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Abstract

In the paper we study the Green operator function of second order equations
with normal operator coefficients.

Let H be a separable Hilbert space. In the space H1 = L2 [(−∞,∞) ;H] we
consider a differential operator L generated by the expression

l (y) = − (p (x) ý)́ + Q (x) y, (−∞ < x < ∞) (1)

where y ∈ H1, the derivatives are understood in the strong sense, P (x) for each
fixed x is a uniformly differentiable bounded operator in H, and Q (x) is a family of
normal operators in H.

In the present paper we study the Green function of the operator L. Notice that
for p (x) ≡ E where E is a unit operator in H, the Green function of Sturm-Liouville
self-adjoint equations was first studied by B.M. Levitan [1], and when Q (x) for each
x is a normal operator in H, the Green function was investigated by E.G. Kleiman
[2] and M.G. Dushdurov [3]. The Green function and asymptotic behavior of eigen
values of equation (1) in self-adjoint case was researched by E. Abdukadirov [4].

Enumerate principle restrictions on the operator functions P (x) and Q (x) under
which we study the Green function of equation (1).

1) The operator function p (x) is everywhere uniformly differentiable and for all
f ∈ H

m (f, f) ≤ (P (x) f, f)H ≤ M (f, f) ,M > 0.

2) For almost all x ∈ (−∞,∞) the operators Q(x) are normal and lower bounded
by the operators in H. The operator Q(x) is inverse to completely continuous
operator for all x ∈ (−∞,∞) and its eigen values lie in a complex plane outside of
the sector Λ0 = {λ : |arg λ− π| < ε0} , 0 < ε0 < π is a constant number.

3) There exist positive constants A and 0 < a < 3/2 such that for all x ∈
(−∞,∞) and for |ξ − x| ≤ 1 the inequality ‖Q−a(x) [Q(ξ)−Q(x)]‖H < A |x− ξ| is
valid.

4) There exists such a constant B that for |ξ − x| > 1 and for all x ∈ (−∞,∞)
the inequality ∥∥∥∥K (ξ) · exp

(
−1

2
|x− ξ| · ω

)∥∥∥∥
H

< B,

where K(x) = p−1/2(x) ·Q(x) · p−1/2(x), ω =
{
K(x) + µp−1/2 (x)

}1/2
is fulfilled.

5) For all x, ξ from (−∞,∞) the inequality∥∥∥Q(x) · P±1/2
(x) ·Q−1 (x)

∥∥∥ < C,
∥∥∥Q (ξ) · P−1/2 (x) · P−1/2 (ξ) ·Q−1 (ξ)

∥∥∥ < C




