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Abstract

At present usage of IBM opened new opportunities for working out methods
of building and construction element deformation research. There appeared new
works with more exact solutions of problems which were considered unsolvable
for engineers because of their complexity. Problems of elastic flexible columns
computation on large displacements are related to them.

In mechanics of columns elastic flexible curvilinear columns take an especially
important place. Elastic flexible columns have wide application in different fields of
technique – in the field of mechanical engineering, robot constructing, device con-
structing and other branches of economy. And time devices using columns have
got spread not only as clocks but as sensors of stable signals in different auto-
matic devices of land and space technique. Determination of the current time value
and measuring time intervals are necessary at solution of mechanical objects control
problems in aviation, space research. The accuracy of time device reading largely de-
pends on the elastic element calculation accuracy taking into account real conditions
of its work. In this connection the problem of large displacements determination on
deformation is very actual when in the process of fine detail deformation its initial
configuration changes strongly at that the displacements on deformation become
considerable with the length of the construction itself [4].

General theory of slender elastic columns was worked out in the second half of the
XIX-th century in works of M.F.Okatov, D.K.Bobilyov, G.Kirchgof [1], A.Klebsha.
Its further development is connected with the names of A.Lyav, Ye.L.Nicolay,
V.L.Kirpichev, P.F.Popkovich, A.N.Krilov, P.M.Riz, A.I.Lourie, G.U.Janelidze,
V.G.Rekach, A.Ya.Driving, Wan Tsui-de [3], Abbasov U.M. and many other in-
vestigators. Monographs [2] by Ye.P.Popov should be especially noted where the
previous investigations are generalized and there is given a general method of cal-
culation of slender columns plane shape bend in the system of coordinates oriented
by force.

In the present paper there are given new differential relationships of the problem
allowing to get the integral of the original differential equation in the frames of the
theory of slender columns on large displacements.

The paper is dedicated to the calculation of slender elastic three-hinged round
arch loaded in the clue by concentrated force 2Fv (fig. 2a).

Let’s make equilibrium equation of element dS of the deformed column part free
of forces and moments (fig.1a). Having chosen the tangent and the normal to the
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axis at the last point of the element as the coordinates axes and having decomposed
all the forces in the direction of these axes we’ll obtain the following (fig.1b) [5]

Fn + (Fq + dFq)dϕ− (Fn + dFn) = 0;
Fq − (Fn + dFn)dϕ− (Fq + dFq) = 0

(1)

Neglecting the addends of higher order smallness we’ll get from the first equation
of (1)

dFn/dϕ = Fq (2)

From the second equation of (1) we have:

dFq/dϕ = −Fn. (3)

Now we’ll make momentum equilibrium equation. It has the form

M + Fqds− Fndsdϕ− (M + dM) = 0

whence we get the known relationship

dM/ds = Fq (4)

From (2) and (4) it follows that

dFn/dM = dϕ/ds = χ (5)

Here χ = dϕ/ds is the curvature of the column axis.
Thus we have the following relationships for the plane crooked column deformed

element computing equations [9]:

χ
dM

dϕ
− Fq = 0,

dFn

dϕ
− Fq = 0,

dFq

dϕ
+ Fq = 0 (6)

On the other hand for the bent elastic column in the accepted system of coor-
dinates we’ll use the known elastic equilibrium exact equation on the curvilinear
column plane bend [6]:

χ− χ0 = −M

B
(7)

It is known that when deriving Euler’s formula they didn’t manage to get nu-
merical value of the column bend as the value of integration constant was undefined
[8]. It is connected with that the column bent axis was described by an approxi-
mate differential equation. If to use a precise differential equation of the bent axis
for the investigation then it is possible to determine both the critical force and the
dependence between the compressing force and the column bends. So we’ll use the
precise expression of the curvature. The precise expression of the curvature as it is
known has the form

χ = ± y′′
[
1 + (y′)2

]3/2
(8)
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at the same time in the linear theory of column bends in the view of elastic line
angular displacement smallness the curvature is usually taken as

χ ≈ ±y′′.

The curvature χ at the given point of an elastic line is considered positive if the
decline angle of the elastic line increases with the increase of the arc length S vice
versa the curvature will be negative.

From the second and third equations of (6) it follows

d2Fn

dϕ2
+ Fn = 0

the general equation of which is

Fn (ϕ) = C1 cosϕ + C2 sinϕ

whence
Fq (ϕ) = −C1 sinϕ + C2 cosϕ.

From the first and second equations of (6) we’ll obtain

χ =
dFn

dM
or

dM

dFn
=

1
χ

. (9)

Supposing B = const ”χ0 = const and differentiating equations (7) by N” we’ll
have:

dχ

dFn
= − 1

B

dM

dFn
. (10)

Using relationships (9) and (10) we’ll get:

1
χ

= −B
dχ

dFn
.

Separating variables and integrating we find

χ2 = C3 − 2Fn

B

or

χ = ±
(

C3 − 2Fn

B

)1/2

. (11)

Sign plus before expression (11) corresponds to the positive curvature, sign minus
- to negative one. Substituting value (11) in equation (7), for the bending element
we’ll get [11]:

M = B

[
χ0 ±

(
C3 − 2Fn

B

)1/2
]

.

Having obtained the second derivative of the known expression y′ =
dy

dx
= tgϕ we

have:
y′′ =

d

dx

dy

dx
=

dtgϕ

dx
=

1
cos2 ϕ

dϕ

dx
.
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Taking into account
[
1 + (y′)2

]3/2
=

[
1 + tg2ϕ

]3/2 =
1

cos3 ϕ
the exact expression of

curvature takes the form:

χ = ± y′′
[
1 + (y′)2

]3/2
= ± cosϕ

dϕ

dx
.

Thus,

χ = ± cosϕ
dϕ

dx
. (12)

And taking into consideration
dy

dx
= tgϕ we’ll get

χ = ± sinϕ
dϕ

dy
. (13)

Integrating separately equations (12) and (13) for the coordinates of the de-
formed column arbitrary point (sections) we’ll obtain outwardly known integrals
(the magnitude χ in equations (14) and (15) is curvature after deformation).

X + C4 =
∫

χ−1 cosϕdϕ, (14)

Y + C5 =
∫

χ−1 sinϕdϕ. (15)

Arbitrary constants Ci(i = 1 − 5) are defined from boundary conditions of the
concrete constructions exploiting condition.

For convenience of the further calculations we introduce dimensionless parame-
ters: fn = Fn : F, Fq = Fq : F, m = M : Fr, ψ = χ · r, X = x : r, Y = y : r,

where χ0 = 1/r = const initial curvature of axis; χ curvature after deformation,
B = EJ rigidity at bend, Fn, Fq, M internal force factors – bending moment, nor-
mal and lateral forces; dϕ central angle of the deformed element, y′ = dy/dx = tgϕ;
y, x the deformed element section center coordinates, r = 1/χ0 initial radius of cir-
cular column curvature; f = Fr2/B dimensionless quantity of concentrated force;
Ci(i = 1− 5) arbitrary constants determined from boundary conditions.

In view of symmetry for one second of arc the boundary conditions are written
as follows (fig 2b)

fq(0) = 0, fn(0) = −1, X(0) = 0 for ϕ = 0

m(θ) = 0, Y (θ) = 0 for ϕ = ±θ. (16)

Satisfying the first and second conditions (16) we’ll get C1 = −1, C2 = 0.
Satisfying the fourth condition (16) with account of values C1 and C2 we have:

C3 = 1− 2fcosθ.
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Thus taking into account the values C1, C2 and C3 in the expressions of curvature
and bending moment we have

Ψ(ϕ) = ±[1 + 2f(cosϕ− cosθ)]1/2,

m(ϕ) =
1
f
{1∓ [1 + 2f(cosϕ− cosθ)]1/2}.

Substituting the curvature value into Y (ϕ) expression we’ll get

Y (ϕ) + C5 =
∫

[1 + 2f(cosϕ− cosθ)]−1/2 sinϕdϕ

or
Y (ϕ) + C5 = ± 1

f
{1 + 2f(cosϕ− cosθ)}1/2.

At ϕ = ±θ we have that y(θ) = 0. Then

C5 = ± 1
f

or
Y (ϕ) = ± 1

f
{[1 + 2f(cosϕ− cosθ)]1/2 − 1}.

On the other hand at ϕ = 0, X(ϕ) = 0

or 0 + C4 =
∫

[1 + 2f(cosϕ− cosθ)]−1/2cosϕdϕ

∣∣∣∣
ϕ=0

. (17)

At ϕ = θ, X(ϕ) = XB

XB + C4 =
∫

[1 + 2f(cosϕ− cosθ)]−1/2cosϕdϕ

∣∣∣∣
ϕ=θ

. (18)

From equations (17) and (18) it follows that

XB =

θ∫

θ

[1 + 2f(cosϕ− cosθ)]−1/2cosϕdϕ. (19)

Further using values C1, C2 and C3 we’ll get [10]

+θ∫

−θ

[1 + 2f(cosϕ− cosθ)]−1/2dϕ = α

or
0∫

0

[1 + 2f(cosϕ− cosθ)]−1/2dϕ =
α

2
. (20)

Solving equation (20) by numerical methods at the given f and α, we define
angular deformation θ in the joint.
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There exist different approaches to the solution of such problems on IBM. One
of the approaches is making corresponding programs for every concrete case.

Let’s describe an algorithm of angular deformation θ calculation. It consists of
two stages: the problem discretization, i.e. equation (20), by means of replacement
of the integral in the left hand side of (20) with an integral sum, and solution of the
obtained nonlinear equation with respect to θ.

Let’s for convenience write equation (20) in the form

θ∫

0

F (ϕ, θ) dϕ =
α

2
, (21)

where F (ϕ, θ) =
1√

1 + 2f (cosϕ− cos θ)
.

The principle difficulty of equation (21) is in the presence of the searched pa-
rameter θ both in the integrand and in the limits of integration. As the result of
discretization we’ll get the equation [7]:

θ∫

0

F (ϕ, θ) dϕ ≈
N∑

i=1

F (ϕ, θ)
θ

N
, ϕi =

θ

N
(i− 1) , i = 1, 2, ..., N,

where N is the number of intervals into which the interval [0, θ] of integration is

divided, h =
θ

N
a uniform step of partition (discretization), ϕ0 = 0 < ϕ1 < ϕ2 <

... < ϕN = θ uniform grid of interval [0, θ] with step h. Then integral equation (21)
is replaced by the equation nonlinear with respect to θ

Φ(θ) =
N∑

i=1

F

(
i− 1
N

θ, θ

)
θ

N
− α

2
= 0, (22)

where function Φ (θ) is defined by the formula:

Φ (θ) =
N∑

i=1

1√
1 + 2f

(
cos

(i− 1)
N

θ − cos θ

)
θ

N
− α

2
.

Equation (22) is solved by Newton method:

θn = θn−1 − Φ(θn−1)
Φ′ (θn−1)

,

where the initial value θ0 is determined from the condition:

Φ (θ0) · Φ′′ (θ0) > 0.

Discretization is made by the method of rectangles, the optimal fragmentation N is
specified by the formula

max
[0,θ]

|f ′′ (z)|
12n2

θ3 < ε.
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α = π Table 1
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α = π/2 Table 2

α = π/3 Table 3
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Reliability of the investigation is confirmed by satisfying coincidence of some
obtained results with the known in literature partial solutions of the problems [2].

The obtained results for the cases α = π, α = π/2 and α = π/6 are given in
tables 1, 2, 3. Note that for the case α = π the given system turns into a double-
hinged ring when the forces are applied to the hinges as the results for that (fig.3)
and this (fig.2) coincide [9].
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