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ON COMPLETENESS AND MINIMALITY OF A
SYSTEM OF SINES AND COSINES IN THE SPACE
OF CONTINUOUSLY-DIFFERENTIABLE
FUNCTIONS

Abstract

In the paper we obtain necessary and sufficient conditions of completeness
and minimality of a system of sines and cosines in the space of continuously-
differentiable functions.

Let C[0,7] and C![0,7] be Banach spaces of continuous and continuously-
differentiable functions, respectively, with ordinary sup-norms.
Denote:

Coryv,n [0:0] = {f € Cla,b] « f(x;) =0, i=Tn},
Chyamnen [0, 0] ={f €C [a,b] : f(2:) =0, i=T,n},
Gl [q, b] = {f €Cla,b]: f (y:) =0, i=Tn},
Catadbm [a,b] = Cy, 4y, [0, 0] N CHYLY2 Y g p]
Co [0 m]—{fGC“[O ] f(0) =0},
CR 0,7l ={feC*0,n]: f(m)=0},
Cs . 10,7 = Cg 0, 7] NCL[0,7],
ctte={f:f ec>o,n},

where C§ [0, 7] is a Banach space of Holder functions with appropriate norm.

Let’s consider the systems
oo
{sin <n — ﬁ) 9} , (1)
2 n=1

e 2

where 0 € [0, 7], 3 is a real parameter.

First of all revise the results of the paper [1] for the completeness and minimality
of systems (1) and (2) in C'[0, 7].

Lemma 1. For 0 < 3 < 2, for any function ¢ (6) € C§ [0, 7], the biorthogonal

series -
ZAnsin <n— g) 0 (3)
n=1

uniformly converges on [0, 7] to the function ¢ (0); for 3 =0, if 1 (0) € Cg [0, 7],
series (3) uniformly converges on [0, 7] to the function 1 (0).

and
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Lemma 2. For 1 < (8 < 3, for any function 1 () € C*[0,x], the biorthogonal

series -
Z B, cos (n - g) 0 (4)
n=1

uniformly converges on [0, 7] to the function v (0); for B =1, if ¥ (0) € C[0,7],
series (3) uniformly converges on [0, 7] to the function v (0).

Theorem 1. For the system (1) the following statements are valid:

1) for 0 < 8 < 2 system (1) is complete and minimal in Cy [0, 7];

2) for B <0 system (1) is minimal, but not complete in Cy [0, 7];

3) for B € (2k,2k+2), k=1,2,..., system (1) is complete, but not minimal in
Co [0, 7];

4) for B =0 system (1) is complete and minimal in Co [0, 7|;

5) for B =2k, k=1,2,....system (1) is complete, but not minimal in Cy . [0, 7];

6) for = =2k, k =1,2,...,system (1) is minimal, but not complete in Cy [0, 7];

7) in the case of minimality the biorthogonal system {hs (0)}>2, is of the form:

n=1
p . NG
hy (0) = ;ZCgsin(n— k)6 <200s2> ,
k=0

where C’g are binomial coefficients.

The similar theorem is true for system (2) as well.

Theorem 2. The following statements hold:

1) for 1 < 8 < 3 system (2) is complete and minimal in C'[0,7];

2) for B <1 system (2) is minimal, but not complete in C [0, 7];

3) for B € (1+2k,34+2k), k=1,2,..., system (2) is complete, but not minimal
in C'[0,7];

4) for B =1 system (2) is complete and minimal in Cr [0,7];

5) for B =142k, k = 1,2, ...,system (2) is complete, but not minimal in Cy [0, 7];

6) for B =1-2k, k = 1,2,...,system (2) is minimal, but not complete in C [0, 7];

7) in the case of minimality the system {fzflﬁ (9)}00 ) biorthogonal to system (2)
1s of the form: ) "

h%,ﬂ (0) = hifl,m 9),
where
2

o\ "
2 cos —
7r< cos2)

C’g are binomial coefficients.

State the main results of the paper.

Theorem 3. The following statements are true:

1) for 1 <3< 3, 3+#2 system (1) is complete and minimal in C} [0, 7];

2) for 142k < B <3+2k, 3#2k, k=1,2,..., system (1) is complete, but not
minimal in C} [0, 7);

3) for 1 =2k < <3—-2k, k=1,2,...,, system (1) is minimal, but not complete
in C} [0, 7);

4) for B =0 system (1) is complete and minimal in C’&m [0, 7];

n C’n
> " Chisin(n — k)6 - 7ﬁ
k=0

)

hy, 5 (0) =
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5) for B =2k, k=1,2,....system (1) is complete, but not minimal in C&’ﬂ [0, 7];

6) for B = =2k, k =1,2,....system (1) is minimal, but not complete in C’&m [0, 7];

7) for B =1 system (1) is complete and minimal in Cy™ [0, 7];

8) for B =1+ 2k, k = 1,2,...,system (1) is complete, but not minimal in
Co'™ [0, 7);

9) for 6 = 1—2k, k = 1,2,...,system (1) is minimal, but not complete in
C(%m [0, 7];

WEe’ll need the following lemma that may be easily proved.

Lemma 3. A space of functions C1T[0, 7] is dense in C' [0, 7] with respect to
the norm |||,

Proof. Since the Holder space C [0, 7] is dense in the space C'[0, 7], then
[F' &) =2 ®]c <

3

1 «
Vf(t) e C*[0,7], Ve >0, Jp(t) € CV[0,n], -1

(®)

Let v (¢ fgp )d — f(0). Obviously, ¢ (t) € C*[0,n] and ¢’ (t) = ¢ (t), Vt €

[0, 7]. Further
t t t
W= [row-—r0- [¢owir0=[10-c0)w
0 0 0

Then, allowing for (5) we get:

0 -vl=| [ (O -e®) @] < [|7©0)- o)<
0 0

<I[I()1ax‘f —e@] - 7= ) -v®)|, <

or
ET

170 =% ®lle < =75

From relations (5) and (6) it directly follows that Vf (t) € C1[0,7], Ve > 0,
I (1) € O [0, 7,

1) = @l = 1F ) =& Olle + | () =" 0| <e

The lemma is proved.
Proof of theorem 3. By proving the theorem we’ll use the method suggested
in the paper [2]. Let

f () ectto,x], f(0)=0.

Consider the series -
Z A, sin (n — g) 0, (7)
n=1

where the coefficients A,, are determined by the relations

A, = ]f’ (6) hc_, (6) do <n _ §>1 | (8)
0
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After formal differentation of series (7) we get:

3 (n _ g) A, cos (n - g) 0. )

n=1

Then, it follows from lemma 2 that for 1 < 5 < 3, series (9) uniformly converges
to f'(#) on the segment [0, 7], i.e.

£(6) = i <n = g) A, cos <n — S) 0. (10)

n=1

Integrate series (10) within 0 and 6 and get the relation

£(0) = nf:lAn sin <n - g) 0. (11)

Obviously, series (11) uniformly converges to f () on [0, 7]. Since series (10) and (11)

e e}

uniformly converge, then it follows from lemma 3 that system {sin (n — ﬁ) 0}
n=1

for 1 < 8 < 3, B # 2 is complete in C§[0,7]. For 3 = 2 we get the system
{sinnf},7 ;. All the elements of this system vanish at the point w. Therefore, it
may not be complete in C§ [0, 7].

s Pc p -
Denote Hy 5(0) = hy, 5(6) <n —3 .

~ oo
From the fact the system {h;B(O)} is biorthogonal to the system

ﬁ . n=1
cos|n——=1,6 it follows that
2 n=1

/Hi,g (0) (sin (n — g) 0> o = / he 5 (6) cos (n - g) 00 = 8y,
0 0

So, system (1) for 1 < 3 < 3, 3 # 2 is minimal in C{ [0, 7] and {Hfbg (9)}00_1 is

biorthogonal to it.
Show that for 3 € (3,5), B # 4 system (1) is complete in C} [0,7]. Substitu-
tion of 3 = 8 — 2 and rejection of the first element leads to the system of sines

/ 00
{sin <n - g)} that by the above-proved, for 1 < 3 < 3, 3’ # 2 is complete
n=1
and minimal in C{ [0, 7]. Therefore, initial system is complete, but not minimal in
C¢ [0, 7). We continue this process and get that for 3 € (1 + 2k, 3 + 2k), 8 # 2k +2,
k=1,2,.., system (1) is complete, but not not minimal in C} [0, 7].
Similarly, for 8 € (—1,1), 8’ # 0 substitution 8’ = 8+ 2 leads system (1) to the

/

/ (e e}
system {sin <n — ﬁ2> 0} wherein the function sin <1 — ﬁg) 6 is absent. Since

/ (o.9]
B € (1,3), B’ # 2 then by the above proved, the system {sin <n — i) 9} is

n=2

n=1
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/ [e'e)
complete and minimal in C} [0, 71]. So, the system {sin <n — g) 0} is minimal,

=2
but not complete. We continue this process and get that for 8 € (—2k + 1, —2k + 3),
B# —2k+2, k=1,2,..., the system is minimal, but not complete in C} [0, 7].
For 3 = 0 we get the classic system of sines {sinnf},~, .
First we show that the system U{sin nf}°-  is complete and minimal in G} [0, 7].
o0
After formal integration of the series Agf + > A, sinnf we get the series

n=1

Ao + Z nA, cosnf. (12)
n=1
Let f € C1T[0,7], f(0) = 0 and

™

A= [ 7O 15, @ a0, A= [ £ O hp @8,z
0

0

It again follows from lemma 2 that series (12) uniformly converges to f’(#) on
the segment [0, 7], i.e.

1(0) = Ap + Z nA, cosnb. (13)
n=1

After integration of series (13) within 0 and 6 we get a uniformly convergent series:
(0]

F(0) = A0+ A, sinnd. (14)
n=1

So, series (12) converges to f (#) by the norm ||-||;. It follows from the proved
lemma that the system 0U {sinnf}>> , is complete in C§ [0, 7).
Denote by

S C S 1 C
Hi(0) = hgo(0), Hp(0)=—h;o(0),n>1

" n

From the biorthogonality of the system {h%,O}ZO:o to the system 1U {cosnt} -,
(Theorem 2) it follows that

/ HE (0)0/d0 — / 60 (6)-1d0 = 1,
0 0

™ 1 ™

/Hg(e)e’daz/ ¢ (0)-1d0 =0, n>1,
n b

0 0

/Hg (9) (sinnd)" do = n/hﬁyo (0) cosnfdf = 0,
0 0



106 Transactions of NAS of Azerbaijan
[S.G. Veliyev,V.F.Salmanov]|

K ™

/Hg () (sinm0)' do = m/h,i’o (0) cos mOdO = Srym, n > 1,m > 1.

0 "
So, the system 6 U {sinnf}°>° | is minimal in C} [0, 7] and {H (0)}°°, is a system
biorthogonal to it.

By B we denote a closure of linear shell of the system {sinnf} -, with respect

to the norm ||-||;. Obviously, B C C(%,w [0,7]. Since the system 6 U {sinnf} °, is
complete in C§ [0, 7], then

Vf(t)€Ci [0,m], Ve>0, 3N €C, 3b(t)€ B,

€
1F (t) = Act = b= ()], < 3- (15)
Then|f (t) — At — b ()] < g or |Ae| < 2i We get from relation (15), that V¢ €
T
[0, 7],
SO At =b () <5 =5 AN )b () <5 At
e € e €
So,
1 (&) = be (D)l <e. (16)

We get from relation (15) that Vt € [0, 7]

W) A<, —S A< ) -b ()< 4
2 2 2 2
e €. &

5 9. <F O (t) <5+ o

—e<fl()-b(t) <e,  |f(t)—b-()] <e,

lF () =)o <= (17)

It follows from (15) and (16)

1 (t) = be (B)]; < 2e.

By definition of completeness this means that the system {sinnf} | is complete
in the space Cq . [0,7].
From the above-mentioned arguments we easily get that for 8 =2k, k=1, 2, ...,
[ee]
the system{sin (n — g) 0} is complete, but not minimal in C%,w [0, 7], and for
n=1
B =—2k, k=1,2,... it is minimal, but not complete in C’&W [0, r].
From the minimality of the system 6 U {sinnf}>° | in C} [0, 7] it directly follows
that the system {sinn@};; is minimal in Cj [0,7].
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o0
For 3 = 1 the system {sin <n - g) 9} is complete and minimal in Cé [0, 7.
=1
Indeed, we differentiate series "

gAn sin (n - ;) 0 (18)

S (0 D)o ). s

and get:

A, = /ﬂf’ 0) 5, (6) do <n _ ;)1 . (20)
0

Then, it follows from lemma 2 that series (19) uniformly converges to f’(6) on
the segment [0, 7], i.e.

f(0) = g:l (n - ;) Ay cos (n - ;) 0. (21)

We integrate series (21) within 0 and 6, get the relation

- g A, sin <n - ;) 0. (22)

By uniform convergence of series (21), series (22) also uniformly converges to
f(0) on [0,7].

By lemma 3 it follows from uniform convergence of series (21) and (22) that the

1 *° .
system {sin <n — 2) 9} is complete in the space C’O1 [0, 7.

n=1

-1
Denote H? , (0) = iLZ ., (0)do <n — ;) .
2 ’2

It follows from the biorthogonality of the systems {ﬁz

1 o0
{cos (n — ) 9} that
2 n=1
g 1 , T A
/an 1 (0) (sin (n — 2) 9> df = /hfn 1 (0) dO cos (n — 2) 0do = §pm.-
D) )
0 0

So, for 8 = % system (1) is minimal in C}[0,7], and therefore minimal in
Cé 0, 7.
By similar argoléments, we can prove that for 3 =14 2k, k = 1,2, ... the system
{sm (n - ) } is complete, but not minimal in C’ém [0, 7], and for 8 = 1— 2k,
k=

(«9)};021 and

D=

)

M

n=1
. it is minimal but not complete in C [0, 7].
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oo (- 2)0) -

we have the following theorem:

Theorem 4. The following statements, hold:

1) for 0 < 3 < 2 system (23) is complete and minimal in C°[0, 7];

2) for 2k < B < 2k+2, k=1,2,..., system (23) is complete, but not minimal
in C10[0,7];

3) for =2k < B < —2k+2, k=1,2,... system (23) is minimal, but not complete
in C10 [0, 7);

4) for B =0 system (23) is complete and minimal in C1%™ [0, 7];

5) for B =2k, k =1,2,...system (23) is complete, but not minimal in C1%7 [0, 7];

6) for B = =2k, k = 1,2,....system (23) is minimal, but not complete in
Cl;O,Tr [07 ﬂ.] ;

Proof. Let f(0) € C'**[0, ], f/(0) =0 and

Theorem 3 is proved.
For the system

= -1
B, = —/]"’(9)hfZ (0)de <n— ) , n=12 ..
0
Let’s consider the series:

By + iBn cos <n - g) 6. (24)

n=1

We formally differentiate series (24)

_iBn (n — g) sin (n — g) 6. (25)

Then, it follows from lemma 1 that for 0 < 3 < 2 series (25) f/(6) on [0, 7], i.e.

F(0) = —nian (n - g) sin (n - g) 0. (26)

We integrate series (26) within 0 and 6, get:

f(e)—f(O):iBncos (n—§>a_ni13n.

o0
It is shown in the paper [2] the series > B, absolutely converges. Since, series
n=1
(26) uniformly converges, the series

Bo—i-ZBncos <n—§>9

n=1
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uniformly converges to f(6), where By = f(0) — >  B,. Then, it follows from
n=1

lemma 3 that for 0 < 3 < 2 system (23) is complete in C5° [0, 7).

1
For > <pB<2- » system (23) is minimal in W, (0,7) [2]. It follows from

1 1

embedding W) (0,7) in C'[0, ] that for Vp > 1, —= < § < 2 — — system (23) is
p p

minimal in C* [0, 7]. So, for 0 < 8 < 2 it is minimal in C [0, 7).

Similar to the proof scheme of theorem 3 we can show that for 2k < 5 < 2k 4 2,
k = 1,2,... system (23) is complete, but not minimal in C*° [0, 7], and for —2k <
B < —2k+2, k=1,2,... it is minimal, but not complete in C* [0, 7].

For 8 = 0 we get the system

1U{cosnb}2 (27)
After differentiation of series (24) for 8 = 0 we get

- Z nB,, sinnf (28)

n=1

If £ (0) € CHH [0, 7], f'(0) = f' () =0,

1
By = —/f’ (0) RS (0)do, n=1,2, ..,

n
0

then by lemma 1 series (28) uniformly converges to f’ () on [0, 7], i.e.
oo
f(0)=— Z nB;, sinnf (29)
n=1
We integrate series (29) within 0 and 6, get

f(@)—f(0)= iBncosnO—iBn.
n=1 n=1

o0 (&)
Since the series ) B, absolutely converges, we take By = f(0) — > B,, and get
n=1 n=1

that the series -
By + Z B,, cosnb

n=1
uniformly converges to f(6) on [0,7]. Hence it follows from lemma 3 that the
system 1 U {cosnf}>° | is complete in the space C1O7[0,7]. Minimality of the
system 1U {cosnf}°> ; in CH%7 [0, 7] follows from the minimality of system (23) for

1 1

—= <3< 2— = in the space W, (0, ).

The authors express their deep gratitude to B.T.Bilalov for his constant attention
to the paper and discussion of the obtained results.
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