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SOME SPECTRAL PROPERTIES OF A FOURTH

ORDER STURM-LIOUVILLE OPERATOR WITH

SPECTRAL PARAMETERS IN THE BOUNDARY
CONDITION IN THE DISFOCAL CASE

Abstract

In the paper the fourth order Sturm-Liouville problem with spectral parame-
ter in the boundary condition in the disfosal case is considered. The oscillation
properties of eigenfunctions are studied, the basicity in the L, (0,1), 1 < p < oo,
of the system of eigenfunctions of this problem with a single chosen eigenfunc-
tion is proved.

Consider the following fourth order Sturm-Liouville problem

d

y(4) (:C)— (Q(x)y/(x)),:/\y(x)’ 0<$<l7 ! = %7 (1)
Y (0) =0, (2.0)

y(0)cos B+ Ty (0)sin 5 = 0, (2.b)

y' () cosy + 9" (I)siny = 0, (2.c)

(@A +b)y () — (eA+d)Ty(l) =0, (2.d)

where
Ty=y" —qy,

and A is a spectral parameter, ¢ is a absolutely continuous function on [0,!], 3, v,
a, b, ¢, d are real constants, moreover 0 < 3,7 < 7/2, 0 = bec — ad > 0 and the
equation

y' —qy=0 (3)

is difocal in [0, ], i.e., there is no nontrivial solution of equation (3) such that y (a) =
0 =y (b) for any disting pair of points a and b in [0,1].

The oscillation properties of eigenfunctions and the basis properties in the space
L,(0,1), 1 < p < oo, of the eigenfunction system of the problem (1), (2) with ¢ > 0
is considered in [1].

The subject of the present paper in the study of the oscillation properties of
eigenfunctions and the basis property in the spaces L, (0,1), 1 < p < oo, of the
system of eigenfunctions of the boundary value problem (1), (2).

As in [2-4], for the analysis of the oscillation properties of the spectral problem
(1), (2) we shall use a Priifer transformation of the following form:

y(x) =r(z)siny (x)cosh (x),
Yy (x) =71 (x)cost) (z)sing (), (@)
y" (z) =r(2) cos ¢ (x) cos p (),
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Equation (1) has an equivalent formulation in the matrix form:

v = Muv
where

Y 0100
/

_ Y 0010

Sl ] MTlogoo
Ty A0 00

Consider the boundary condition

y(l)cosd — Ty (l)sind =0, (2d¥)

where § € [0, 7).

Also we need the following results which is basic in the sequel.

Lemma 1. All the eigenvalues of problem (1), (2.a,b,c,d*) for § € [0, g) or
=73, B€E [0, %) are positive.

Proof. Let u be a solution of (3) which satisfies the initial conditions u (0) =
0, v/ (0) = 1. The disfocal condition of equation (3) implies that v’ (z) > 0 in
[0,1]. Therefore, if h denotes the solution of (3) satisfying the initial conditions
u(0) = ¢, v/ (0) = 1, where ¢ is a sufficiently small constant, then we have also
h' (z) >0 on [0,{]. Thus h(z) > 0 in [0,].

The following substitution [7, theorem 12.1]

T

l
t:t(:v):lw_l/h(s)ds, w:/h(s)ds, (5)
0

0

transform [0, /] into the interval [0,[], and equation (1) into
(Pij)™ = Ary, (6)

where p = (lwilh)g, 7 = 1"'wh™Y h(z),y(x) are taken as functions of ¢ and

= Furtheremore, the following relations are useful in the sequel:

g =1 wh Yy, Pw 2K = hy' — by, Ty= ((zwlh)?’y)' —Ty. (7)

It is clear from the second relation (7), that the sign of ¥ is not necessarily preserved
after the transformation (7).

In this case the transformed problem is determined by equation (6) and the

boundary condition

y (0) = 07 (2.0/

y (0) cos B + Ty (0)sin 8 = 0, 2.0/

y (1) cosy™ +p (1) 3 (1) siny” = 0, (2.¢

y (1) cosd — Ty (I)sind =0, (2d’

where v* = arctgl=2w2h 1 (1) (h (1) cosy + k' (1) sin~) ™" € [0,7/2).
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It is know that the eigenvalues of (6), (2.a/,b',¢,d’) are given by the max-min
principle [3, p.220-221] using the Rayleigh quotient
l

/ piPdt + N [y]

=
=
I

where )

Nyl =y (0)etgs+ (5(1) ctgr* + (y (1)) ctd.
It follows by inspection of the numerator R that zero is an eigenvalue only in the case:
B=06= g Hence, all the eigenvalues of problem (6), (2.a',, ¢, d’) for § € [0, %)
ord =75, B € [O, g) are positive.

Lemma 1 is proved.

Lemma 2. Let E be the space of solutions of the problem (1), (2.a,b,c). Then
dim F = 1.

The proof is similar to that of [2, lemma 2| using lemma 1 (see also [6, lemma
2.9)).

Lemma 3 [3, lemma 2.2]. Let A > 0 and u be a solution of the differential
equation (1) for ¢ = 0 which satisfies the boundary conditions (2.a,c). If a is a zero
of w and u” in the open interval (0,1), then u' (x) Tu (xz) < 0 in a neighbourhood of
a. If ais a zero of ' or Tu in (0,1) then u (z)u” (x) <0 in a neighborhood of a.

Theorem 1. Let u be a nontrivial solution of the problem (1), (2.a,c) for A > 0.
Then the Jacobian J[u] = r3cosvsine of the transformation (4) does not vanish
in (0,1).

Proof. Let u be a nontrivial solution of (1) which satisfies the boundary con-
ditions (2.a,c). Assume first that the corresponding angle v satisfies ¢ (zg) = nw
for some integer n and for some zy € (0,l). Then the transformation (4) implies
that u (z9) = Tu (z¢) = 0. Using the transformation (7), the solution u of (6) also

g
satisfies u (tp) = Ty (to) = 0, where ty = llw/h(s) ds € (0,1). However, this is
0
incompartible with the conclusion of lemma 3.
Now assume for the solution u, the corresponding angle v satisfies ¢ (xg) = mn/2
for some integer m and for some xg € (0,1). Then the transformation (4) implies

that v’ (zg) = u” (z¢) = 0. Using the transformation (7), the solution u of (6) also
@

satisfies u (tg) = ii (tp) = 0, where to = l_lw/h (s)ds € (0,1). Lemma 3 with these
conditions yields a contradiction. "

Theorem 1 is proved.

Let y (x,A) be a nontrivial solution of the problem (1), (2.a,b,c) for A > 0 and
0 (z,\), ¢ (x,\) the corresponding functions in (4). Without loss of generality we
can define the initial values of these functions as follows (see [4, theorem 3.3]):

H(O,A):ﬂ—g, ¢ (0,\) =0.
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With obvious modifications, the results stated in [4] are true for solution of the
system (1), (2.a,b,c,d'). In particular we have the following results.
Theorem 2. 6 (I, \) is a strictly increasing continuous function of A.
Theorem 3. The eigenvalues of the boundary value problem (1),(2.a,b,c,d*)
for 6 € [0,%] (except the case B =& = w/2) form an infinite increasing sequence
{Mn (0)}52 such that 0 < A1 (0) < A2 (0) < ... < My () < ..., and in addition

(L, A (0)=(02n—1)7w/2 -0, neN.
(9)

Moreover, the eigenfunction vy’ (x) corresponding to the eigenvalue A, (0) has
n — 1 simple zeros in the interval (0,1).

Remark 1. In the case 8 = J§ = § the first eigenvalue of boundary value
problem (1),(2.a,b,c,d*) is equal to zero and the corresponding eigenfunction is
constant; the statement of theorem 3 is true at n > 2.

Obviously, the eigenvalues Ay (6) problem (1), (2.a,b,¢,d*), 6 € [0,75] are zeros
of the entire function y (I, \)cosd — Ty (I, \)sind. We set un = u, (0) and v, =
tn (3), n € N. Note that the function F (X) = Ty (l,\) /y (I, \) is defined for

2eD=@RIU( T (i 1oma) ). where iy = .
Lemma 4. (see [2, lemma 5]). Let A € D. Then following relation holds:

l

dFd /ny)\da:>0

0

In equation (1) we set A = p*. As is known (see [8], ch II, §4.5, theorem 1), in
each subdomain T' of the complex p-plane equation (1) has four linearly indepen-
dent solutions z (z,p), k = 1,4, regular in p (for sufficiently p) and satisfying the
relations

S S WL L 1
2 (2, ) = (puog)” e [1+o<p)]7 k=T4 s=03 ®)

where wy, k = 1,4, are the distinct 4th roots of unity.

By brevity, we introduce the notation s (d1,d2) = sgnd; + sgnds.

Using relations (8) and taking account of boundary conditions (2.a,b,c) we ob-
tain

[sin (pz + ZsgnB) — cos (pz + Z5(8,7)) e/=V] x
x(1+0(1)), i pe (03],
PO ZY Jsin (oo — 5) = e 4 (1)1 x )
Zsin (pl + 5 (1)) e V] (140(1)) , it 5 =0,
—p? [cos (pz + FsgnfB) + cos (pl + 55 (B,7)) ep(x*l)]
(1+C)GJ>,1£66(,§],
~ [sin (g -+ ) — et = (-1)17 x (10

x Vasin (pl + 5 (1)) 2] (140 (1)),
i =0,

Ty (x,\)
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Remark 2. As an immediate consequence of (9), we obtain the number of zeros
in the interval (0,[) of the function y (x, \) tends to co as A — $oc.
By taking into account relation (9) and (10), we obtain the asymptotic formulas

1—-2sgny 3 COS (Pl + E‘Sgnﬂ + %Sgnly)
2
(\[) cos (pl + Ssgnf + T (1 4 sgny))

(1+ (7)>,1fﬁ€( 5]
F(\) = (\/Q)l 2sgmy 3cos (pl +Z (sgn’y - 1)) % -
cos (pl + 489”’7)

\ (1+0(%)), if 3=0.

Furthermore, we have

F\) =— (\/5)1_2””7 W (1 +0 ({l/lm» , as A — —oo. (12)

We define numbers 7, v, «, and §,, n € N, and a function ¢ (z,t), = €
[0,{], t € R, as follows:

[ 30 +s(8.0)/4-1, ifye(0,5],
T 5/4-3/8 ((—1)89"ﬁ v (—1)89"5> ~1ify =0,

[ 3 +s(Be)) /4, ifye(0,5],
Y= 5/4—3/8 ((—1)59”5 v (—1)59"‘0‘) ,ify =0,

™

an:(n_T)ga ﬁn:(n_y)77

sin (£ + 5 sgnf3) — cos (1 + s (8,7)) 072,

o (1) = if e (0,%]
D=\ VBsin (i — 5) + et (1)1 Bsin 1+ (—1) ) 40,
it 6=0.
By virtue [1, theorem 3.1] one has the asymptotic formulas
4 1
A (0) =an+0( ), (13)
) () = 1
vn (2) = @ (,00) + O~ ) (14)

where relation (14) holds uniformly for = € [0, ].
By (12) we have
lim F(\) = —o0 (15)

A——00
Remark 3. It follows by theorem 3, lemma 4 and relation (15) that if A < 0 or
Ty (I, A
A=0and € [0,7/2), then F(\) = y(LA) < 0; besides, if A =0 and § = 7/2,

y (L, )
then Ty (I,A\) = 0.
Lemma 5. If A>0and A € (p,_1,1,], n €N, then m(\) =n — 1.
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The proof is similar to that of [2, theorem 4] using theorem 2 and remark 3.

Theorem 4. The eigenvalues of spectral problem (1), (2.a,b,c,d*) for § €
(g, 77) form the infinitely increasing sequence {p,, (8)},2,, such that p, (6) > 0 for
n > 2. Besides

a) the eigenfunction yr(f) (x), corresponding to the eigenvalue p, (6) > 0 has
exactly (n — 1) simple zeros in the interval (0,1);

b)if B e [0, g) then, 1y (8) > 0 for 6 € (Z,80) : 111 (8) = 0 for & = do; puy (8) <
0 for 6 € (89, 7), where dg = arctgTy (1,0) /y (1,0);

c)if B= g then A1 (8) < 0.

The proof parallels the proof of theorem 4 [2] using theorems 1,2,3 and lemmas
45.

The following non-selfadjoint boundary value problem

y W (2) = (¢ (@)Y (2)) = Ay (2), € (0,0),

y(0) =y (0) =Ty (0) =y (1) cosy +y" (I) siny =0, (27)

has an infinite set of non-positive eigenvalues p,, tending to —oo and satisfying the
asymptote

1 4
)\n:—<n—4(1+sgnfy)> l—4+0(n4), n — 0o.

Remark 4. The number of zeros of the eigenfunction yys) () corresponds to

an eigenvalue (1 (6) < 0 can be arbitrary. Really, as 1 (§) < 0 varies, new zeros of

the corresponding eigenfunction y§5) () enter to the interval (0,1) only through the

endpoint z = 0, since ygé) (1) # 0 by theorem 3, and hence the number m (u; (0)) of
its zeros in (0,1), in the case € (O, g] , is asymptotically equivalent to the number
of the eigenvalues of problem (1), (2**) which are upper than p; (). In the case
B =0 see [6, §5, theorem 5.3].
For ¢ # 0, we find a positive integer N form the inequality pn_q < —d/c < py.
Theorem 5. The eigenvalues of the boundary value problem (1), (2) form an

infinitely increasing sequence A1, Ao, ..., An, ..., moreover, A, > 0 for n > 3. The cor-
responding eigenfunctions y1 (x),y2 (), ...,yn (z), ... have the following oscillation
properties:

(a) if ¢ =0, then yy (), n > 2 has exactly n — 1 simple zeros; the number of
zeros of the eigenfunction yy (x) is equal to zero in the case A\ > 0, can be arbitrary
i the case A\ < 0.

(b) if ¢ #0, then y, (x) has exactly n — 1 simple zeros for n < N and ezactly
n—2 simple zeros for n > N in the interval (0,1), in the case A, > 0; if A1 or A1, Ao
be negative, then the number of zeros of the eigenfunctions yi (x) or y1 (z), yo ()
can be arbitrary.

The proof parallels the proof of theorem 2.2 [1] using remark 4.

Theorem 6. [1, theorem 3.1]. One has the asymptotic formulas

W:ﬂn+0<i>, (16)
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() =0 +0 (1), (17)

where relation (17) holds uniformly for = € [0, ].

We denote by (B.C.) the set of separated boundary conditions (2.a, b, c).

The spectral problem (1), (2) reduced to a problem on eigenvalues for the linear
operator L in Hilbert space H = Ly (0,1) @ C with scalar product

(4,a) = ({y,m}, {u, s}) = (y,u)p, + 0~ 'm3,
l

where (y,u);, = /yad:v,
0

Lj = L{y,m} = {(Ty) (z),dTy (1) —by ()},

with the domain
D(L)={§={y,m} € H:y(x) e W5 (0,1),

(Ty) € Ly (0,1),y € (B.C.), m=ay(l)—cTy(l)}

that is dense in H [9].
Obviously, the operator L is well defined. By immediate verification we conclude
that problem (1), (2) is equivalent to the following spectral problem

Lj=Xy, yeD(L), (18)

i.e., the eigenvalues A, of problem (1), (2) and those of problem (18) coincide,
moreover, there exists a corresponding between the eigenfunctions

§=(y(x),m) —y(z).

The operator L will be self-adjoint, discrete, semibounded from below in H
and so possesses by system of eigenvectors {yn (z), my}, -, that forms orthogo-
nal basis in H, where y, (z), n € N, are eigenfunctions of problem (1), (2) and
My = ayy (1) — cTyy (1).

The eigenvalues v,,, n € N, of the boundary value problem (1), (2.a, b, ¢, d*) for
0= g are zeros of the function F' (). In similar way (see the proof of theorem 2.2

[1]), one can show that the equation F' (A) = 0 has the unique solution v,, = \, (g)
in each interval (,un_l, ,un). Consequently,
1 < Vn < fy,, n € N. (19)

Lemma 6. m,, = ay, (I) — cT'y, (1) # 0 for n € N.
Proof. Let my = 0, where k be some positive integer. If ¢ # 0, then Ty (1) =

gyk (). In view of (2.d) we have gyk (I) = 0. Since o > 0, it follows that yy (1) .
c c
Hence Ty (I) = 0. If ¢ = 0, then ad # 0, consequently y (I) = 0. By (2.d) we

)
obtain Ty (I) = 0. Hence, y (1) = Ty (I) = 0, which contradicts the relation (19).
Lemma 7 is proved.
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1

Let 6,, = <||ynH§ + m%/a) * where [[Il,, is the norm in L, (0,1). Then the system
1

{On}ry, On = 5—% is a orthonormal basis in the space H. Then for any vector
n

f = {f, 7} it holds the expression

oAt = 3 (£0) b= 8 ({7 o sad) fonsa) =

n=1

M8

((f,on)g L, T O'_lTSn) {Un, sn},

n=1

whence the equalities

((fa Un)L2 + 0'_17_571) Un (20)

~
|
118

i
L

718

((f Un) Ly, T 0'717'371) Sn (21)

n=1

m
— neN.
On

Let 7 = 0. Then from (20) and (21) we get, respectively,

follow, where s,, =

= 3 (Fvar, v (22)
- i:%l (f: Un)L2 Sn. (23)

Let r be an arbitrary fixed natural numbers. By lemma 6 we have s, # 0. Then
in view of (23) we obtain

(f, UT)L2 = Z (f, Un)L2 Sn- (24)

Sr n=1
n#r

Taking into account (24), from (22) we get

f (f.vn), (vn— v) = > (fovals, (;nvn— Sn UT) _

n=1 T n=1 5n5r
n#r n#r
[e] Y m
= Z (f7 yn>L2 (;L ) = 7’) (25)
n;l 6n 5n T

We have

(ymyr) =

Yk my 1
<yn, — yr> 2 (Yn> i) — 52

62 oim,

m 1

1 k o _
- g {(ynayk) - E (ynvyr)} = g [{(ynvyk) -0 1mnmk} -
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meg ¢, . . _ 1 _ my _
—— 9 (Un,Or) — 0 1mnm,ﬂ}] == |:5n5k6nk — o Ymymy, + —0o 1mnmr] =
m?" 5k r
)
= iénk = 5nk7

where 0,5 is the Kronecker delta, i.e., the system

{1 Vs 0 0) = 37 {om () = 200 (0)}
n T

is conjugate to the system {yn (z)},2; . Hence, the system {u, (v)},2; ., is a
Riesz basis in L (0,1). Then the system {y, ()},2;,,, is also Riesz basis in the
space Lo (0,1).

Thus, we proved the following

Theorem 7. Let 7 be an arbitrary natural number. Then the system {yn (2)},2; 4,
forms a Riesz in Lo (0,1).

Lemma 7 [1, lemma 4.1]. One has the asymptotic formula

tp (2) = Yy () + O (i) .

Theorem 8. Let r be an arbitrary fired natural number. Then the system
{yn (2) Y021 nr B8 @ basis in the space Ly (0,1), 1 < p < o0.

The proof parallels the proof of theorem 5.1 [1] using theorems 5,6,7 and lemma
7.
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