\pi}{2}\right], \\
5 / 4-3 / 8\left((-1)^{\operatorname{sgn} \beta}+(-1)^{\operatorname{sgn}|c|}\right), \text { if } \gamma=0,
\end{array}\right. \\
\alpha_{n}=(n-\tau) \frac{\pi}{l}, \beta_{n}=(n-\nu) \frac{\pi}{l},
\end{array}\right\} \begin{aligned}
& \sin \left(t x+\frac{\pi}{2} \operatorname{sgn} \beta\right)-\cos \left(t l+\frac{\pi}{2} s(\beta, \gamma)\right) e^{-t(l-x)}, \\
& \text { if } \beta \in\left(0, \frac{\pi}{2}\right] \\
& \sqrt{2} \sin \left(t x-\frac{\pi}{4}\right)+e^{-t x}+(-1)^{1-\operatorname{sgn} \gamma} \sqrt{2} \sin \left(t l+(-1)^{\operatorname{sgn}\left(\frac{\pi}{4}\right)} \begin{array}{c}
-t(l-x) \\
\text { if } \beta=0 .
\end{array}\right.
\end{aligned}
$$

By virtue [1, theorem 3.1] one has the asymptotic formulas

$$
\begin{gather*}
\sqrt[4]{\lambda_{n}(\delta)}=\alpha_{n}+O\left(\frac{1}{n}\right), \tag{13}\\
v_{n}^{(\delta)}(x)=\varphi\left(x, \alpha_{n}\right)+O\left(\frac{1}{n}\right), \tag{14}
\end{gather*}
$$

where relation (14) holds uniformly for $x \in[0, l]$.
By (12) we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow-\infty} F(\lambda)=-\infty \tag{15}
\end{equation*}
$$

Remark 3. It follows by theorem 3, lemma 4 and relation (15) that if $\lambda<0$ or $\lambda=0$ and $\beta \in[0, \pi / 2)$, then $F(\lambda)=\frac{T y(l, \lambda)}{y(l, \lambda)}<0$; besides, if $\lambda=0$ and $\beta=\pi / 2$, then $T y(l, \lambda)=0$.

Lemma 5. If $\lambda \geq 0$ and $\lambda \in\left(\mu_{n-1}, \mu_{n}\right], n \in \mathbf{N}$, then $m(\lambda)=n-1$.
[Z.S.Aliyev]
The proof is similar to that of [2, theorem 4] using theorem 2 and remark 3.
Theorem 4. The eigenvalues of spectral problem (1), (2.a,b, c, d^{*}) for $\delta \in$ $\left(\frac{\pi}{2}, \pi\right)$ form the infinitely increasing sequence $\left\{\mu_{n}(\delta)\right\}_{n=1}^{\infty}$, such that $\mu_{n}(\delta)>0$ for $n \geq 2$. Besides
a) the eigenfunction $y_{n}^{(\delta)}(x)$, corresponding to the eigenvalue $\mu_{n}(\delta) \geq 0$ has exactly $(n-1)$ simple zeros in the interval $(0, l)$;
b) if $\beta \in\left[0, \frac{\pi}{2}\right)$, then $\mu_{1}(\delta)>0$ for $\delta \in\left(\frac{\pi}{2}, \delta_{0}\right) ; \mu_{1}(\delta)=0$ for $\delta=\delta_{0} ; \mu_{1}(\delta)<$ 0 for $\delta \in\left(\delta_{0}, \pi\right)$, where $\delta_{0}=\operatorname{arctgTy}(l, 0) / y(l, 0)$;
c) if $\beta=\frac{\pi}{2}$, then $\lambda_{1}(\delta)<0$.

The proof parallels the proof of theorem 4 [2] using theorems 1,2,3 and lemmas 4,5.

The following non-selfadjoint boundary value problem

$$
\begin{gather*}
y^{(4)}(x)-\left(q(x) y^{\prime}(x)\right)^{\prime}=\lambda y(x), x \in(0, l) \\
y(0)=y^{\prime}(0)=T y(0)=y^{\prime}(l) \cos \gamma+y^{\prime \prime}(l) \sin \gamma=0 \tag{**}
\end{gather*}
$$

has an infinite set of non-positive eigenvalues ρ_{n} tending to $-\infty$ and satisfying the asymptote

$$
\lambda_{n}=-\left(n-\frac{1}{4}(1+\operatorname{sgn} \gamma)\right)^{4} \frac{\pi^{4}}{l^{4}}+o\left(n^{4}\right), n \rightarrow \infty
$$

Remark 4. The number of zeros of the eigenfunction $y_{1}^{(\delta)}(x)$ corresponds to an eigenvalue $\mu_{1}(\delta)<0$ can be arbitrary. Really, as $\mu_{1}(\delta)<0$ varies, new zeros of the corresponding eigenfunction $y_{1}^{(\delta)}(x)$ enter to the interval $(0, l)$ only through the endpoint $x=0$, since $y_{1}^{(\delta)}(1) \neq 0$ by theorem 3 , and hence the number $m\left(\mu_{1}(\delta)\right)$ of its zeros in $(0, l)$, in the case $\beta \in\left(0, \frac{\pi}{2}\right]$, is asymptotically equivalent to the number of the eigenvalues of problem (1), $\left(2^{* *}\right)$ which are upper than $\mu_{1}(\delta)$. In the case $\beta=0$ see $[6, \S 5$, theorem 5.3].

For $c \neq 0$, we find a positive integer N form the inequality $\mu_{N-1}<-d / c \leq \mu_{N}$.
Theorem 5. The eigenvalues of the boundary value problem (1), (2) form an infinitely increasing sequence $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots$, moreover, $\lambda_{n}>0$ for $n \geq 3$. The corresponding eigenfunctions $y_{1}(x), y_{2}(x), \ldots, y_{n}(x), \ldots$ have the following oscillation properties:
(a) if $c=0$, then $y_{n}(x), n \geq 2$ has exactly $n-1$ simple zeros; the number of zeros of the eigenfunction $y_{1}(x)$ is equal to zero in the case $\lambda_{1} \geq 0$, can be arbitrary in the case $\lambda_{1}<0$.
(b) if $c \neq 0$, then $y_{n}(x)$ has exactly $n-1$ simple zeros for $n \leq N$ and exactly $n-2$ simple zeros for $n>N$ in the interval $(0, l)$, in the case $\lambda_{n} \geq 0$; if λ_{1} or λ_{1}, λ_{2} be negative, then the number of zeros of the eigenfunctions $y_{1}(x)$ or $y_{1}(x), y_{2}(x)$ can be arbitrary.

The proof parallels the proof of theorem 2.2 [1] using remark 4.
Theorem 6. [1, theorem 3.1]. One has the asymptotic formulas

$$
\begin{equation*}
\sqrt[4]{\lambda_{n}}=\beta_{n}+O\left(\frac{1}{n}\right) \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
y_{n}(x)=\varphi\left(x, \beta_{n}\right)+O\left(\frac{1}{n}\right), \tag{17}
\end{equation*}
$$

where relation (17) holds uniformly for $x \in[0, l]$.
We denote by (B.C.) the set of separated boundary conditions $(2 . a, b, c)$.
The spectral problem (1), (2) reduced to a problem on eigenvalues for the linear operator L in Hilbert space $H=L_{2}(0, l) \oplus \mathbf{C}$ with scalar product

$$
(\hat{y}, \hat{u})=(\{y, m\},\{u, s\})=(y, u)_{L_{2}}+\sigma^{-1} m \bar{s},
$$

where $(y, u)_{L_{2}}=\int_{0}^{l} y \bar{u} d x$,

$$
L \hat{y}=L\{y, m\}=\left\{(T y)^{\prime}(x), d T y(l)-b y(l)\right\},
$$

with the domain

$$
\begin{gathered}
D(L)=\left\{\hat{y}=\{y, m\} \in H: y(x) \in W_{2}^{4}(0, l)\right. \\
\left.(T y)^{\prime} \in L_{2}(0, l), y \in(\text { B.C. }), m=a y(l)-c T y(l)\right\}
\end{gathered}
$$

that is dense in H [9].
Obviously, the operator L is well defined. By immediate verification we conclude that problem (1), (2) is equivalent to the following spectral problem

$$
\begin{equation*}
L \hat{y}=\lambda \hat{y}, \hat{y} \in D(L), \tag{18}
\end{equation*}
$$

i.e., the eigenvalues λ_{n} of problem (1), (2) and those of problem (18) coincide, moreover, there exists a corresponding between the eigenfunctions

$$
\hat{y}=(y(x), m) \longleftrightarrow y(x) .
$$

The operator L will be self-adjoint, discrete, semibounded from below in H and so possesses by system of eigenvectors $\left\{y_{n}(x), m_{n}\right\}_{n=1}^{\infty}$ that forms orthogonal basis in H, where $y_{n}(x), n \in \mathbf{N}$, are eigenfunctions of problem (1), (2) and $m_{n}=a y_{n}(l)-c T y_{n}(l)$.

The eigenvalues $\nu_{n}, n \in \mathbf{N}$, of the boundary value problem (1), (2.a, $\left.b, c, d^{*}\right)$ for $\delta=\frac{\pi}{2}$ are zeros of the function $F(\lambda)$. In similar way (see the proof of theorem 2.2 [1]), one can show that the equation $F(\lambda)=0$ has the unique solution $\nu_{n}=\lambda_{n}\left(\frac{\pi}{2}\right)$ in each interval $\left(\mu_{n-1}, \mu_{n}\right)$. Consequently,

$$
\begin{equation*}
\mu_{n-1}<\nu_{n}<\mu_{n}, n \in \mathbf{N} . \tag{19}
\end{equation*}
$$

Lemma 6. $m_{n}=a y_{n}(l)-c T y_{n}(l) \neq 0$ for $n \in \mathbf{N}$.
Proof. Let $m_{k}=0$, where k be some positive integer. If $c \neq 0$, then $T y_{k}(l)=$ $\frac{a}{c} y_{k}(l)$. In view of (2.d) we have $\frac{\sigma}{c} y_{k}(l)=0$. Since $\sigma>0$, it follows that $y_{k}(l)=0$. Hence $T y_{k}(l)=0$. If $c=0$, then $a d \neq 0$, consequently $y_{k}(l)=0$. By (2.d) we obtain $T y_{k}(l)=0$. Hence, $y_{k}(l)=T y_{k}(l)=0$, which contradicts the relation (19). Lemma 7 is proved.
[Z.S.Aliyev]
Let $\delta_{n}=\left(\left\|y_{n}\right\|_{2}^{2}+m_{n}^{2} / \sigma\right)^{\frac{1}{2}}$, where $\|\cdot\|_{p}$ is the norm in $L_{p}(0, l)$. Then the system $\left\{\hat{v}_{n}\right\}_{n=1}^{\infty}, \hat{v}_{n}=\frac{1}{\delta_{n}} \hat{y}_{n}$ is a orthonormal basis in the space H. Then for any vector $\hat{f}=\{f, \tau\}$ it holds the expression

$$
\begin{aligned}
f=\{f, \tau\}= & \sum_{n=1}^{\infty}\left(\hat{f}, \hat{v}_{n}\right) \hat{v}_{n}=\sum_{n=1}^{\infty}\left(\{f, \tau\},\left\{v_{n}, s_{n}\right\}\right)\left\{v_{n}, s_{n}\right\}= \\
& =\sum_{n=1}^{\infty}\left(\left(f, v_{n}\right)_{L_{2}}+\sigma^{-1} \tau s_{n}\right)\left\{v_{n}, s_{n}\right\},
\end{aligned}
$$

whence the equalities

$$
\begin{align*}
f & =\sum_{n=1}^{\infty}\left(\left(f, v_{n}\right)_{L_{2}}+\sigma^{-1} \tau s_{n}\right) v_{n} \tag{20}\\
\tau & =\sum_{n=1}^{\infty}\left(\left(f, v_{n}\right)_{L_{2}}+\sigma^{-1} \tau s_{n}\right) s_{n} \tag{21}
\end{align*}
$$

follow, where $s_{n}=\frac{m_{n}}{\delta_{n}}, n \in \mathbf{N}$.
Let $\tau=0$. Then from (20) and (21) we get, respectively,

$$
\begin{align*}
f & =\sum_{n=1}^{\infty}\left(f, v_{n}\right)_{L_{2}} v_{n}, \tag{22}\\
0 & =\sum_{n=1}^{\infty}\left(f, v_{n}\right)_{L_{2}} s_{n} . \tag{23}
\end{align*}
$$

Let r be an arbitrary fixed natural numbers. By lemma 6 we have $s_{r} \neq 0$. Then in view of (23) we obtain

$$
\begin{equation*}
\left(f, v_{r}\right)_{L_{2}}=-\frac{1}{s_{r}} \sum_{\substack{n=1 \\ n \neq r}}^{\infty}\left(f, v_{n}\right)_{L_{2}} s_{n} \tag{24}
\end{equation*}
$$

Taking into account (24), from (22) we get

$$
\begin{gather*}
f=\sum_{\substack{n=1 \\
n \neq r}}^{\infty}\left(f, v_{n}\right)_{L_{2}}\left(v_{n}-\frac{s_{n}}{s_{r}} v_{r}\right)=\sum_{\substack{n=1 \\
n \neq r}}^{\infty}\left(f, y_{n}\right)_{L_{2}}\left(\frac{1}{\delta_{n}} v_{n}-\frac{s_{n}}{\delta_{n} s_{r}} v_{r}\right)= \\
=\sum_{\substack{n=1 \\
n \neq r}}^{\infty}\left(f, y_{n}\right)_{L_{2}}\left(\frac{y_{n}}{\delta_{n}^{2}}-\frac{m_{n}}{\delta_{n}^{2} m_{r}} y_{r}\right) . \tag{25}
\end{gather*}
$$

We have

$$
\begin{gathered}
\left(y_{n}, \frac{y_{k}}{\delta_{k}^{2}}-\frac{m_{k}}{\delta_{k}^{2} m_{r}} y_{r}\right)=\frac{1}{\delta_{k}^{2}}\left(y_{n}, y_{k}\right)-\frac{m_{k}}{\delta_{k}^{2} m_{r}}\left(y_{n}, y_{r}\right)= \\
=\frac{1}{\delta_{k}^{2}}\left\{\left(y_{n}, y_{k}\right)-\frac{m_{k}}{m_{r}}\left(y_{n}, y_{r}\right)\right\}=\frac{1}{\delta_{k}^{2}}\left[\left\{\left(\hat{y}_{n}, \hat{y}_{k}\right)-\sigma^{-1} m_{n} m_{k}\right\}-\right.
\end{gathered}
$$

$\overline{\text { [Some spectral properties of a fourth order...] }}^{21}$

$$
\begin{aligned}
\left.-\frac{m_{k}}{m_{r}}\left\{\left(\hat{y}_{n}, \hat{y}_{r}\right)-\sigma^{-1} m_{n} m_{r}\right\}\right] & =\frac{1}{\delta_{k}^{2}}\left[\delta_{n} \delta_{k} \delta_{n_{k}}-\sigma^{-1} m_{n} m_{k}+\frac{m_{k}}{m_{r}} \sigma^{-1} m_{n} m_{r}\right]= \\
& =\frac{\delta_{n}}{\delta_{k}} \delta_{n k}=\delta_{n k}
\end{aligned}
$$

where $\delta_{n k}$ is the Kronecker delta, i.e., the system

$$
\left\{u_{n}(x)\right\}_{n=1, n \neq r}^{\infty}, u_{n}(x)=\frac{1}{\delta_{n}^{2}}\left\{y_{n}(x)-\frac{m_{n}}{m_{r}} y_{r}(x)\right\}
$$

is conjugate to the system $\left\{y_{n}(x)\right\}_{n=1, n \neq r}^{\infty}$. Hence, the system $\left\{u_{n}(x)\right\}_{n=1, n \neq r}^{\infty}$ is a Riesz basis in $L_{2}(0, l)$. Then the system $\left\{y_{n}(x)\right\}_{n=1, n \neq r}^{\infty}$ is also Riesz basis in the space $L_{2}(0, l)$.

Thus, we proved the following
Theorem 7. Let r be an arbitrary natural number. Then the system $\left\{y_{n}(x)\right\}_{n=1, n \neq r}^{\infty}$ forms a Riesz in $L_{2}(0, l)$.

Lemma 7 [1, lemma 4.1]. One has the asymptotic formula

$$
u_{n}(x)=l^{-1} y_{n}(x)+O\left(\frac{1}{n}\right) .
$$

Theorem 8. Let r be an arbitrary fixed natural number. Then the system $\left\{y_{n}(x)\right\}_{n=1, n \neq r}^{\infty}$ is a basis in the space $L_{p}(0, l), 1<p<\infty$.

The proof parallels the proof of theorem 5.1 [1] using theorems 5,6,7 and lemma 7.

References

[1]. Kerimov N.B., Aliyev Z.S. On the basis property of the system of eigenfunctions of a spectral problem with spectral parameter in the boundary condition. Differentsial'uye Uravneniya, 2007, vol.43, No7, pp. 886-895.
[2]. Kerimov N.B., Aliyev Z.S. On oscillation properties of the eigenfunctions of a fourth order differential operator. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.Techn. Math. Sci., 2005, v.XXV, pp.63-76
[3]. Banks D.O., Kurovski G.J. A prufer transformation for the equation of a vibrating beam. Amer. Math. Soc., 1974, v.199, pp. 203-222.
[4]. Banks D.O., Kurovski G.J. A prufer transformation for the equation of a vibrating beam subject to axial forces. J.Different. Equat., 1977, v.25, pp. 57-74.
[5]. Gelfand J.M., Fomin S.V. Calculus of variations. M., 1961, 228 p.
[6]. J.Ben Amara. Sturm theory for the equation of vibrating beam. J.Math. Anal. and Appl., 2009, v.349, pp.1-9.
[7]. Leighton W., Nehari Z. On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. AMS, 1958, v.98, pp. 325-377.
[8]. Naymark M.A. Linear differential operators. M., Nauka, 1969, 528 p.
[9]. Shkalikov A.A. Boundary value problems for ordinary differential equations with a parameter in the boundary conditions. Trudy Sem. Petrovsk., 1983, v.9, pp. 190-229.

Ziyatkhan S. Aliyev

Baku State University,
23, Z.Khalilov str., AZ1148, Baku, Azerbaijan
Tel: (99412) 4380582 (off.)
E-mail: z_aliyev@mail.ru
Received September 08, 2008; Revised November 28, 2008.

