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Rafiq J. MIRZOYEV

ON INTERNAL AND EXTERNAL HEMMING
INDICES OF k-VALUED CLONES II

Abstract

The proofs of several theorems, announced in the first part of the paper are
given, and, moreover external Hemmong’s index of stabilizer of binary central
ratio with one block of the pairs has been calculated.

The paper continues the author’s work [1], in which at arbitrary k ≥ 3 research
of behaviour on the lattice S (F) of all subclones C ≤ Fk of k-valued logic Fk

of two natural numerical characteristics of internal Hemming’s index Hk (C) :=
sup
n∈N

hk (n, C) and external Hemming’s index H ′
k (C) := sup

n∈N
h′k (n, C) is started, where

hk (n, C) := max
{

ρn

(
f, F

(n)
k \C(n)

)∣∣∣ f ∈ C(n)
}

,

h′k (n, C) := max
{

ρn

(
g, C(n)

)∣∣∣ g ∈ F
(n)
k \C(n)

}
, ρn (f, g) := dn (f, g) /kn

”fractional version” of distance of Hemming dn (f, g) between functions f, g ∈ F
(n)
k

and for set A ⊆ Fk A(n) denotes subset of all n-arie f ∈ A.
In [1] it is being explained, why at k=2the calculation of mentioned indices turned

out to be relatively easy problem – due to obtained by Post the clear description of
lattice S (F2) and following from it absence of infinite strictly increasing chains in
it; at k = 2 the internal indices H2 (C) under the other name was calculated in [3],
and external indices H ′

2 (C) were also easy calculated. In [1] it is also indicated, that
by virtue of established in [4] continual lattice S (Fk) at k ≥ 3 and by availability
of infinite strictly increasing chains in it, the principles of the work [3] and its
modifications inapplicable for calculation of indices Hk (C) , H ′

k (C) at k ≥ 3, and it
is mentioned fulfilled calculation H ′

3 (C) in [5] for maximum subclones C < F3 and
some their intersections (the internal Hemming’s indices in [5] aren’t considered at
all).

In [1] at arbitrary k ≥ 3 we calculated H ′
k (C) for some series of subclones C < Fk

(see in [1] conjecture 1-3 and theorem 1) and in view of restrictions on volume of
the publications without proof we formulated theorems 2, 3 about external indices
H ′

k (C) and theorem 4 about internal indices Hk (C) indicating, that their proof will
be in the second part of the paper. Now we shall give these proofs, and then we’ll
formulate and prove theorem 5, which isn’t given in [1].

Let’s remind the formulations of theorems 2-4, at that for theorem 4 we’ll give
the extended, with respect to [1] formulation.

In the special notation we follow, in general, [1,6,9], but in common terminology
and notation the works [7, 8, 9]. Here we’ll remind the following denotation: for non-
identical permutations π from symmetrical group σk of the set Ek := {0, 1, ..., k − 1}
Sx denotes a clone of all functions f ∈ Fk, self-dual relative to π (in particular, at
π (x) := x ⊕ a, where a ∈ Ek and ⊕ is adding by module k, we write Sx⊕a);
for equivalence θa on Ek with blocks {a} and E\ {a} (a ∈ Ek) Ua := Stk (θa) :=
{f ∈ Fk| f keeps θa} (the common definition of stabilizer Stk (ρ) of arbitrary ratio
ρ ⊆ Em

k also is given in terms of preservation by functions f ∈ Fk of ratio ρ).
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Theorm 2. For any k ≥ 3 and any π ∈ σk, which is decomposed in the
product of independent cycles of the same prime length p an inequality H ′

k (Sπ) =
p − 1/p is true. In particular, at the prime k = p ≥ 3 (here expansion consists of
single cycle, π (x) coincides with one of cyclic permutations x⊕1, ..., x⊕ (p− 1) and
Sx⊕1 = ... = Sx⊕(p−1)

)
also we have H ′

p (Sx⊕1) = p−1
p .

Proof. Let’s start from particular case of prime p ≥ 3 and clone Sx⊕1. Cyclic
subgroup G, generated in σp by permutations = (x) := x⊕1, consists of =,=2, ...,=p−1,
idEp = e1

1 and =j (x) = x⊕j. Therefore, by any n ∈ N the action of group G divides
En

p to orbits of the form:

{< α1, ..., αn >,< α1 ⊕ 1, ..., αn ⊕ 1 >, ..., < α1 ⊕ (p− 1) , ..., αn ⊕ (p− 1) >} ,

< α1, ..., αn >∈ En
p .

Each orbit consists of vectors p (at any n) and number of orbits equals pn/p =
pn−1.

Arbitrary choosing in each orbit by one representative, we’ll denote this system
of representatives by RG;then |RG| = pn−1.

It is obvious, that for any f ∈ F
(n)
p \S(n)

x⊕1 there exists a single gf ∈ S
(n)
x⊕1, coincid-

ing with f on all vectors from RG: this gf is uniquely defined =-self-dual extension
of particular function f � RG (here � is the restriction of function on a part of range
of definition).

Further by construction

ρn (f, gf ) ≤ pn − |RG|
pn

=
pn − pn−1

pn
=

p− 1
p

.

is fulfilled.
From this estimation and uniqueness of gf if follows the estimation ρn

(
f, S

(n)
x⊕1

)
≤

p−1
p from which in view of the arbitrariness of f ∈ F

(n)
p \S(n)

x⊕1 we conclude, that

max
{

ρn

(
f, S

(n)
x⊕1

)∣∣∣ f ∈ F (n)
p \S(n)

x⊕1

}
≤ p− 1

p
.

So, for any n ∈ N h′p (n, Sx⊕1) ≤ p−1
p and therefore H ′

p (Sx⊕1) ≤ p−1
p . On the

other hand, it is easy to see, that S
(1)
x⊕1 = G =

{
e1
1,=, ...,=p−1

}
and constant func-

tion c1
0 coincides with e1

1 only at the point 0, but with =j (j ∈ {1, ..., p− 1}) only at
the point

(
=j

)−1 (0) from which ρ1

(
c1
0, e

1
1

)
= ρ1

(
c1
0,=

)
= ... = ρ1

(
c1
0,=p−1

)
=

p−1
p and, consequently, ρ1

(
c1
0, S

(1)
x⊕1

)
= p−1

p . Since c1
0 ∈ F

(1)
p \S(1)

x⊕1 we obtain

h′p (1, Sx⊕1) ≥ ρ1

(
c1
0, S

(1)
x⊕1

)
= p−1

p and consequently, H ′
p (Sx⊕1) ≥ h′p (1, Sx⊕1) ≥

p−1
p . So, H ′

p (Sx⊕1) = p−1
p for any prime p ≥ 3.

Let now k ≥ 3 arbitrary natural number and permutation π ∈ σk is expanded
into the product of independent cycles =1, ...,=k/p of the same prime length p.

Without restriction of generality we can count, that cycle =1 acts on the set A1 :=
{0, ..., p− 1} , ..., cycle =k/p acts on the set Ak/p := {k − p− 1, ..., k − 1}. Cycles =j

commute pairwise and therefore π2 =
(
=1 ◦ · · · ◦ =k/p

)2 = =2
1 ◦ · · · ◦ =2

k/p, π3 =

=3
1 ◦ · · · ◦ =3

k/p and etc., moreover, permutation =p
j at any j ∈

{
1, ..., k

p

}
coincides
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with idAj . Consequently, cyclic subgroup G, generated in σk by permutation π

consists of e1
1idEk

, π2 = =1 ◦ · · · ◦ =k/p, π2 = =2
1 ◦ · · · ◦ =2

k/p.
By any n ∈ N the action of a group G divides En

k to the orbits of type{
< α1, ..., αn >,< π (α1) , ..., π (αn) >, ..., < πp−1 (α1) , ..., πp−1 (αn) >

}
=

=
{

< α1, ..., αn >,< =j1 (α1) , ...,=jn (αn) >, ..., < =p−1
j1

(α1) , ...,=p−1
jn

(αn) >
}

,

where αm ∈ Ajm

(
m = 1, n

)
; obviously, Ajm is uniquely defined by αm.

As in considered above particular case (prime p ≥ 3 and clone Sx⊕1) we have:
each orbit consists of vectors p (for any n ∈ N); number of orbits equals kn

p and,
chosen in each orbit by representative, we get the system of representatives RG, of
capacity |RG| = kn

p ; for any f ∈ F
(n)
k \S(n)

π there exists a single gf ∈ S
(n)
π at that

gf � RG = f � RG; moreover ρn (f, gf ) ≤
kn−

�
kn

p

�

kn =
kn
�
1− 1

p

�

kn = p−1
p , whence in view

of the uniqueness of gf we get ρn

(
f, S

(n)
π

)
≤ p−1

p and by virtue of arbitrariness of f ∈

F
(n)
k \S(n)

π we come to the estimation h′k (n, Sπ) ≤ p−1
p , and in view of arbitrariness

n ∈ N we obtain H ′
k (Sπ) ≤ p−1

p .

For obtaining lower estimation H ′
k (Sπ) ≥ p−1

p (but for it, it’s enough to set
h′k (1, Sπ) ≤ p−1

p ) we’ll consider a vector 0̂ :=< 0, p, ..., k − p − 1 > composed from
left ends of segments A1, ..., Ak/p, and π-quasi constant unari function qc0̂ (x), given
by equalities qc0̂ (A1) = {0} , qc0̂ (A2) = {p} , ..., qc0̂

(
Ak/p

)
= {k − p− 1} .It is easy

to see, that qc0̂ /∈ Sπ: for example,
(
qc0̂ ◦ π

)
(0) = qc0̂ (π (0)) = 0 (here necessary

membership for equality to zero π (0) ∈ A1 is provided, by virtue of simplicity
of p such that p ≥ 2 is true), whereas

(
π ◦ qc0̂

)
(0) = π (0) 6= 0. Moreover: qc0̂

coincides with e1
1 = idEk

only at points 0, p, ..., k−p−1 (in coordinates of vectors 0̂);
coincides with π only at points π−1 (0) , π1 (p) , ..., π−1 (k − p− 1); coincides with π2

only at points
(
π2

)−1 (0) ,
(
π2

)−1 (p) , ...,
(
π2

)−1 (k − p− 1) and etc., i.e., coincides
with permutations πj ∈ G =

{
e1
1, π, ..., πp−1

}
exactly at p points (by one of each

Am (m ∈ {1, ..., k/p}); otherwise distinguishe exactly at (p− 1) k
p points.

Consequently

ρ1

(
qc0̂, e

1
1

)
= ρ1

(
qc0̂, π

)
= ... = ρ1

(
qc0̂, π

p−1
)

=
(p− 1) k

pk
=

p− 1
p

.

On the other hand, as well known from the theory of groups σk ∩ S
(1)
π besides

permutations from G =
{
e1
1, π, ..., πp−1

}
contains only compositions π1 ◦ π2, where

one of the sets is a product of any degrees of the cycles =j (j ∈ {1, ..., k/p}) of
permutation π, and another for any fixed i ∈ {1, ..., p} permutations i-th elements of
the segments A1, ..., Ak/p. It is easy to check, that for such π1◦π2, ρ1

(
qc0̂, π1 ◦ π2

)
=

p−1
p is also true, and ρ1

(
qc0̂, ϕ

)
≥ p−1

p for ϕ ∈ S
(1)
π \σl. Consequently,

ρ1

(
qc0̂, S

(1)
π

)
= p−1

p form which h′k (1, Sπ) ≥ p−1
p and H ′

k (Sπ) ≥ p−1
p .

So, H ′
k (Sπ) = p−1

p and the theorem is proved.
Theorem 3. At any odd k ≥ 3 for any a ∈ Ek H ′

k (Ua) = 1
2 .
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Proof. Let θn
a be an equivalence on En

k , inducted by equivalence θa, i.e., for any
vectors L̃ =< α1, ..., αn >, β̃ =< β1, ..., βn >∈ En

k it is fulfilled

α̃ ∼ β̃ (mod θn
a) ⇐⇒ (∀i ∈ {1, ..., n}) αi ∼ βi (mod θa) .

For the subset J = {j1, ..., jS} ⊆ {1, ..., n} we shall suppose

BJ := {< α1, .., αn >∈ En
k |(∀j ∈ {1, ..., n}) (αj = a ⇐⇒ j ∈ J)} ;

the case J = ∅ (i.e. S = 0) isn’t being excepted. Then θn
a divides En

k into blocks
BJ (∅ ⊆ J ⊆ {1, ..., n}), where B{j1,...,jS} consists of (k − 1)n−S vectors, and number
of blocks of capacity (k − 1)n−S equals CS

n .
In particular, a single block of capacity (k − 1)n is B∅ = (Ek\ {a})n, and a single

block of capacity 1 will be B{1,...,n} = {< a, ..., a >} .

Arbitrary function g ∈ U
(n)
a on each of the blocks BJ takes either only value a,

or only value from Ek\ {a}.
For the function ϕ ∈ F

(1)
k and the block BJ we’ll suppose

Ba
J := {α̃ ∈ BJ |ϕ (α̃) = a} , B

Ek\{a}
J (ϕ) := { α̃∈ BJ |ϕ (α̃) ∈ Ek\ {a}}

and by B̃ (ϕ) we’ll denote unification of all these blocks BJ , for which one of the
sets Ba

J (ϕ) , B
Ek\{a}
J (ϕ) is empty (i.e. these blocks, within of which ϕ keeps θa).

Obviously, B̃ (ϕ) is always non-empty (i.e. for all ϕ), as < a, ..., a >∈ B̃ (ϕ) ; really,
for block B{1,...,n} = {< a, ..., a >} one of the sets Ba

{1,...,n} (ϕ) , B
Ek\{a}
{1,...,n} (ϕ) is empty,

since this block consists of the unique collection. On the other hand, for any f ∈
F

(n)
k \U (n)

a , B̃ (f) 6= En
k , as at least on the one block BJ0 6= B{1,...,n}the function f

takes both the value a, at least one value of Ek\ {a}, and therefore BJ0 * B̃ (f)
whence BJ0 ∩ B̃ (f) = ∅.

Let’s consider arbitrary f ∈ F
(n)
k \U (n)

a . By virtue of above-stated, there ex-
ist blocks of By with condition By ∩ B̃ (f) = ∅ and for each of them both sets
Ba

y (f) , B
Ek\{a}
y (f) are non-empty. For every such block By we’ll suppose

B∗
j :=

{
Ba

J (f) , if |Ba
J (f)| ≤

∣∣∣BEk\{a}
J (f)

∣∣∣ ,

B
Ek\{a}
J (f) otherwise ,

B∗∗
J (f) := BJ\B∗

J (f), and we’ll consider the sets +̇
{

B∗
J

(
f

∣∣∣BJ ∩ B̃ (f) = ∅
)}

(let’s denote it by B∗ (f)) and +̇
{

B∗∗
J

(
f

∣∣∣BJ ∩ B̃ (f) = ∅
)}

(let’s denote it by

B∗∗ (f)); it is clear that B∗∗ (f) = En
k \

(
B̃ (f) + B∗ (f)

)
. Then En

k = B̃ (f) +̇

+̇B∗ (f) +̇B∗∗ (f)all of addends are non-empty (here and above it means a unifica-
tion of pairwise nonintersecting nonempty sets) and |B∗ (f)| ≤ 1

2

(
kn −

∣∣∣B̃ (f)
∣∣∣) ≤

1
2 (kn − 1).

For vector x̃ ∈ En
k let’s denote the lower index Jx̃ of that unique block BJ for

which by x̃ ∈ BJ . Let’s consider the following function

gf (x̃) :=

{
f (x̃) , if x̃ ∈ B̃ (f) +̇B∗∗ (f)

f
(
L̃◦

Jx̃

)
, if x̃ ∈ B∗ (f) .
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arbitrariry fixing in every of the sets B∗∗
J (f) by one vector α̃0

J .

It is easy to see, that gf ∈ U
(n)
a and ρn (f, gf ) = |B∗(f)|

kn ≤ 1
2 ·

kn−1
kn < 1

2 . Conse-

quently, ρn

(
f, U

(n)
a

)
< 1

2 and in the view of arbitrariness f ∈ F
(n)
k \U (n)

a we come

to h′k (n, Ua) < 1
2 ; here inequality is strict, since by finding h′k (n, Ua) the maximum

is taken by finite set F
(n)
k \U (n)

a . Therefore H ′
k (Ua) = sup

n∈N
h′k (n, Ua) ≤ 1

2 .

We’ll show, that strict inequality H ′
k (Ua) < 1

2 is impossible. Lets assume con-
trary. Then (∀n ∈ N) h′k (n, Ua) < 1

2 and there exists sufficiently large n0 ∈ N such,
that h′k (n0, Ua) < 1

2 −
1

kn0 , as in contrary case H ′
k (Ua) = sup

n∈N
h′k (n, Ua) ≤ 1

2 in spite

of assumption H ′
k (Ua) < 1

2 .
Let’s consider different from {< a, ..., a >} blocks BJ of equivalence θn0

a on En0
k ,

i.e., index J = {j1, ..., js} should be taken different from {1, ..., n0} and therefore
s < n0. Oddness of the number k ≥ 3 implies evenness of all numbers (k − 1)n0−s

at s < n0. Consequently, all blocks BJ different from B{1,...,n0} = {< a, ..., a >}
consist of even number of vectors (we’ll remind, that block B{j1,...,js} consists of

(k − 1)n−s vectors). Therefore in F
(n0)
k \U (n0)

a there exists a function f such, that∣∣∣B̃ (f)
∣∣∣ = 1 (i.e. B̃ (f) = {< a, ..., a >}) and |B∗

J (f)| = |B∗∗
J (f)| = 1

2 · |BJ | for any

J 6= {1, ..., n0}, from which |B∗ (f)| = |B∗∗ (f)| = 1
2 (kn0 − 1). It is easy to see,

that ρn0

(
f, U

(n0)
a

)
≥ 1

2
kn0−1

kn0 = 1
2 −

1
2kn0 > 1

2 −
1

kn0 and, consequently, h′k (n0, Ua) >
1
2 −

1
kn0 is contradiction with earlier deduced inequality h′k (n0, Ua) ≤ 1

2 −
1

kn0 from
supposition H ′

k (Ua) < 1
2 . So, assumption H ′

k (Ua) < 1
2 is not true, i.e., H ′

k (Ua) = 1
2

and the theorem is proved.
Let S̃ (Fk) be a family of all proper sub clones of the clone Fk and S̃max(fk)

be a subfamily of all maximum elements of particularly ordered family S̃ (Fk) :=(
S̃ (Fk) ;⊆

)
. Let, further EQ∗

k be a set of all non-trivial equivalences on Ek and for
θ ∈ EQ∗

k Uθ := STk (θ).
Let’s denote a family {τE |∅ ⊂ E ⊂ Ek }∪{Uθ |θ ∈ EQ∗

k }∪
{
Sπ

∣∣π ∈ σk\
{
e1
1

}}
,by

R, but its subfamily {τE |∅ ⊂ E ⊂ Ek }∪{Uθ |θ ∈ EQ∗
k }∪{Sπ |π ∈ σk which is being

expanded to the product of independent cyclesof the same simple length} by R∗.
As well known (see, for example, [6,7]), R∗ ⊂ S̃max (Fk), but owing to the clones

from R\R∗ R *S̃max (Fk) and Sπ ∈ S̃max (Fk) ⇐⇒ Sπ ∈ R∗.
Further (see [7]), the family of stabilizers of various bounded particular orders

on Ek we’ll denote by BO, by QL-the family (non-empty only at k = pm, where p is
prime and m ≥ 1) of clones of G- quasilinear functions relative to various elementary
Abelian p-groups G with support Ek, Z(≥2)-be family of stabilizers of central ratios
ρ of arity a (ρ) ≥ 2 (and obviously a (ρ) ≤ k − 1), by SH-a family of stabilizers of
strong homomorphism preimages of elementary q-adic ratios.

At A ⊆ S̃max (Fk) we’ll say, that C < Fk is A-local, if C isn’t contained in
D ∈ S̃max (Fk) \A.

Theorem 4. At any k ≥ 3 Hk (C) = 1 for all C < Fk, from the chain of
Burle (see [1, 10]) and Hk (C) = 1/k for all other C < Fk, except at most countable
set

(
Z(≥2) ∪ SH

)
of localized subclones. In particular, Hk (Stk (ρ)) = l/k for any

l-ary (2 ≤ l ≤ k − 1) of the central ratio ρ and Hk (Stk (ρ)) = q/k for any q-adic
(3 ≤ q ≤ k − 1) ratio ρ is strong zoomorphic preimage of elementary q-ary ratio.

Corollary. There exist a clone C and its proper subclones C1, ..., Cm such, that
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C = C1 ∪ ... ∪ Cm, Hk (Cj) = 1/k for all j ∈ {1, ...,m} but Hk (C) > 1/k. Further
Hk (C) = 1/k for all minimum subclones C < Fk.

In the proof of the theorem and corollary the following well-known facts are
being used, which we’ll formulate in the lemmas 1-4.

Lemma 1. (“folklore“, see, for example [6, 7, 8]). The clone Fk is 1-generated,
every C < Fk is contained in some

D ∈ S̃max (Fk) and ∪ {C|C < Fk} = ∪
{

D|D ∈ S̃max (Fk)
}

,

but family S̃max (Fk) is finite.
Lemma 2. (see, for example,[6, 7]). At any n ≥ 2 F

(n)
k generates Fk and

therefore for any C < Fk (∀n ≥ 2) C(n) 6= F
(n)
k is true.

Lemma 3. (Russo’s theorem[11]). At k ≥ 3 and n ≥ 2 the function f ∈ F
(n)
k

generates Fk if and only if (∀C ∈ R) f /∈ C,, that is equivalent to the condition
(∀C ∈ R∗) f /∈ C; otherwise ∪{F | F ∈ R∗} = ∪

{
D|D ∈ S̃max (Fk)

}
.

Lemma 4. (Rozenberque’s theorem [7]).

S̃max (Fk) = R∗ ∪BO ∪QL ∪ Z(≥2) ∪ SH.

Let’s return to the proof of the theorem. Equality Hk (C) = 1 for all C < Fk

from the chain of Burle is explained already at the remark 3 of [1], and the equality
Hk (Selk) = 1

k was verified at the proof of proposition 1 from [1]. By virtue of this
equality, monotonicity of the mapping Hk of lemma 1 and because of the unique
representative of Burle’s chain in family S̃max (Fk) is a clone of Slupetsky τSl, it is
enough to prove Hk (C) = 1

k only for all members of family S̃max (Fk) \ {τSl}. Let
C ∈ S̃max (Fk) \ {τSl} and therefore C(1) 6= F

(1)
k . Then for any n ∈ N and any

f ∈ C(n) ρn

(
f, F

(n)
k \C(n)

)
≥ 1/kn from which by virtue of arbitrariness f ∈ C(n)

hk (n, C) = max
{

ρn

(
f, F

(n)
k \C(n)

)∣∣∣ f ∈ C(n)
}
≥ 1

kn and consequently,

Hk (C) = sup
n∈N

hk (n, C) ≥ hk (1, C) ≥ 1
k
.

On the other hand it is easy to see, that for any C ∈ R∗ Hk (C) ≤ 1
k whence

taking into account (∀C ∈ R∗) C 6= τSl and established above inequality Hk (C) ≥ 1
k

for all C ∈ S̃max (Fk) \ {τSl} we come to (∀C ∈ R∗) Hk (C) = 1
k .

Really, for C ∈ R∗ for any n ∈ N, f ∈ C(n) it is fulfilled ρn

(
f, F

(n)
k \C(n)

)
≤

1
kn , as for f exists g ∈ F

(n)
k \C(n), distinguished from f only for one vector from

En
k (it follows from specific character of clones τE , U⊕, Sπ), i.e., ρn (f, g) = 1

kn

but taking of minimum by g ∈ F
(n)
k \C(n) reduces to the ρn

(
f, F

(n)
k \C(n)

)
≤

1
kn , by virtue of arbitrariness of f ∈ C(n) and finiteness C(n) we get hk (n, C) =

max
{

ρn

(
f, F

(n)
k \C(n)

)∣∣∣ f ∈ C(n)
}

≤ 1
kn , whence in view of arbitrariness

n ∈ N Hk (C) = sup
n∈N

hk (n, C) ≤ 1
k . So, Hk (C) = 1

k for all C ∈ R∗ (and con-

sequently, for all clones contained in some C ∈ R∗).



Transactions of NAS of Azerbaijan
[On internal and external Hemming indices]

175

An equality Hk (C) = 1
k for clones of the family BO and QL is also easy being

checked.
For l-aryc (2 ≤ l ≤ k − 1) central ratio ρ, whose centre Z (ρ) contains the element

a ∈ Ek, an equality Hk (Stk (ρ)) = l
k is obtained by owing to constant function cn

a

and that fact that complement of the central relation consists only of vectors with
pairwise different coordinates. An equality Hk (Stk (ρ)) = q

k is being established
similarly for q-ary (3 ≤ q ≤ k − 1) ρ ratio which is a strong homomorphic preimage
of elementary q-adic ratio. It’s easy to show, that set

(
Z(≥2) ∪ SH

)
-of localized

subclones C < Fk is at most countable. The theorem is proved.
The corollary is proved by using Russo’s theorem for clones from family Z(≥2)

(or SH) and absence in minimum clone different from Selk proper subclones.
For any a 6= b from Ek we’ll consider binary central ratio γa,b := E2

k\ {(a, b) , (b, a)}
and we’ll suppose Γa,b := Stk

(
γa,b

)
..

Theorem 5. At any odd k ≥ 3 and any a 6= b from Ek

H ′
k (Γa,b) =

1
2

is fulfilled.
The proof scheme is similar to the scheme of proof of theorem 3, but slightly

differs from it: instead of sets Ba
J (f) , B

Ek\{a}
J (f) we should consider full preimages

of all elements from Ek, i.e. set Kα (f) := { α̃ ∈ En
k | f (α̃) = d} (α ∈ Ek), moreover,

here we have to use oddness of k ≥ 3 as by established of upper estimation
(
≤ 1

2

)
,

as by reducing to the contradiction of supposition on it strictness
(
< 1

2

)
, whereas in

the proof of theorem 3 this has been done only in the second case.
Now little bit detailed.
Let’s consider arbitrary f ∈ F

(n)
k \Γ(n)

a,b it’s obvious Ka (f) 6= ∅ and Kb (f) 6=
∅ however on α ∈ Ek\ {a, b} it’s possible Kα (f) = ∅. For this f let’s assume

K∗ (f) :=
{

Ka (f) , if |Ka (f)| ≤ |Kb (f)| ,
Kb (f) otherwise

K∗∗ (f) := En
k \K∗ (f)

and some fixed α ∈ Ek\ {a, b}, let’s consider a function

gf (x̃) :=
{

f (x̃) , if x̃ ∈ K∗∗ (f) ,
α, if x̃ ∈ K∗ (f) .

Then at least one of the sets Ka (gf ) , Kb (gf ) is empty and that’s why gf ∈ Γ(n)
a,b .

By construction we have ρn (f, gf ) = |K∗(f)|
kn ≤

[
kn−|Kd|

2

]/
kn. At Kα (f) 6=

∅ taking into account oddness of k ≥ 3 (implying evenness of kn − 1) we get[
kn−|Kd(f)|

2

]
≤ kn−|Kd(f)|

2 ≤ kn−1
2 , but at Kd (f) = ∅ again taking into account

oddness of k, we get
[

kn−|Kd(f)|
2

]
=

[
kn

2

]
= kn−1

2 , i.e., in both cases we have[
kn−|Kd(f)|

2

]
≤ kn−1

2 . Therefore ρn (f, gf ) ≤ kn−1
2kn < 1

2 , whence h′k (n, Γa,b) < 1
2and

H ′
k (Γa,b) ≤ 1

2 . Let’s show that strict inequality is impossible. Having assumed
the contrary, at sufficient large n0 ∈ N we have h′k (n0,Γa,b) < 1

2 −
1

kn0 . For
J = {j1, ..., js} ⊂ {1, ..., n0} (case J = ∅, i.e., s = 0 is not excluded) we’ll denote
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cone
{

(α1, ..., αn0) ∈ En0
k

∣∣ (∀j ∈ J) αi = a & (∀i ∈ {1, ..., n0} \J) αi ∈ Ek\ {a}
}

by
En0

k (a, J) . The set of En0
k \ {(a, ..., a)} is being divided into the cones En0

k (a, J),
where ∅ ⊆ J ⊂ {1, ..., n0} and in view of oddness of k, each of this cones consists
of even number of vectors. Therefore, the function f with condition f (a, ..., a) = a,
being equal to a on the half of each cones vectors, and being equal to b on the
remaining half doesn’t belong to Γn0

a,b. It is easy to see that for any g ∈ Γ(n0)
a,b is

true ρn0
(f, g) ≥ kn0−1

2kn > 1
2 −

1
kn0 , what contradicts to derived from assumption

H ′
k (Γa,b) < 1

2 inequality h′k (n0,Γa,b) < 1
2 −

1
kn0 . So H ′

k (Γa,b) = 1
2 and the theorem

is proved.
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